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Preface

This book contributes with a concept of a process viewed as a model of a run
of a system (discrete, continuous, or of a mixed type), with operations allowing
to define complex processes in terms of their components, and with the idea
of using the formal tools thus obtained to define the behaviours of concurrent
systems.

A process may have an initial state (a source), a final state (a target), or
both. Processes of which one is a continuation of the other can be composed
sequentially. Independent processes, i.e. processes which do not disturb each
other, can be composed in parallel. Processes may be prefixes, i.e. independent
components of initial segments of other processes. Processes and operations on
processes are represented by partially ordered multisets of a certain type and
operations on such multisets.

Processes in a universe of objects and the sequential composition of pro-
cesses form a partial category, called a partial category of processes. Processes
in a universe of objects and the operations of composing processes sequentially
and in parallel form a partial algebra, called an algebra of processes. Partial cate-
gories and algebras of processes belong to axiomatically defined classes of partial
algebras, called behaviour-oriented partial categories and behaviour-oriented al-
gebras. Some of behaviour-oriented partial categories and behaviour-oriented
algebras can be represented as partial categories of processes and algebras of
processes.

Partial categories and algebras of processes can be used to define behaviours
of concurrent systems. Namely, the behaviour of a system can be defined as the
set of possible processes of this system with a structure on this set. The struc-
ture reflexes a natural partial order of processes and makes the set of possible
processes a directed complete poset.

Partial categories and algebras of processes can also be used to define be-
haviours with states and processes provided with specific structures, to define
operations on behaviours similar to those in the existing calculi of behaviours,
and to define random behaviours.
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Introduction

Motivation

In this book an algebraic approach to defining behaviours of concurrent systems
is presented with the intention to develop an approach universal enough to cope
with systems that may exhibit arbitrary combination of discrete and continuous
behaviour. There are reasons for which we need such a universal approach.

In order to describe and analyse systems including computer components,
which operate in discrete steps, and real-world components, which operate in a
continuous way, an approach is needed that includs ideas from both compute
science and control theory (cf. [LSV 07]). Consequently, a simple language is
needed to describe in the same way and to relate behaviours of systems of any
nature, including discrete, continuous, and hybrid systems. This will allow one
to avoid inventing a special way in every particular case.

The presented idea of a universal approach to defining behaviours of concur-
rent systems consists in regarding such systems as generalized transition systems.

Usual transition systems are models of systems which operate in discrete
steps (cf. [RT 86] and [NRT 90]). They specify system states and transitions
between states, the latter supposed to be indivisible. Consequently, they have
means to represent implicitly partial and complete system runs viewed as se-
quences of successive transitions. They can be provided in a natural way with
a composition of runs of which one starts from the final state of the other, and
this results in the structure of a partial category.

In the case of systems with continuous behaviour runs cannot be viewed as
sequences of discrete steps. Nevertheless, the concept of a run still makes sense,
and there is a natural composition of runs of which one starts from the resulting
state of the other (a sequential composition). Moreover, the continuity can be
expressed as infinite divisibility of runs with respect to such a composition.
Moreover, we have not only global states and runs of entire system, but also
local states and runs of system components and their sequential composition,
and also a natural composition of local runs which do not disturb each other (a
parallel composition).

Consequently, the behaviour of a concurrent system can be defined as the set
of possible partial and complete runs of the system and system components, and
the structure on this set that follows from the existence of the compositions. We
call such runs processes and represent them and their compositions as elements
and operations of some algebras.
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Note that by processes we mean runs of the system or its subsystems, or
segments of such runs.1

Every process may have an initial state (a source), a final state (a target), or
both. Every process with an initial state and a final state is said to be bounded.
Processes of which one is a continuation of the other can be composed sequen-
tially. Independent processes, i.e. processes of subsystems which do not disturb
each other, can be composed in parallel. Processes may be prefixes, i.e. inde-
pendent components of initial segments of other processes, and this relation
induces a partial order of processes called prefix order. The set of possible sys-
tem processes is downward closed and directed complete. The structure on this
set reflects how processes compose and the prefix order.

1.1. Example. Consider a system M consisting of machines M1 and M2 which
work independently as shown in figure 1.1 and execute jointly an action γ that
leads M1 to the state a and M2 to the state c if M1 comes to the state b and
M2 comes to the state d.

Figure 1.1

M1 M2

α

��

@@R
a -

β
b c -

δ
d

The transition system representing the possible states and actions of M is
shown in figure 1.2.

1 Note that our understanding of a process as a run of a system, as in the theory of
Petri nets (cf. for example [BD 87], [RT 86], [DMM 89]), is different from that in the
known calculi of behaviours (cf. for example [BK 84], [Miln 80], [Miln 96]), where a
process means a behaviour.
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Figure 1.2
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The behaviour of M consists of processes of M1 and M2 represented by paths
in the transition systems of M1 and M2 in figure 1.1, and of processes of entire
system M , each process represented by a path in the transition system of M in
figure 1.2. In particular, the behaviour of M contains the following processes:

- a, b, c, d are processes reducing to their initial (and final) states,
- (a, c), (a, d), (b, c), (b, d) (or, equivalently, the results a+ c, a+d, b+ c, b+d

of composing in parallel respectively a and c, a and d, b and c, b and d) are
processes identical with their initial and final states,

- α is a process with the initial state a and the final state a,
- β is a process with the initial state a and the final state b,
- γ is a process with the initial state (b, c) and the final state (a, d),
- δ is a process with the initial state c and the final state d,
- an independent execution of α and δ is process with the initial state (a, c)

and the final state (a, d) (the result α+ δ of composing α and δ in parallel),
- an execution of α twice is a process with the initial state a and the final

state a (the result αα of composing α and α sequentially),
- an infinite repetition of α that begins but never ends is a process with the

initial state a and no final state (the result αω of composing α sequentially
infinitely many times with a start),

- an infinite repetition of α without beginning that ends is a process with the
final state a and no initial state (the result α−ω of composing α sequentially
infinitely many times with an end),

- an infinite repetition of α that never begins and never ends is a process
with no initial state and no final state (the result α−ω,ω of composing α
sequentially infinitely many times without a start and without an end), etc.

Moreover, process α+ δ has prefixes a, c, α, δ, the result a+ c of composing in
parallel a and c, the result α + c of composing in parallel α and c, the result
a+ δ of composing in parallel a and δ, and entire α+ δ. ]
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Processes and algebras of processes

In order to develop our approach we formulate first a general, system independent
definition of processes, define partial operations of composing processes, and
define the respective algebras of processes.

Processes are thought as activities in a universe of objects, each object with
a set of possible internal states and instances corresponding to these states, each
activity changing states of some objects, where changes are viewed as replace-
ments of the existing occurrences of active objects by new occurrences. They
are independent whenever they represent activities in disjoint subsets of the
universe.

For example, processes of the system M of machines M1 and M2 can be
thought as activities in the universe that consists of M1 and M2.

We propose to represent processes of any kind (discrete, continuous, and par-
tially discrete - partially continuous) as specific labelled partially ordered sets
(lposets), where a partial order represents causality. In order to define opera-
tions on processes we identify isomorphic processes and represent them by the
respective isomorphism classes, called partially ordered multisets (pomsets).

Processes in a universe of objects, and operations of composing such pro-
cesses, constitute a partial algebra A = (A, ; ,+), where A is a set of processes,
(α1, α2) 7→ α1;α2, where α1;α2 is written also as α1α2, is the partial operation
of composing sequentially processes of which α1 leads to a state from which
α2 starts, (α1, α2) 7→ α1 + α2 is the partial operation of composing in parallel
independent processes (see [Wink 09a]).

For example, processes α, β, γ, δ of the system M of machines from example
1.1 can be represented as pomsets shown in figure 1.3.

The independent execution of α and δ followed by an execution of α in
presence of the state d of M2 can be represented as the pomset (α + δ)(α + d)
shown in figure 1.4. Similarly, the independent execution of β and δ followed by
an execution of γ by M1 and M2 can be represented as the pomset (β + δ)γ
shown in figure 1.4.

The parallel composition of processes reflects the independence of processes.
Moreover, it allows one also to represent processes in arbitrary contexts. In
particular, processes in which only some objects are involved can be represented
with any degree of locality due to the possibility of composing them in parallel
with states of sets of objects that are not involved. For example, the process α
of machine M1 can be represented both as a local process of M1 and as a global
process α+ c of entire system M .
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Figure 1.3

r
d

- r
c

��
��1PPPPq

rb - r a
γ =δ = r

c
- r

d

α = ra
- ra β = ra

- rb

Figure 1.4
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The introduced notions allow us to define the respective prefix order of pro-
cesses and represent the behaviours of concurrent systems as downward closed
directed complete partially ordered subsets of algebras of processes in suitable
universa of objects, the subsets equipped with structures which reflect how pro-
cesses compose, the prefix order, and possibly specific features of the represented
behaviours. Following the existing in computer science terminology, we call con-
structs thus obtained behaviours, and follow the idea of [WiMa 87] to define
typical operations on such constructs.

Moreover, we show how to apply our approach to systems which show random
behaviours. In order to characterize such behaviours we define for each system
an adequate probability space.

Due to the universal nature of our process concept, and due to the charac-
terization of behaviours of systems in terms of processes, our approach applies
not only to discrete systems but also to continuous and hybrid systems.
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Algebras of processes as axiomatically defined algebras

For every algebra of processes in a universe of objects the subalgebra of bounded
processes is a member of an axiomatically defined class of partial algebras with
axioms allowing to define independence of elements, called in [Wink 07a] be-
haviour algebras. These algebras generalize asynchronous systems of [Sh 85] and
[Bedn 88], and transition systems with independence of [WN 95]. They are richer
than the mentioned models in the sense that they allow one to represent not only
states, transitions, and independence of transitions of discrete systems, but also
long runs of arbitrary systems, the internal structures of runs, and how runs
compose. Moreover, the independence of becomes a definable notion, and it can
be defined not only for transitions, but also for arbitrary runs.

In [Wink 05] it has been shown that if behaviour algebras are discrete in
a sense then the sets of indecomposable elements of reducts of such algebras
to their underlying categories form, together with the existing information on
independence, structures close to transition systems with independence of [WN
95]. In particular, it has been shown that such structures generate freely the
respective categories.

In [Wink 07a] it has been shown that the partial monoid of a behaviour
algebra can be embedded homomorphically in the partial monoid of preclasses
of a tolerance relation with the set theoretical union of disjoint preclasses as the
operation, and that under some conditions the behaviour algebra itself can be
embedded homomorphically in the algebra of bounded processes in a universe
of objects.

It has been shown also that every element of a behaviour algebra defines
a unique set (the canonical underlying set) and a unique structure on this set
(the canonical structure) that consists of a partial order (the canonical partial
order) and of a labelling (the canonical labelling). The structures thus defined
are consistent with operations on elements. In many cases they can be enriched
consistently with some additional structures. This allows one to represent be-
haviours of systems with rich structures of states and processes. Moreover, the
approach applies not only to discrete systems, but also to continuous and hybrid
systems, and the continuity of a processes can be reflected as infinite divisibility
of the representing element of the respective algebra.

In [Wink 09a] and [Wink 09b] the concept of behaviour algebras has been
generalized. In particular, elements have been admitted which may be lacking
sources or targets or both sources and targets, it has been shown how to define
behaviours and probabilistic models of random behaviours, and a general concept
of behaviour-oriented algebras has been introduced.

For A = (A, ; ,+) being a behaviour-oriented algebra the reduct (A, ; ) is a
partial category pcat(A) with definable unary partial operations α 7→ dom(α)
and α 7→ cod(α) assigning to a morphism α respectively the source and the target
of this morphism, if such a source or a target exists, and the reduct (A,+) is
a partial commutative monoid pmon(A). For A corresponding to a behaviour
algebra in the sense of [Wink 07a] the reduct pcat(A) is a category of processes,
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dom(α) and cod(α) are defined for all processes, and they represent the initial
and the final states of the respective processes.

In [Wink 11] simplified behaviour-oriented algebras, called multiplicative
transition systems, have been introduced and studied, with the intention of ex-
pressing all the interesting properties of behaviours in terms of global processes
and one only partial operation of composing processes sequentially. Such alge-
bras are partial categories that enjoy the properties of the reducts of behaviour-
oriented algebras to partial categories. Modifying the concept of a region as
in [ER 90] and exploiting the existence of minimal regions, it has been shown
that the multiplicative transition systems of a broad class can be represented as
partial categories of processes.

In the present book, whose parts have been presented in [Wink 09a], [Wink
09b], and [Wink 11], we extend and summarize these results.

Relation to other work

The presented approach concentrates on algebras whose elements and operations
are supposed to represent partial and complete processes (runs) of concurrent
systems and natural operations on such processes. The decision to deal with
such algebras rather than with concrete systems has been taken in order to deal
with a space of processes that admits the well recognized algebraic structure of
a category or a partial category, and the structure of a partial monoid. This does
not limit the possibilities of applications since the behaviours of systems, and
systems with a distinguished initial state can be represented as subsets of those
processes of the respective algebra that contain only processes of a given system,
or of a given system starting in a given initial state. Processes in such subsets may
be prefixes of other processes, which results in a natural partial order similar to
the partial order in configuration structures as those in [GP 95]. In particular, for
systems with finitary processes we can derive from processes occurrences of their
atomic components and next deal the sets of such occurrences as configurations
of a configuration structure. However, configuration structures thus obtained
are specific since the indeterminism in the underlying sets of processes is fully
expressible in terms of state components.

For systems represented by Petri nets as described in Appendix F processes
in our sense correspond to executions of the representing nets in the sense of the
theory of Petri nets. More precisely, they correspond to executions reduced to
occurrences of local situations, and thus to executions in which occurrences of
transitions are represented only implicitly.

In our approach runs of a system represented by a Petri net are viewed as
processes in a universe of objects, each instance of an object representing a local
situation in the net. Usually, such processes form a subalgebra of the algebra
of all processes in this universe, and the representing net can be viewed as a
specification of the set of generators of this subalgebra.

In the case of elementary and Condition/Event net systems, that is systems
whose states are given by sets of conditions, and whose transitions correspond
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to events which depend on and affect only some conditions, concrete executions
of a net can be defined as deterministic occurrence nets, called causal nets,
with a homomorphism to the so called safe completion of the original net, and
isomorphic concrete executions can be identified (cf. [Wink 03] and [Wink 06] for
details). In the present formulation such executions can be defined as activities
in the respective universum of conditions, each condition with two instances
corresponding to the states “satisfied” and “not satisfied”. This way of defining
processes extends easily on contextual Petri nets as those considered in [MR
95] and [BBM 02]. However, the notion of independence of processes is more
subtle for contextual Petri nets since also processes which share a context may
be independent.

In the case of net systems based on Place/Transition Petri nets it is not
enough to define concrete executions of a net as causal nets with a homomor-
phism to this net since the corresponding abstract executions do not contain in-
formation sufficient for defining the operations on executions and independence
of executions. In [MMS 96] it has been shown that the notion of concatenable
decorated processes is what one needs. This notion takes into account to some
extent the identities of tokens taking part in an execution, and it makes possible
to define the corresponding operations on executions and independence of exe-
cutions. An essential feature of this approach is that the identification of tokens
in an execution is an intrinsic property of this execution. In our approach we
propose instead to regard executions as running in a fixed universe of objects
which may become tokens, and such a universe is external with respect to the
considered executions (see [Wink 05] for details). In the case of executions of
Place/Transition nets this solution is less elegant that that in [MMS 96], but
in general it may be more universal. For instance, it does not require explicit
references to events as in [MMS 96] and thus is more natural for continuous
systems.

Processes equipped with graph structures are close to graph processes of
[CMR 96], and thus to derivations of graph grammars in the sense of the so
called double pushout approach. A grammar generating derivations represented
by processes from a given set of processes can be recovered by decomposing
processes of this set into atoms and by defining productions as instances of
atoms thus obtained. However, our approach is less flexible than the existing
standard approach because it limits the set of objects (nodes and edges) which
may appear in processes representing derivations of a grammar to a universe
that must be fixed in advance. On the other hand, we need not restrict ourselves
only to graph structures.

Our methods of representing systems and their processes and behaviours
seem to be well suited for modelling object oriented computations like those
that can be programmed in Java or in other similar languages. This is however
a subject that requires a special presentation, and we do not resume it in the
present book.

The fact that systems and their behaviours are modelled in the framework
of algebras allows one to describe in a natural way such relations between sys-
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tems and their behaviours as various similarities and equivalences. But also this
requires a special presentation which we do not resume in the present book.

Summary

In chapter 2 we formalize the concept of a process. In chapter 3 we introduce
operations on processes, describe their properties and define the respective alge-
bras of processes. In chapter 4 we define behaviours of systems and we describe
typical operations on behaviours. In chapter 5, we describe how the approach
can be used to describe random behaviours. In chapter 6 we define abstract
behaviour-oriented algebras and describe their relation to algebras of processes.
In chapter 7 we describe how elements of behaviour-oriented algebras can used
to represent processes provided with some structures. In chapter 8 we define
behaviour-oriented partial categories and describe how they are related to par-
tial categories of processes. In chapter 9 we describe how behaviour-oriented
partial categories generated by atomic elements are related to transition sys-
tems with independence. Chapter 5 is included in order to illustrate how the
approach applies to random behaviours and it is not necessary to follow the
remaining parts of the material.
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Processes

We think of processes as of activities in a universe of objects, each object with a
set of possible internal states and instances corresponding to these states, each
activity changing states of some objects.

Universes of objects

A universe of objects and processes in such a universe can be defined as follows.

2.1. Definition. By a universe of objects we mean a structure
U = (V,W, ob), where V is a set of objects, W is a set of instances of objects from
V (a set of object instances), and ob is a mapping that assigns the respective
object to each of its instances. ]

2.2. Example. For machines M1 and M2 as in example 1.1, let
V1 = {M1,M2}, W1 = {a, b, c, d}, ob1(a) = ob1(b) = M1,
ob1(c) = ob1(d) = M2. Then U1 = (V1,W1, ob1) is a universe of objects. ]

2.3. Example. Suppose that a producer p produces some material for a distrib-
utor d. Define an instance of p to be a pair (p, q), where q ≥ 0 is the amount of
material at disposal of p. Define an instance of d to be a pair (d, r), where r ≥ 0
is the amount of material at disposal of d. Define V2 = {p, d}, W2 = Wp ∪Wd,
where Wp = {(p, q) : q ≥ 0}, Wd = {(d, r) : r ≥ 0}. Define ob2(w) = p for
w = (p, q) ∈ Wp and ob2(w) = d for w = (d, r) ∈ Wd. Then U2 = (V2,W2, ob2)
is a universe of objects. ]

2.4. Example. Tokens used to mark places of a Place/Transition Petri net
with a set P of places can be regarded as instances of objects from a universe
Utokens = (Vtokens ,Wtokens , obtokens), where Vtokens = {v1, v2, ...} is an infinite
set of objects which may serve as tokens in places of the net, each object v with
the possible instances w = (v, p) for p being position(w), the actual position of
v from a set Positions that contains P and two distinguished elements source
and sink , and where Wtokens is the set of instances of objects from Vtokens and
obtokens : Wtokens → Vtokens is the mapping that assigns the respective object to
its instances, i.e., obtokens((v, p)) = v. ]
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2.5. Example. Units of data that occur in a world can be regarded as instances
of objects from a universe Udata = (Vdata ,Wdata , obdata), where Vdata is an
infinite set of objects which may serve as units of data, each object v with the
possible instances w = (v, c, p) for c being content(w), the actual content of v
from a set Contents that contains a distinguished element none, and for p being
position(w), the actual position of v from a set Positions that contains two
distinguished elements source and sink , and where Wdata is the set of instances
of objects from Vdata and obdata : Wdata → Vdata is the mapping that assigns
the respective object to its instances, i.e., obdata((v, c, p)) = v. ]

Processes

2.6. Definition. Given a universe U = (V,W, ob) of objects, by a concrete
process in U we mean a labelled partially ordered set L = (X,≤, ins), where

(1) X is a set (of occurrences of objects from V , called object occurrences),
(2) ins : X → W is a mapping (a labelling that assigns an object instance to

each occurrence of the respective object),
(3) ≤ is a partial order on X (the flow order or the causal dependency relation

of L) such that
(3.1) for every object v ∈ V , the set X|v = {x ∈ X : ob(ins(x)) = v} is either

empty or it is a maximal chain and has an element in every cross-section,
(3.2) every element of X belongs to a cross-section,
(3.3) no segment of L is isomorphic to its proper subsegment. ]

The notion of a cross-section is defined in Appendix A. Condition (3.1) means
that L contains all information on the behaviour within L of every object which
has in L an occurrence, and that every potential global state of L contains an
element of this information. Condition (3.2) guarantees that every occurrence of
an object in L belongs to a potential global state of L. Condition (3.3) allows
one to distinguish every segment of L even if L is considered up to isomorphism.

The author would like to take the opportunity to explain that in the paper
”Behaviour Algebras” (item [Wink 07a] of the references) the condition corre-
sponding to (3.1) is too weak since it does not require every maximal chain X|v
to have an element in every cross-sectiona and it implies the present condition
(3.1) only if the flow order is strongly K-dense.
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2.7. Example. Let U1 = (V1,W1, ob1) be the universe from example 2.2.
An execution of action α by the machine M1 is a concrete process

A = (XA,≤A, insA) in U1, where
XA = {x1, x2},
x1 <A x2,
insA(x1) = insA(x2) = a.

An execution of action β by the machine M1 is a concrete process
B = (XB ,≤B , insB) in U1, where
XB = {x1, x2},
x1 <B x2,
insB(x1) = a, insB(x2) = b.

Joint execution of action γ by the machines M1 and M2 is a concrete process
C = (XC ,≤C , insC) in U1, where
XC = {x1, x2, x3, x4},
x1 <C x3, x1 <C x4, x2 <C x3, x2 <C x4,
insC(x1) = b, insC(x2) = d, insC(x3) = a, insC(x4) = c.

An execution of action δ by the machine M2 is a concrete process
D = (XD,≤D, insD) in U1, where
XD = {x1, x2},
x1 <D x2,
insD(x1) = c, insD(x2) = d.

Independent execution of α and δ followed by an execution of α is a concrete
process E = (XE ,≤E , insE) in U1, where
XE = XA′ ∪XD′ ∪XA′′ ,
≤E is the transitive closure of ≤A′ ∪ ≤D′ ∪ ≤A′′ ,
insE = insA′ ∪ insD′ ∪ insA′′ ,
for variants A′ and A′′ of A and a variant D′ of D such that the maximal
element of XA′ coincides with the minimal element of XA′′ , and these are the
only common elements of pairs of sets from among XA′ , XD′ , XA′′ .

Independent execution of β and δ followed by an execution of γ is a concrete
process F = (XF ,≤F , insF ) in U1, where
XF = XB′ ∪XD′ ∪XC′ ,
≤F is the transitive closure of ≤B′ ∪ ≤D′ ∪ ≤C′ ,
insF = insB′ ∪ insD′ ∪ insC′ ,
for a variant B′ of B, a variant D′ of D, and a variant C ′ of C such that the
maximal element of XB′ coincides with the minimal element of XC′ with the
same label, the maximal element of XD′ coincides with the minimal element of
XC′ with the same label, and these are the only common elements of pairs of
sets from among XB′ , XD′ , XC′ .

The lposets representing the concrete processes A, B, C, D, E, F are repre-
sented graphically in figure 2.1.
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Figure 2.1
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The isomorphism classes of lposets corresponding to the concrete processes
A, B, C, D are represented graphically in figure 1.3 as α, β, γ, δ, respectively.
The isomorphism classes of lposets corresponding to the concrete processes E
and F are represented graphically in figure 1.4 as (α + δ)(α + d) and (β + δ)γ,
respectively. ]

2.8. Example. Let U2 = (V2,W2, ob2) be the universe from example 2.3.
Undisturbed production of material by the producer p in an interval [t′, t′′]

of global time is a concrete process Q = (XQ,≤Q, insQ) in U2, where
XQ is the set of values of variations var(t 7→ q(t); t′, t) in intervals [t′, t] ⊆ [t′, t′′]
of the real valued function t 7→ q(t) which specifies the amount of material at
disposal of p at every moment of [t′, t′′],
≤Q is the restriction of the usual order of numbers to XQ,
insQ(x) = (p, q(t)) for x = var(t 7→ q(t); t′, t).
The number var(t 7→ q(t); t′, t′′), written as length(Q), is called the length of
Q. The set XQ with the order ≤Q represents the intrinsic local time of the
producer. If the material is produced in a continuous way than the function
t 7→ q(t) is continuous and XQ is a closed interval. Otherwise it ma consist
of a set of disjoint intervals. If there is no uncontrolled lose of the material
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then the function t 7→ q(t) is increasing and q(t′′)− q(t′) = length(Q). Otherwise
q(t′′)−q(t′) < length(Q). (We remind that the variation of a real-valued function
f on an interval [a, b], written as var(f ; a, b), is the least upper bound of the set
of numbers |f(a1)−f(a0)|+ ...+ |f(an)−f(an−1)| corresponding to subdivisions
a = a0 < a1 < ... < an = b of [a, b]. In the case of more than one real-valued
function the concept of variation turns into the concept of the length of the curve
defined by these functions.)

Undisturbed distribution of material by the distributor d in an interval [t′, t′′]
of global time is a concrete process R = (XR,≤R, insR) in U2, where
XR is the set of values of variations var(t 7→ r(t); t′, t) in intervals
[t′, t] ⊆ [t′, t′′] of the real valued function t 7→ r(t) which specifies the amount of
material at disposal of d at every moment of [t′, t′′],
≤R is the restriction of the usual order of numbers to XR ,

insR(x) = (d, q(t)) for x = var(t 7→ q(t); t′, t).
The number var(t 7→ r(t); t′, t′′), written as length(R), is called the length

of R. The set XR with the order ≤R represents the intrinsic local time of the
distributor. If the material is distributed in a continuous way than the function
t 7→ r(t) is continuous and XR is a closed interval. Otherwise it ma consist of a
set of disjoint intervals. If there is no uncontrolled supply of the material then
the function t 7→ r(t) is decreasing and r(t′)− r(t′′) = length(R). Otherwise
r(t′)− r(t′′) < length(R).

Transfer of an amount m of material from the producer p to the distributor
d is a concrete process S = (XS ,≤S , insS) in U2, where
XS = {x1, x2, x3, x4},
x1 <S x3, x1 <S x4, x2 <S x3, x2 <S x4,
insS(x1) = (d, r), insS(x2) = (p, q), insS(x3) = (d, r +m),

insS(x4) = (p, q −m).
The set XR with the order ≤R represents the intrinsic global time of the system
consisting of the producer and the distributor.

Transfer of an amount of material from the producer p to the distributor d
followed by independent behaviour of p and d and by another transfer of material
from p to d is a concrete process T = (XT ,≤T , insT ) in U2, where
XT = XQ′ ∪XR′ ∪XS′ ∪XS′′ ,
≤T is the transitive closure of ≤Q′ ∪ ≤R′ ∪ ≤S′ ∪ ≤S′′ ,
insT = insQ′ ∪ insR′ ∪ insS′ ∪ insS′′ ,

for a variant Q′ of Q, a variant R′ of R, and variants S′ and S′′ of S, such that
one maximal element of XS′ coincides with the minimal element of XQ′ with the
same label and the other maximal element coincides with the minimal element
of XR′ with the same label, one minimal element of XS′′ coincides the maximal
element of XQ′ with the same label and the other minimal element coincides
with the maximal element of XR′ with the same label, and these are the only
common elements of pairs of sets from among XQ′ , XR′ , XS′ , XS′′ .

The isomorphism classes of lposets corresponding to the concrete processes
Q, R, S, and T , are represented graphically in figure 2.2. ]
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Figure 2.2: [Q], [R], [S], [T ]
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2.9. Example. The marking of a Place/Transition Petri net that consists of
a single token v in a single place p or, equivalently, the presence of v in p, can
be regarded as a concrete process p′ = (Xp′ ,≤p′ , insp′) in Utokens from example
2.4, where Xp′ = {x}, ≤p′ is the identity, and insp′(x) = (v, p).

The marking that consists of a single token v1 in p and a single token in q
can be regarded as as a concrete process M = (XM ,≤M , insM ), where XM =
{x1, x2}, ≤M is the identity, insM (x1) = (v1, p) and insM (x2) = (v2, q).

Execution of a transition of a Place/Transition Petri net with input places
p, q and output places r, s can be regarded as a concrete process
Z = (XZ ,≤Z , insZ) in Utokens, where
XZ = {x1, x2, x3, x4, x5, x6, x7, x8},
x1, x2, x3, x4 ≤Z x5, x6, x7, x8,
insZ(x1) = (v1, p), insZ(x5) = (v1, sink),
insZ(x2) = (v2, q), insZ(x6) = (v2, sink),
insZ(x3) = (v3, source), insZ(x7) = (v3, r),
insZ(x4) = (v4, source), insZ(x8) = (v4, s).

The isomorphism class of lposets corresponding to the process Z is repre-
sented graphically in figure 2.3. ]
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Figure 2.3: [Z]
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2.10. Example. Let Udata = (Vdata ,Wdata , obdata) be the universe from ex-
ample 2.5. Consider an automaton A with a set Q of states, an input alpha-
bet I, an output alphabet J , a transition function f : I × Q → Q, an out-
put function g : I × Q → J , and an initial state q0. The run of this au-
tomaton with the initial state q ∈ Q, the sequence µ = d1d2... of input data
d1 = (v11, i1, input), d2 = (v12, i2, input),... and the sequence ν = e1e2... of out-
put data e1 = (v21, j1, output), e2 = (v22, j2, output),... can be regarded as a
concrete process P = (XP ,≤P , insP ) over Udata , where
xP = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, ...},
x1, x2, x3 <P x4, x5, x6,
x4, x7, x8 <P x9, x10, x11, and so on,
insP (x1) = m = (A, q,memory),
insP (x2) = d1 = (v11, i1, input),
insP (x3) = e′1 = (v21,none, source),
insP (x4) = m′ = (A, q′ = f(i1, q),memory),
insP (x5) = e1 = (v21, j1 = g(i1, q), output),
insP (x6) = d′1 = (v11, i1, sink),
insP (x7) = d2 = (v12, i2, input),
insP (x8) = e′2 = (v22,none, source),
insP (x9) = m′′ = (A, q′′ = f(i2, q

′),memory),
insP (x10) = e2 = (v22, j2 = g(i2, q

′), output),
insP (x11) = d′2 = (v12, i2, sink), and so on.

The isomorphism class of lposets corresponding to the process P is repre-
sented graphically in figure 2.4. ]
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Figure 2.4
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Some properties of processes. Abstract processes

As concrete processes are lposets, their morphisms are defined as morphisms of
lposets, that is as mappings that preserve the ordering and the labelling (see
Appendix A).

Let U = (V,W, ob) be a universe of objects.
Let L = (X,≤, ins) be a concrete process in U.
Every cross-section of (X,≤) contains an occurrence of each object v with

nonemptyX|v, and it is called a cross-section of L. By csections(L) we denote the
set of cross-sections of L. This set is partially ordered by the relation �, and for
every two cross-sections Z ′ and Z ′′ from csections(L) there exist in csections(L)
the greatest lower bound Z ′ ∧ Z ′′ and the least upper bound Z ′ ∨ Z ′′ of Z ′ and
Z ′′ with respect to �. From (3.1) and (3.2) of definition 2.6 it follows that the
set of objects occurring in a cross-section is the same for all cross-sections of
L. We call it the range of L and write it as objects(L). We say that L is global
if objects(L) = V . We say that L is bounded if the set of elements of L that
are minimal with respect to ≤ and the set of elements of L that are maximal
with respect to ≤ are cross-sections; the respective cross-sections are then called
the origin and the end of L, and they are written as origin(L) and end(L).
We say that L is semibounded if the set of elements of L that are minimal with
respect to ≤ is a cross-section, i.e. if origin(L) is defined. We say that L is locally
complete if for every segment of L (which is bounded by definition) the poset of
cross-sections of this segment is a complete lattice.

The following proposition is a direct consequence of process definition.
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2.11. Proposition. For each cross-section c of L, the restrictions of L to the
subsets X−(c) = {x ∈ X : x ≤ z for some z ∈ c}
and X+(c) = {x ∈ X : z ≤ x for some z ∈ c} are concrete processes, called
respectively the head and the tail of L with respect to c, and written respectively
as head(L, c) and tail(L, c). ]

The following proposition reflects an important property of concrete pro-
cesses.

2.12. Proposition. For every cross-section c of L, every isomorphism between
initial segments of tail(L, c) (resp.: between final segments of head(L, c)) is an
identity. ]

Proof. Let Q be the restriction of L to X+(c) and let R and S be two initial
segments of Q.

Suppose that f : R → S is an isomorphism that it is not an identity. Then
there exists an initial subsegment T of R such that the image of T under f , say
T ′, is different from T . By (3.3) of definition 2.6 neither T ′ is a subsegment of
T nor T is a subsegment of T ′. Define T ′′ to be the least segment containing
both T and T ′, and consider f ′ : T → T ′′, where f ′(x) = f(x) for x ≤ f(x) and
f ′(x) = x for f(x) < x. In order to derive a contradiction, and thus to prove
that f is an identity, it suffices to verify, that f ′ is an isomorphism. It can be
done as follows.

For injectivity suppose that f ′(x) = f ′(y). If x ≤ f(x) and y ≤ f(y) then
f(x) = f ′(x) = f ′(y) = f(y) and thus x = y. If f(x) < x and f(y) < y
then x = f ′(x) = f ′(y) = y. The case x ≤ f(x) and f(y) < y is excluded by
f ′(x) = f ′(y) since x ≤ f(x) = f ′(x) = f ′(y) = y and, on the other hand,
f(y) < y = f(x) implies y < x. Similarly, the case f(x) < x and y ≤ f(y) is
excluded. Consequently, f ′ is injective.

For surjectivity suppose that y is in T ′′. If y ≤ f(y) then y = f(t) for some
t ≤ y and thus y = f ′(t) since t ≤ y = f(t) and thus f ′(t) = f(t). If f(y) < y
then y = f ′(y). Consequently, f ′ is surjective.

For monotonicity suppose that x ≤ y.
If x ≤ f(x) and y ≤ f(y) then f ′(x) = f(x) ≤ f(y) = f ′(y).
If f(x) < x and f(y) < y then f ′(x) = x ≤ y = f ′(y).
If x ≤ f(x) and f(y) < y then f ′(x) = f(x) ≤ f(y) < y = f ′(y).
If f(x) < x and y ≤ f(y) then f ′(x) = x ≤ y ≤ f(y) = f ′(y).
Consequently, f ′ is monotonic.

For monotonicity of the inverse suppose that f ′(x) < f ′(y).
If x ≤ f(x) and y ≤ f(y) then f(x) = f ′(x) < f ′(y) = f(y) and thus x < y.
If f(x) < x and f(y) < y then x = f ′(x) < f ′(y) = y.
If x ≤ f(x) and f(y) < y then x ≤ f(x) = f ′(x) < f ′(y) = y.
If f(x) < x and y ≤ f(y) then f(x) < x = f ′(x) < f ′(y) = f(y) and thus x < y.
Consequently, the inverse of f ′ is monotonic.
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Verification for final subsegments of the restriction of L to the subset X−(c)
is similar. ]

2.13. Corollary. For every segment Q of L, every automorphism of Q is an
identity. ]

2.14. Corollary. If L is bounded then for every bounded concrete process L′

there may be at most one isomorphism from L to L′. ]

The theorem which follows gives sufficient conditions of local completeness
of L.

2.15. Theorem. L is locally complete if the following conditions are satisfied:

(1) For every object v that occurs in L the set X|v of its occurrences in L is a
locally complete chain.

(2) The relation of incomparability with respect to the flow order ≤ is a closed
subset of the product X ×X for X provided with the interval topology, i.e.,
the weakest topology in which all intervals {x ∈ X : a < x < b} are open
sets. ]

Proof. Let Z1 and Z2 be cross-sections of L such that Z1 � Z2. Let S be the
set of cross-sections s of L such that Z1 � s � Z2. Due to (1) for every v ∈ V
that occurs in L there exists the least upper bound xv of those elements of X|v
which belong to some s ∈ S. Due to (2) the set Z of all such elements is an
antichain. This set is a maximal antichain of L and it is easy to verify that it is
also a cross-section of L. ]

2.16. Definition. An abstract process is an isomorphism class of concrete pro-
cesses. ]

For every concrete process L′ such that L and L′ are isomorphic we have
objects(L′) = objects(L). Consequently, for the abstract process [L] that corre-
sponds to a concrete process L we define objects([L]) = objects(L).

We say that an abstract process is global (resp.: bounded, semibounded, locally
complete, K-dense, weakly K-dense) if the instances of this process are global
(resp.: bounded, semibounded, locally complete, K-dense, weakly K-dense).

Collecting concrete processes into isomorphism classes, i.e. making abstract
processes, allows one to define some operations on the latter. In what follows,
the word ”process” means ”abstract process”.

By PROC (U) we denote the set of all processes in U. By gPROC (U),
glcPROC (U), and KPROC (U), we denote respectively the set of all global,
global locally complete, weakly K-dense processes in U.
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Algebras of processes

For each process α from PROC (U) with an instance L ∈ α that has the cross-
section origin(L) (resp.: the cross-section end(L)) there exists the unique process
[origin(L)], called the source or the domain or the initial state of α and written
as dom(α) (resp.: the unique process [end(L)], called the target or the codomain
or the final state of α and written as cod(α)). If origin(L) (resp. end(L)) is not
defined for L then dom(α) (resp. cod(α)) is not defined for α.

In PROC (U) there are two partial operations of composing processes: a
sequential composition and a parallel composition.

The sequential composition

The sequential composition allows one to combine two processes whenever one of
them is a continuation of the other. It can be defined due to the proposition 2.11
according to which for each cross-section c of a concrete process L = (X,≤, ins),
the restrictions head(L, c) and tail(L, c) of L to
X−(c) = {x ∈ X : x ≤ z for some z ∈ c}
and to X+(c) = {x ∈ X : z ≤ x for some z ∈ c} are concrete processes.

3.1. Definition. A process α is said to consist of a process α1 followed by a
process α2 iff an instance L of α has a cross-section c such that head(L, c) is an
instance of α1 and tail(L, c) is an instance of α2. ]

For example, the process φ in figure 3.1 consists of the process λ followed by
the process γ.

3.2. Proposition. For every two processes α1 and α2 such that cod(α1) and
dom(α2) are defined and cod(α1) = dom(α2) there exists a unique process,
written as α1;α2, or as α1α2, that consists of α1 followed by α2. If α1 and α2

are locally complete then so is α1α2. If α1 and α2 are global or weakly K-dense
then so is α1α2. ]

Proof. Take L1 = (X1,≤1, ins1) ∈ α1 and L2 = (X2,≤2, ins2) ∈ α2 with
X1 ∩ X2 = end(L1) = origin(L2) and with the restriction of L1 to end(L1)
identical with the restriction of L2 to origin(L2), and provide X1 ∪X2 with the
least common extension of the flow orders and labellings of L1 and L2.



28 Algebras of processes

Let L be the lposet thus obtained. It suffices to prove that L is a process and
notice that head(L, c) = L1 and tail(L, c) = L2.

Figure 3.1
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In order to prove that L is a process it suffices to show that L does not
contain a segment with isomorphic proper subsegment. To this end suppose the
contrary.

Suppose that f : Q → R is an isomorphism from a segment Q of L to a
proper subsegment R of Q, where Q consists of a part Q1 contained in L1 and a
part Q2 contained in L2. By applying twice the method described in the proof
of proposition 2.12 we can modify f to an isomorphism f ′ : Q → R such that
the image of Q1 under f ′, say R1, is contained in Q1, and the image of Q2

under f ′, say R2, is contained in Q2. As R is a proper subsegment of Q, one
of these images, say R1, is a proper part of the respective Qi. By taking the
greatest lower bounds and the least upper bounds of appropriate cross-sections
we can extend Q1 and R1 to segments Q′1 and R′1 of P1 such that R′1 is a proper
subsegment of Q′1 and there exists an isomorphism from Q′1 to R′1. This is in a
contradiction with the fact that L1 is a process. Consequently, L is a process.
If α1 and α2 are locally complete then L1 = head(L, c) and L2 = tail(L, c) are
locally complete. Given a segment Q of L and a subset S of cross-sections of L
contained in Q, let c− be the least upper bound of the set of cross-sections s∧ c
with s ∈ S and c+ the least upper bound of cross-sections s∨c with s ∈ S. Then
for every v ∈ V define xv as the greater of the two elements of X|v in c− and
in c+, and define d as the set of all xv. As c− and c+ are cross-sections, d does
not contain comparable elements and is an antichain. As all v ∈ V have in d
occurrences, d is a maximal antichain. It is also straightforward to verify that d



Algebras of processes 29

is a cross-section and the least upper bound of S. In a similar way we can define
a cross-section that is the greatest lower bound of S.

The cases of globality and weak K-density are obvious. ]

3.3. Definition. The operation (α1, α2) 7→ α1;α2 is called the sequential com-
position of processes. ]

In the sequel the symbol ; will be omitted and α1;α2 will be written as α1α2.
Each process which is a source or a target of a process is an identity, i.e. a

process ι such that ιφ = φ whenever ιφ is defined and ψι = ψ whenever ψι is
defined. Moreover, if dom(α) is defined then it is the unique identity ι such that
ια is defined, and if cod(α) is defined then it is the unique identity κ such that
ακ is defined. Consequently, α 7→ dom(α) and α 7→ cod(α) are definable partial
operations on processes.

Identities are bounded processes with flow orders reducing to identity rela-
tions. They are called states, or identities, and we can identify them with the
sets of instances of occurring objects.

The parallel composition

The parallel composition allows one to combine processes with disjoint sets of
involved objects. It can be defined as follows.

3.4. Definition. Given a concrete process L = (X,≤, ins), by a splitting of L
we mean an ordered pair s = (XF , XS) of two disjoint subsets XF and XS of
X such that XF ∪XS = X, x′ ≤ x′′ only if x′ and x′′ are both in one of these
subsets. ]

3.5. Proposition. For each splitting s = (XF , XS) of a concrete process
L = (X,≤, ins), the restrictions of L to the subsets XF and XS are concrete
processes, called respectively the first part and the second part of L with respect
to s, and written respectively as first(L, s) and second(L, s). ]

A proof is straightforward.

3.6. Definition. A process α is said to consist of two parallel processes α1 and
α2 iff an instance L of α has a splitting s such that first(L, s) is an instance of
α1 and second(L, s) is an instance of α2. ]

For example, λ in figure 3.2 consists of parallel processes β and δ.
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3.7. Proposition. For every two processes α1 and α2 such that
objects(α1) ∩ objects(α2) = ∅ there exists a process α with an instance L that
has a splitting s such that first(L, s) is an instance of α1 and second(L, s) is an
instance of α2. If such a process α exists then it is unique, we write it as α1 +α2,
and we say that the processes α1 and α2 are parallel. If α1 and α2 are locally
complete then so is α1 + α2. If α1 and α2 are global or weakly K-dense then so
is α1 + α2. ]

For a proof it suffices to take L1 = (X1,≤1, ins1) ∈ α1

and L2 = (X2,≤2, ins2) ∈ α2 with X1 ∩X2 = ∅, and to provide X1 ∪X2 with
the least common extension of the flow orders and labellings of L1 and L2.

3.8. Definition. The operation (α1, α2) 7→ α1 + α2 is called the parallel com-
position of processes. ]

In the set PROC (U) of processes in U there exists a process 0 such that
α+0 = α for every α, namely the process with the empty set of object instances,
called the empty process.

The operations of composing processes allow one to represent complex pro-
cesses in terms of their components.

3.9. Examples. In the case of processes in example 2.8 we can represent [T ]
as [S′]([Q′] + [R′])[S′′].

All bounded executions of a Place/Transition Petri net with a set of places
and a set of transitions can be regarded as processes which can be obtained by
composing processes corresponding to presences of tokens in places of this net
and executions of its transitions as described in example 2.9. Bounded executions
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starting from an initial marking can be regarded as those processes whose initial
state corresponds to the initial marking. ]

The operations of composing processes allow one also to turn the sets
PROC (U), gPROC (U), glcPROC (U), KPROC (U) into partial algebras.

Partial categories of processes and their properties

Taking into account the definitions of operations on processes we obtain the
following proposition (see Appendix D for the notions).

3.10. Proposition. The partial algebra (PROC (U), ; ) is a partial category
pcatPROC(U). For every α ∈ PROC (U), if dom(α) is defined then it is the
source of α in this partial category, and if cod(α) is defined then it is the target
of α in this partial category ]

An important property of the partial category
pcatPROC(U) is that for its composition we have the following cancellation
laws.

3.11. Proposition. If σα and σ′α are defined, their targets are defined, and
σα = σ′α then σ = σ′. If ατ and ατ ′ are defined, their sources are defined, and
ατ = ατ ′ then τ = τ ′. ]

Proof. Suppose that σα and σ′α are defined, their targets are defined, and
σα = σ′α. Suppose that L and L′ are instances of σα and σ′α, that c and c′

are cross-sections of L and L′ such that σ = [head(L, c)], σ′ = [head(L′, c′)],
α = [tail(L, c)] = [tail(L′, c′)], and that f and f ′ are isomorphisms from L to
L′ such that f(c) = c′. Then f |tail(L, c) = f ′|tail(L, c) and f ′(c) = c′ since
otherwise f ◦ (f ′)−1 would be an automorphism from L to L whose restriction
to tail(L, c) would be different from identity isomorphism of final segments of
L, and this would contradict to proposition 2.12. Thus f consists of two disjoint
mappings f |tail(L, c) : tail(L, c)→ tail(L′, c′)
and f |head(L, c) : head(L, c) → head(L′, c′), Being disjoint restrictions of the
isomorphism f both these mappings are isomorphisms.
Consequently, σ = [head(L, c)] = [head(L′, c′)] = σ′.

The proof of the second law is similar. ]

Another important property of the partial category pcatPROC(U) is that
bicartesian squares in this partial category can be characterized as follows.

3.12. Proposition. A diagram (v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w) is a bicartesian
square in pcatPROC(U) if and only if there exist c, ϕ1, ϕ2 such that c is
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an identity, there is no identity d 6= 0 such that ϕ1 = d + ϕ′1 for some ϕ′1 or
ϕ2 = d + ϕ′2 for some ϕ′2, c + ϕ1 + ϕ2 is defined, α1 = c + ϕ1 + dom(ϕ2),
α2 = c+ dom(ϕ1) + ϕ2, α′1 = c+ ϕ1 + cod(ϕ2), α′2 = c+ cod(ϕ1) + ϕ2. ]

Proof. Suppose that D = (v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w) is a bicartesian square, that
L is an instance of α1α

′
2 = α2α

′
1, and that Z1, Z2 are cross-sections of L such that

[head(L,Z1)] = α1, [tail(L,Z1)] = α′2, [head(L,Z2)] = α2, [tail(L,Z2)] = α′1.
Suppose that X ′ is the set of common elements of Z1 and Z2.

We have Z1∨Z2 = end(L) since otherwise D could not be a pushout diagram,
and Z1 ∧ Z2 = origin(L) since otherwise D could not be a pullback diagram.
Consequently, we can define c as the set of object instances of elements of X ′,
ϕ1 as [L1] for the restriction of L to the set
X1 = {x ∈ X −X ′ : z2 ≤ x ≤ z1 for some z1 ∈ Z1 and z2 ∈ Z2},
and ϕ2 as [L2] for the restriction of L to the set
X2 = {x ∈ X −X ′ : z1 ≤ x ≤ z2 for some z1 ∈ Z1 and z2 ∈ Z2}.

Conversely, suppose that there exist c, ϕ1, ϕ2 such that c is an identity,
c+ ϕ1 + ϕ2 is defined, α1 = c+ ϕ1 + dom(ϕ2), α2 = c+ dom(ϕ1) + ϕ2,
α′1 = c+ ϕ1 + cod(ϕ2), α′2 = c+ cod(ϕ1) + ϕ2, and consider the diagram

D = (v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w).
Suppose that α1ρ2 = α2ρ1 = σ. Then in each instance L of σ there are cross-

sections Z1 and Z2 such that head(L,Z1) is an instance of α1 and head(L,Z2) is
an instance of α2. Consequently, head(L,Z1∨Z2) is an instance of α = c+ϕ1+ϕ2

and tail(L,Z1∨Z2) is an instance of a process ρ such that αρ = σ. By proposition

3.11 such a process is unique. Thus v
α′

2→ u′
α′

1← w is a pushout of v
α1← u

α2→ w.
Suppose that ξ1α

′
2 = ξ2α

′
1 = τ . Then in each instance T of τ there are cross-

sections Y1 and Y2 such that tail(T, Y1) is an instance of α′1 and tail(T, Y2) is an
instance of α′2. Consequently, tail(T, Y1 ∧ Y2) is an instance of α
and head(T, Y1∧Y2) is an instance of a process ξ such that ξα = τ . By proposition

3.11 such a process is unique. Thus v
α1← u

α2→ w is a pullback of v
π′
2→ u′

π′
1← w.

Hence D is a bicartesian square. The uniqueness of α′1 and α′2 follows from
the fact that in pcatPROC(U) only identity processes are isomorphisms. ]

3.13. Proposition. If A = (A, ; ) is the partial category of processes in a
universe of objects then it enjoys the following properties:

(A1) If σα and σ′α are defined, their targets are defined, and σα = σ′α then
σ = σ′.

(A2) If ατ and ατ ′ are defined, their sources are defined, and ατ = ατ ′ then
τ = τ ′.

(A3) If στ is an identity then σ and τ are also identities.
(A4) If σατ is defined, it has a source and a target, and the category decσατ of

decompositions of σατ is isomorphic to the category decα of decompositions
of α then σ and τ are identities.
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(A5) For all ξ1, ξ2, η1, η2 such that ξ1ξ2 = η1η2 there exist unique σ1, σ2, and a

unique bicartesian square (v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w), such that ξ1 = σ1α1,
ξ2 = α′2σ2, η1 = σ1α2, η2 = α′1σ2.

(A6) If (v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w) is a bicartesian square then for every

decomposition u
α1→ v = u

α11→ v1
α12→ v (resp. w

α′
1→ u′ = w

α′
11→ w1

α′
12→ u′) there

exist a unique decomposition w
α′

1→ u′ = w
α′

11→ w1
α′

12→ u′ (resp. u
α1→ v = u

α11→

v1
α12→ v), and a unique v1

α′′
2→ w1, such that

(v1
α11← u

α2→ w, v1
α′′

2→ w1
α′

11← w) and (v
α12← v1

α′′
2→ w1, v

α′
2→ u′

α′
12← w1) are

bicartesian squares.
(A7) Given a family α = (u

αi→ vi : i ∈ {1, ..., n}), n ≥ 2, the existence for all
i, j ∈ {1, ..., n} such that i 6= j of bicartesian squares of the form

(vi
αi← u

αj→ vj , vi
α′
j→ u′ij

α′
i← vj) implies the existence in A of a unique

bicartesian n-cube with α being the family of its initial morphisms.
(A8) Every decomposition of α ∈ A into a pair c = (ξ1, ξ2) of ξ1 ∈ A and ξ2 ∈ A

such that ξ1ξ2 = α separates bicartesian squares in the category decα of
decompositions of α in the sense that every two bicartesian squares in decα,
one with a = (η, δξ2) such that η 6= ξ1 among the nodes, and another with
b = (ξ1ε, ζ) such that ζ 6= ξ2 among the nodes, do not share a node whenever
they cannot be decomposed into bicartesian squares such that some of their
bicartesian squares share a common side with the node c.

(A9) Every direct system D in the category occ(A) of occurrences of morphisms
in morphisms in A such that elements of D are bounded in the sense that
they possess sources and targets has an inductive limit (a colimit).

(A10) Every α ∈ A is the inductive limit of the direct system of its bounded
segments, that is of bounded ξ ∈ A such that α = α1ξα2 for some α1 and
α2. ]

Proof. The properties (A1) - (A2) have been proved as proposition 3.11.
(A3) is a direct consequence of process definition.
For (A4) suppose that there exists an isomorphism b between the restriction

of A to the set of components of α and the restriction of A to the set of compo-
nents of σατ , and consider an instance L of α and an instance L′ of σατ . The
isomorphism b induces an isomorphism b between the lattice of cross-sections
of L and the lattice of cross-sections of L′. As every object has a unique in-
stance in every cross-section of L and a unique instance in every cross-section
of L′, by considering for every occurrence of an object in L the cross-sections
containing this occurrence and by using the isomorphism b we can construct
an isomorphism between L and L′. To this end it suffices to notice that an oc-
currence of an object instance p in a cross-section c1 of L and an occurrence
of p in a cross-section c2 of L correspond to the same occurrence of p in L iff
[tail(head(L, c1 ∨ c2), c1 ∧ c2)] = p + δ for some δ, and that for L′ we have a
similar property.
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Consequently, L cannot be a proper segment of L′, and we obtain (A4).
For (A5) we refer to the characterization of bicartesian squares in the partial

category A = pcatPROC(U) as described in proposition 3.12. With this char-
acterization a proof of (A5) can be carried out as follows. Consider an instance
L of ξ1ξ2 = η1η2 and its cross-sections c1 and c2 such that
ξ1 = [head(L, c1)], ξ2 = [tail(L, c1)], η1 = [head(L, c2)], ξ1 = [tail(L, c2)].
Define σ1 = [head(L, c1 ∧ c2)], σ2 = [tail(L, c1 ∨ c2)],
α1 = [head(tail(L, c1 ∧ c2), c1)], α2 = [head(tail(L, c1 ∧ c2), c2)],
α′1 = [head(tail(L, c2), c1∨ c2)], α′2 = [head(tail(L, c1), c1∨ c2)]. Follow the proof

of 3.12 to show that the diagram D = (v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w) is a bicartesian
square.

For (A6) it suffices to take into account the characterization 3.12 of bicarte-
sian squares and notice that a decomposition of α1 induces a decomposition of
ϕ1.

The property (A7) follows easily from proposition 3.12
The property (A8) follows easily from proposition 3.12.
For (A9) it suffices to take into account corollary 2.14 and consider the re-

spective colomits in the category LPOSETS.
The property (A10) follows from the condition (2) of definition 2.6. ]

Taking into account proposition 3.2 we obtain the following result.

3.14. Proposition. The restrictions pcatgPROC(U), pcatglcPROC(U),
and pcatKPROC(U), of the partial category pcatPROC(U) to the subsets
gPROC (U), glcPROC (U), and KPROC (U), respectively are subalgebras of
pcatPROC(U), and they enjoy the properties (A1) - (A10). ]

Partial categories of processes in a universe of objects which enjoy the proper-
ties (A1) - (A10) are essentially specific mutiplicative transition systems (MTSs)
in the sense of [Wink 11]. In the rest of the paper we call them partial categories
of processes.

3.15. Definition. A partial category of processes is a partial category
A = (A, ; ) such that A is a set of processes in a universe of objects and A enjoys
the properties (A1) - (A10). ]

The following proposition allows one to consider every partial category of
processes as the union of a family of partial categories of processes, each partial
category containing only processes from a fixed universe of objects.

3.16. Proposition. For every universe U′ of objects that is obtained by re-
stricting U to a subset V ′ of objects, and to the subset W ′ of instances of objects
from V ′, and for every partial category of processes A = (A, ; ), the restriction
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of A to the set of elements α ∈ A with objects(α) = V ′ is a partial category of
processes. ]

A proof is straightforward.
Due to (A1) - (A10) we obtain the following propositions.

3.17. Proposition. For every α, the relation vα between decompositions of α
into pairs (ξ1, ξ2) such that ξ1ξ2 = α, where (ξ1, ξ2) vα (η1, η2) iff η1 = ξ1δ and
ξ2 = δη2 for some δ, is a partial order. ]

A proof follows from immediately from the properties (A1) - (A4).

3.18. Proposition. For every α, the partial order vα between decompositions
of α into pairs (ξ1, ξ2) such that ξ1ξ2 = α makes the set of such decompositions
a lattice LTα. ]

Proof. Let α = ξ1ξ2 = η1η2, ξ1 = σ1α1, ξ2 = α′2σ2, η1 = σ1α2, η2 = α′1σ2 with
α1, α′1, α2, α′2, σ1, σ2 as in (A5). The least upper bound of x = (ξ1, ξ2) and
y = (η1, η2) can be defined as z = (ξ1α

′
2, σ2) = (η1α

′
1, σ2). To see this consider

any u = (ζ1, ζ2) such that x vα u and y vα u. Then ζ1 = ξ1δ and ζ1 = η1ε for
some δ and ε. As α′1 and α′2 form a pushout of α1 and α2, there exists a unique ϕ
such that δ = α′2ϕ and ε = α′1ϕ. Hence ζ1 = ξ1α

′
2ϕ = η1α

′
1ϕ and, consequently,

z vα u.
Similarly, due to the fact that α1 and α2 form a pullback of α′1 and α′2, we

obtain that t = (σ1, α1α
′
2σ2) is the greatest lower bound of x and y. ]

Partial monoids of processes and their properties

The following two propositions are direct consequences of definitions.

3.19. Proposition. The partial algebra (PROC (U),+) is a partial commuta-
tive monoid pmonPROC(U) with the empty process 0 such that α+ 0 = α for
every α. ]

3.20. Proposition. If A = (A,+) is the partial monoid of processes in a
universe of objects then it enjoys the following properties:

(B1) If α+ σ and α+ σ′ are defined and α+ σ = α+ σ′ then σ = σ′.
(B2) α+ α is defined only for α = 0.
(B3) The following relation / is a partial order:

α1 / α2 iff α2 contains α1 in the sense that α2 = α1 + ρ for some ρ.
(B4) Given a subset B of A, if α1 + α2 is defined for all α1, α2 ∈ B such that

α1 6= α2 then in A there exists the least upper bound 5B of B with respect
to /.
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(B5) For all α1 and α2 there exists the greatest lower bound of α1 and α2 with
respect to /, written as α1 4 α2.

(B6) If α1 + α2 is defined then (α1 4 σ) + (α2 4 σ) is defined and
(α1 4 σ) + (α2 4 σ) = (α1 + α2)4 σ.

(B7) If α1 4 α2 = 0 and α1 / α and α2 / α for some α then α1 + α2 is defined.
(B8) Each α 6= 0 contains some β that is a (+)-atom in the sense that β 6= 0

and β = α1 + α2 only if either α1 = β and α2 = 0 or α1 = 0 and α2 = β.
(B9) Each α is determined uniquely by the set h(α) of (+)-atoms it contains in

the sense that h(α1) = h(α2) implies α1 = α2. ]

Algebras of processes and their properties

3.21. Proposition. The partial category pcatPROC(U) and the partial
monoid pmonPROC(U) are related to each other as follows:

(C1) dom(α1 + α2) and dom(α1) + dom(α2) are defined and
dom(α1 + α2) = dom(α1) + dom(α2) whenever α1 + α2, dom(α1), dom(α2)
are defined.

(C2) cod(α1 + α2) and cod(α1) + cod(α2) are defined and
cod(α1 + α2) = cod(α1) + cod(α2) whenever α1 + α2, cod(α1), cod(α2) are
defined.

(C3) dom(α) = 0 implies α = 0 and cod(α) = 0 implies α = 0.
(C4) If (α11α12) + (α21α22) is defined then α11 + α21, α11 + α22, α12 + α21,

α12 +α22 are also defined and (α11α12) + (α21α22) = (α11 +α21)(α12 +α22).
(C5) If α11α12 and α21α22 are defined, and α11 +α21 is defined, or α11 +α22 is

defined, or α12 + α21 is defined, or α12 + α22 is defined,
then (α11α12) + (α21α22) is defined.

(C6) α1 +α2 = β1β2 implies the existence of unique α11, α12, α21, α22 such that
α1 = α11α12, α2 = α21α22, β1 = α11 + α21, β2 = α12 + α22.

(C7) In pmonPROC(U) there exists the least congruence ∼ such that α ∼ β
for all α and β such that α = γβδ or α = γβ or α = βδ for some γ and
δ, and this congruence is strong, that is α1 ∼ α′1 and α2 ∼ α′2 implies that
α1 + α2 is defined iff α′1 + α′2 is defined.

(C8) A diagram (v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w) is a bicartesian square in
pcatPROC(U) if and only if there exist c, ϕ1, ϕ2 such that c is an identity,
there is no identity d 6= 0 such that d / ϕ1 or d / ϕ1, c+ ϕ1 + ϕ2 is defined,
α1 = c + ϕ1 + dom(ϕ2), α2 = c + dom(ϕ1) + ϕ2, α′1 = c + ϕ1 + cod(ϕ2),
α′2 = c+ cod(ϕ1) + ϕ2. ]

A proof is straightforward assuming α ∼ β whenever
objects(α) = objects(β) and taking into account proposition 3.12.

The obtained results can be summarized as follows.
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3.22. Proposition. PROC(U) = (PROC (U), ; ,+) is a partial algebra that
enjoys the following properties:

(A) The reduct (PROC (U), ; ) is a partial category pcatPROC(U) with the
properties (A1) - (A10).

(B) The reduct (PROC (U),+) is a partial commutative monoid
pmonPROC(U) with the properties (B1) - (B9).

(C) The reducts (PROC (U), ; ) and (PROC (U),+) are related according to (C1)
- (C8). ]

Taking into account proposition 3.2 and 3.14 we obtain the following result.

3.23. Proposition. The restrictions gPROC(U), glcPROC(U),
KPROC(U) of the partial algebra PROC(U) to the subsets gPROC (U),
glcPROC (U), KPROC (U) respectively, are subalgebras of PROC(U), and they
enjoy the properties (A), (B), (C). ]

Partial algebras of processes in a universe of objects which enjoy the proper-
ties (A), (B), (C) are essentially versions of algebras of processes in the sense of
[Wink 09a]. In the rest of the paper we call them algebras of processes.

3.24. Definition. An algebra of processes is a partial algebra A = (A, ; ,+)
such that A is a set of processes in a universe of objects and A enjoys the
properties (A), (B), (C). ]

The reducts (A, ; ) and (A,+) of an algebra A of processes are denoted re-
spectively pcat(A) and pmon(A).

Taking into account proposition 3.16 one can consider the reduct pcat(A)
of an algebra of processes A as the union of a family of partial categories of
processes Ai, where each Ai contains only processes in a universe Ui. The
monoidal structure of A provides an algebraic relation between between partial
categories Ai, a structure that cannot be defined within pcat(A) itself. Due to
this structure a process in a universe of objects can be lifted to a process in
a larger universe by adding an identity or another process. This allows one to
interprete local runs of a system in presence of independent states or processes
as global runs.

The weakK-density of processes results in a special property of the respective
algebras.

3.25. Proposition. If A = (A, ; ,+) is an algebra of weakly K-dense processes
in a universe of objects then it enjoys the following property:

(C9) Given α such that dom(α) contains an identity p which is a (+)-atom (an
atomic identity), and cod(α) contains an identity q which is a (+)-atom (an
atomic identity), if α cannot be represented as (p + α1)(q + α2) then for
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every ξ and η such that α = ξη the state cod(ξ) = dom(η) contains an
atomic identity m such that ξ cannot be represented as (p+ ξ1)(m+ ξ2) and
η cannot be represented as (m+ η1)(q + η2). ]

Proof. Let L be an instance of α, x the occurrence of p in origin(L), and y the
occurrence of q in end(L). Consider a cross-section c of L such that head(L, c)
is an instance of ξ and tail(L, c) an instance of η. The fact that α cannot be
represented as (p+α1)(q+α2) implies that there is no cross-section of L contain-
ing both x and y. Consequently, x precedes y and, due to the weak K-density
of the partial order of L, between x and y there exists an occurrence z of an
atomic identity m that belongs to c. Hence ξ and η cannot be represented as
(p+ ξ1)(m+ ξ2) and (m+ η1)(q + η2). ]

A partial order of processes

The operations of composing processes can be used to define prefixes of processe
and use the prefix concept to define a partial order of processes.

Let A = (A, ; ,+) be an algebra of processes.

3.26. Definition. A process α is said to be a full prefix of a process β, and we
write α fpref β, if β = αγ for some γ. ]

For example, the process λ in figure 4.1 is a full prefix of the process φ.

3.27. Definition. A process α is said to be a prefix of a process β, and we
write α pref β, if β = (α+ δ)γ for some γ and δ. ]

For example, the processes β and δ in figure 3.2 are prefixes of the processes
λ and of φ in figure 3.1.

Note that a process α is gobal iff α+ β is defined only for β = 0.
Note that, due to (B4), (B11), for all α and β in A we can define α − β as

the least upper bound 5C of the set C of those (+)-atoms contained in α which
are not contained in β.

Note that, due to (A1) - (A4), (B1) - (B5), and to other properties of algebras
of processes, the relation pref is a partial order on the subset Abounded of bounded
elements of A.

Given a directed subset D of bounded elements of A with the partial order
pref , by (B6) we can assign to each α ∈ D an identity cα such that dom(α) + cα
equals to the least upper bound with respect to v of the sources of elements of
D. Then the respective α+ cα form a unique direct system D∗. in the category
occ(A). This system has the inductive limit δ that can be regarded as a limit of
D. By adding all such limits to the set Abounded we obtain the subset Asemibounded
of those α ∈ A which possess sources.
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3.28. Proposition. The extention α v β of the relation pref defined by
α v β whenever every prefix of α is a prefix of β

is a partial order on Asemibounded. The inductive limits of directed subsets of
Asemibounded with this order are their least upper bounds. ]

Proof. Given a directed subset D of the poset (Asemibounded,v), the pefixes
of elements of D form a directed set D′. For every element of D′ we choose
a concrete instance, and we consider α and β = (α + γ)δ such that L is the
chosen instance of α, L1 is the chosen instance of β, L2 is the chosen instance
of α + γ and L3 = head(L1, c) is an instance of α + γ. Then there exists a
unique isomorphism f from L2 to L3 since otherwise there would be another
isomorphism g and the correspondence f(x) 7→ g(x) would be different from
identity isomorphism between two initial segments of L1. On the other hand,
f determines a unique isomorphism between L and first(L2, s) with a splitting
s due to the fact that the first part of L2 is determined uniquely by the set of
objects which occur in it. ]

3.29. Definition. The relation v on Asemibounded is called the prefix order
. The least upper bound of a directed subset D of the partially ordered set
Asemibounded is called the limit of D. ]

Note that the least upper bounds of directed subsets of (Asemibounded,v)
are limits of the corresponding filters in Asemibounded with the Scott topology
induced by the partial order v.
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Behaviours

A formal definition of a behaviour

The behaviour of a concurrent system can be represented by the set of its poten-
tial processes. The system may be reactive in the sense that it may communicate
with the environment, behave depending on the data it receives, and act jointly
with the environment (cf. [Pn 86]).

A behaviour is potential rather than actual. What has happened up to a
certain stage of its potential process is a prefix of this process. What may happen
next depends on the presence of suitable instances of objects taking part in
the behaviour. Moreover, it is natural to assume that a behaviour contains the
existing least upper bound of its subsets. Consequently, a behaviour is a specific
set of processes. It automatically posesses the structure of partial order given by
the prefix relation, and is a directed complete poset (a DCPO).

In order to define behaviours formally it is convenient to fix an algebra of pro-
cesses, and think of this algebra as of a framework for the respective definitions.
Let A = (A, ; ,+) be an algebra of processes.

4.1. Definition. A behaviour represented in A, or a behaviour in A, or simply a
behaviour, if A is known from the context, is a subset B of the set A of processes
of A such that:

(1) B is downward closed with respect to v,
(2) if α and β are initial segments of runs which are maximal elements of B then

α(γ + s) ∈ B iff β(γ + t) ∈ B for every γ such that dom(γ) + s = cod(α)
and dom(γ) + t = cod(β),

(3) the least upper bound
⊔
D of a subset D of B belongs to B for every subset

D of B such that
⊔
D exists. ]

4.2. Example. The underlying set of any algebra of processes is a behaviour
represented in this algebra. Note that such a behaviour contains all the sources
of maximal elements of A with respect to the prefix order. This reflects the
indeterministic choice of the initial state of the behaviour from among all the
sources of maximal elements of A. ]

4.3. Example. Consider the machines M1 and M2 and their system M in
example 1.1.
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The behaviour of the machine M1 working alone can be represented in
PROC(U1) as the set of processes a, b, α, α2, ... , αω, β, αβ, α2β, ... .

The behaviour of the machine M2 working alone can be represented in
PROC(U1) as the set of processes c, d, δ.

The behaviour of the system M can be represented in PROC(U1) as the
set B1 of processes of the subalgebra A1 of the algebra PROC(U1) that can
be obtained by combining a, b, c, d, α, β, γ, δ with the aid of compositions and
construction of limits.

It is clear that A1 is an algebra of processes and that B1 is also a behaviour in
A1. In this behaviour processes which have not in A1 a common extension (i.e.,
a processes of which they are predecessors relative to the prefix order) cannot
represent initial segments of the same maximal process of M . Note that the
lack of such a common extension can be decided without a reference to maximal
processes of M .

An initial part of B1 is depicted in figure 4.1, where the prefix order is
indicated by directed edges. ]

Figure 4.1: An initial part of B1
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4.4. Example. Consider a producer p and a distributor d in example 2.6.
By combining the abstract processes corresponding to the possible variants of
concrete processes Q and R of the producer and the distributor with the aid of
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compositions and construction of limits, we obtain a subalgebra A2 = (A2, ; ) of
PROC(U2). This subalgebra is an algebra of processes. The set B2 of runs of
this algebra is a behaviour represented in A2. It reflects an independent activity
of the producer and the distributor.

By combining the abstract processes corresponding to the possible variants
of concrete processes Q, R, S with the aid of compositions and construction of
limits, we obtain a subalgebra A3 = (A3, ; ) of PROC(U2). This subalgebra is
an algebra of processes. The set B3 of processes of this algebra is a behaviour
represented in A3. It reflects an activity of the producer p and the distributor d
that is mainly independent, but from time to time is interrupted by transfer of
some material from the producer to the distributor. ]

4.5. Example. The behaviour of an automaton A as described in example
2.10 with the initial state q ∈ Q, the sequence µ = d1d2... of input data d1 =
(v11, i1, input), d2 = (v12, i2, input),... and the sequence ν = e1e2... of output
data e1 = (v21, j1, output), e2 = (v22, j2, output),... can be defined as the set
of prefixes of processes in the universe Udata of data described in example 2.5,
namely of the processes whose instances are as P in example 2.10. It will be
defined formally in example 4.24.

The behaviour of the same automaton A for an unspecified initial state and
an unspecified sequence of input data can be defined as a closed with respect to
the existing least upper bounds of subsets and prefix-closed subset of the algebra
of processes in Udata , namely the union of the subsets representing the behaviors
of A with all the possible initial states, all the possible sequences of input data,
and all the possible sequences of output data. ]

The following proposition states an important property of behaviours in lo-
cally complete partial categories of processes.

4.6. Proposition. If a locally complete partial category of processes A is a
subalgebra of the locally complete partial category PROC(U) of locally com-
plete processes in a universe U of objects then every behaviour B in A with the
prefix order is an algebraic domain and thus it is a continuous DCPO. ]

Proof. Suppose that α ∈ B is a bounded process with an instance L such that
L = head(L′, c) for a concrete process L′ with [L′] ∈ B and for c being the least
upper bound of cross-sections c′ of L′ with the underlying sets of head(L′, c′)
containing occurrences x1, ..., xn of instances of objects v1, ..., vn from a finite
subset of V . Then α is a compact element of B. Indeed, suppose that α v

⊔
S for

a directed subset S of B. Then all s ∈ S and
⊔
S have instances Ls and LS that

are initial segments of L′ such that the underlying set of LS is the union of the
underlying sets of all Ls and it contains the underlying set of L. Consequently,
for every i ∈ {1, ..., n} there must be si ∈ S such that the underlying set of
Lsi contains xi. Consequently, x1, ..., xn belong to the underlying set of Ls for
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an upper bound s of s1, ..., sn that belongs to S. Consequently, c must be a
cross-section of Ls and α v s ∈ S, as required.

In order to prove that B with the prefix order is algebraic domain, consider
any α ∈ B and its instance L. As every process is an inductive limit of a di-
rect system of its bounded segments, it suffices to consider the case when α is
bounded. Then for every finite set f = {x1, ..., xn} of occurrences of instances
of objects v1, ..., vn in the underlying set of L there exists the least cross-section
cf of L such that x1, ..., xn belong to the underlyin set of head(L, cf ). Then
sf = [head(L, cf )] is a compact element of B. On the other hand, processes sf
form a directed set S and α =

⊔
S, as required. ]

In the next section it will become clear that proposition 4.6 plays an impor-
tant role in providing random behaviours with suitable probability measures.

Note that from propositions 2.15 and 4.6 it follows that the behaviour B1 in
example 4.3 with the respective prefix order is a continuous DCPO. Note also
that behaviour B2 in example 4.4 with the prefix order is a continuous DCPO
if all the variants of Q and R in its processes are complete lattices.

Operations on behaviours

Behaviours can be combined with the aid of operations which can be defined as
follows.

First, it is easy to see that the set of behaviours in A is a complete lattice.

4.7. Proposition. The set Behaviours(A) of behaviours in A is ordered by
inclusion and every family (Bi : i ∈ I) of its members has the greatest lower
bound and the least upper bound. If such a family is nonempty then the inter-
section

⋂
(Bi : i ∈ I) is its greatest lower bound and the union

⋃
(Bi : i ∈ I)

augmented by processes whose existence follows from the conditions of definition
4.1 is its least upper bound. The least upper bound of the empty family is the
empty behaviour. The greatest upper bound of the empty family is the set of
those processes of A which possess sources. ]

The operations of forming the greatest lower bound and the least upper
bound can be used to define compound behaviours as results of combining their
component behaviours.

In order to illustrate this, consider the producer p and the distributor d in
as in example 4.4. The behaviour of the producer p is the set B(p) of processes
which can be obtained by combining the processes corresponding to the possible
variants of the concrete process Q with the aid of compositions and construction
of limits. The behaviour of the distributor d is the set B(d) of processes which can
be obtained by combining the processes corresponding to the possible variants of
the concrete process R with the aid of compositions and construction of limits.
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The behaviour that consists of independent behaviours of the producer p and
the distributor d can be defined as B1 in example 4.4. On the other hand, this
behaviour can be obtained as the least upper bound of the behaviours B(p) and
B(d).

The lattice theoretical operations on behaviours are not the only operations
we can consider. Now we define also some other operations.

In particular, behaviours can be transformed by preceding them by processes.

4.8. Proposition. For every bounded process α and every behaviour B in
A there exists the least behaviour in A which contains the set of all processes
ξ ∈ A such that ξ is a prefix of (α+c)(β+d) for some β ∈ B and some identities
c, d, e such that cod(α) = d + e, dom(β) = c + e, and c + d + e is defined. We
write it as α.B. ]

4.9. Definition. The operation B 7→ α.B is called prefixing of α to B. ]

Next, behaviours can be transformed by replacing some object instances by
other object instances.

4.10. Proposition. If R : A → A is an endomorphism of A then, for every
process α and every process β, the congruence α ∼ β is equivalent to the con-
gruence R(α) ∼ R(β). Given such an endomorphism, we call it a replacement,
we call R(α) the result of applying the replacement R to α, and write it as α[R].
]

4.11. Proposition. For every replacement R and every behaviour B in A the
set of all processes ξ ∈ A such that ξ = β[R] for some β ∈ B is a behaviour in
A, written as B[R]. ]

Next, every behaviour can be reduced to its subbehaviour that does not
absorb or emit some data.

4.12. Definition. A process β of a behaviour B is said to absorb (resp.:
strongly absorb) an object instance m in B iff m v dom(β) (resp.: iff m/dom(β)
but not m / β). ]

Note that β absorbs (resp. strongly absorbs) m in B iff in every instance
L = (X,≤, ins) of β there exists x ∈ X such that

(1) x is an occurrence of m in L, i.e., ins(x) = m,
(2) x is minimal (resp.: minimal but not maximal) element of L with respect to

the partial order ≤.
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4.13. Definition. A process β of a behaviour B is said to emit an object
instance m in B iff m v cod(β) and for every γ ∈ B such that β is a prefix of γ
there exist ρ and δ such that γ = (β + ρ)(m+ δ) (and thus m / cod(γ)). ]

Note that β emits m in B iff in every instance L′ = (X ′,≤′, ins ′) of every
process α of B such that β is a prefix of α there exist a cross-section c, a splitting
s of head(L′, c), and x ∈ X ′ such that

(1) L = first(head(L′, c), s) = (X,≤, ins) is an instance of β
(2) x is an occurrence of m in L and in L′, i.e., ins(x) = ins ′(x) = m,
(3) x is maximal element of L with respect to the partial order ≤ and a maximal

element of L′ with respect to the partial order ≤′.

4.14. Proposition. For every subset M of object instances from W and for
every behaviour B in A here exists the least behaviour in A which contains the
set of all processes β ∈ B such that, for every m ∈M , β does not absorb or emit
m in B. We write it as as B ‡M . ]

4.15. Definition. The operation B 7→ B ‡M is called an internalization of
objects from M in B. ]

Finally, behaviours can be composed in a way which reflects that they ex-
change data. Following [WiMa 87] the respective composition operation can be
defined as follows.

4.16. Definition. A process α of A is said to consist of processes α1 and
α2 of A iff an instance L = (X,≤, ins) of α has two subsets X1 and X2 of its
underlying set X such that:

(1) X1 and X2 cover X, i.e., X1 ∪X2 = X,
(2) the restrictions of L to X1 and X2 are instances L1 = (X1,≤1, ins1) and

L2 = (X2,≤2, ins2) of α1 and α2, respectively,
(3) the partial order ≤ is the transitive closure of the union of the partial orders
≤1 and ≤2,

(4) X1 ∩X2 contains only such elements which are maximal in L1 and minimal
in L2 or maximal in L2 and minimal in L1. ]

4.17. Example. In figure 4.2 we have processes such that γ consists of α and
β. ]
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Figure 4.2
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Note that every process αβ consists of α and β, and every process δ + γ
consists of δ and γ.

The following proposition are simple consequences of the definition.

4.18. Proposition. If a process γ consists of processes α and β then every
prefix of γ consists of some prefixes of α and β. ]

For example, if γ = αβ and γ′ is a prefix of γ such that α = γ′δ with
δ 6= cod(α) then γ′ consists of the prefix γ′ of α and the prefix 0 of β.

4.19. Proposition. If a process γ consists of processes α and β then it consists
of β and α. ]

4.20. Proposition. If a process ϕ consists of processes α and δ and δ consists
of processes β and γ then there exists a process ε such that ε consists of α and
β and ϕ consists of ε and γ. ]

Due to proposition 4.18 we obtain the following property.



48 Behaviours

4.21. Proposition. For every two behaviours B and C in A there exists a
unique behaviour D in A, written as B ‖ C, such that a process γ is a process
of D iff it consists of a process α of B and of a process β of C. ]

4.22. Definition. The operation (B,C) 7→ B ‖ C is called a free composition
or a merging. ]

The lattice operations, prefixing, replacement, internalization, and merging
can be used to define behaviours by fixed-point equations. Solutions of such
equations exist and can be characterized due to the following theorem which
follows easily from the definitions.

4.23. Theorem. The complete lattice of behaviours in A together with the
lattice operations, merging, prefixing, and internalization, as described above, is
a continuous algebra, called the algebra of behaviours in A, i.e., all the operations
preserve the existing least upper bounds. In particular, each derived operation
f : (Behaviours(A))n → (Behaviours(A))n has the least fixed point B which is
given by the least upper bound of the chain (f i(∅, ..., ∅) : i = 0, 1, 2, ...), where
f0(x) = x and f i+1(x) = f(f i(x)). ]

4.24. Example. Consider an automaton A as in example 2.10. A move of
this automaton can be defined as a behaviour move(d,m,m′, e) that consists of
the atomic process %(d,m,m′, e) shown in figure 4.3 and of its prefixes, where
d = (v′, i, input), m = (A, q,memory),
m′ = (A, f(i, q),memory), e = (v′′, g(i, q), output),
d′ = (v′, i, sink), e′ = (v′′,none, source).

Figure 4.3
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The run of A as described in examples 2.10 and 4.5 can be defined as the
component B(ξ,m, η) with ξ = µ, m = (A, q,memory), η = ν, of the least
solution of the following system of equations:
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B(dξ,m, eη) = (((move(d,m,m′, e).B(ξ,m′, η))[k/m]) ‡ T )[m/k],
where [k/m] is the substitution of k = (A, q, outside)
for m = (A, q,memory), [m/k] is a substitution of m for k, and T is the set of
data d with position(d) = memory . ]

4.25. Example. Consider two copies A1 and A2 of an automaton A as in
example 2.10, respectively with the copies Q1 and Q2 of Q, the copies memory1

and memory2 of memory , the copies input1 and input2 of input , and the copies
output1 and output2 of output , where output1 = input2 = k. The behaviour of
the system of these automata with the initial state q1 of A1, the initial state
q2 of A2, the sequence µ of input data, the sequence ν of output data can be
defined as

R(µ,m1,m2, ν) = (
⋃

(B(µ,m1, η) ‖ B(ξ′,m2, ν))) ‡M
where the union extends on the possible η and ξ′, B(µ,m1, η) and B(ξ′,m2, η) are
behaviours as in example 4.24, andM is the set of all data d with position(d) = k.
A process of this behaviour is illustrated in figure 4.4. ]

Figure 4.4
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JĴ

PPPPPq r
e22r

d′22

r
re′22

rm′′2 .
.
.

PPPPPq

-
�
�
�
�
���J

J
J
J
J
J
JĴ
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Random behaviours

Faulty computer systems, some production systems controlled by automata,
some communication systems, and the like, may show random behaviours. In
order to characterize such behaviours it is necessary to define for each system
an adequate probability space.

The definition of probability spaces characterizing random behaviours is rel-
atively obvious for sequential systems since processes of such systems and seg-
ments of processes can be identified with paths of the corresponding transition
systems, and branching of paths at states represents always a choice. It is less
obvious for concurrent systems since in such systems branching paths may repre-
sent segments of the same process and, consequently, branching at states does not
necessarily represents a choice. To see this consider two sequential machines as in
example 1.1, the first machine executing each of actions α and β with probability
0.5, each machine working independently and synchronizing with the other by
executing action γ. These machines form together a system represented by their

product shown in figure 1.2. In this system the paths (a, c)
α→ (a, c)

δ→ (a, d) and

(a, c)
δ→ (a, d)

α→ (a, d) represent the same initial segment of a process of this
system. Consequently, branching at (a, c) does not represent a choice. Similarly,

the paths (a, c)
β→ (b, c)

δ→ (b, d) and (a, c)
δ→ (a, d)

β→ (b, d) represent the same
initial segment of a process. Consequently, branching at (a, c) does not represent
a choice. In particular, the probabilities of transitions from this state to other
states need not to sum up to 1, as it really happens.

Sometimes the difficulties of this type can be overcome by representing a
concurrent system as collection of sequential modules, each module with its
own probabilistic choice of transitions, and by identifying each process of entire
system as a sequence of interleaved transitions of its modules (see [HSP 83], [Kw
03], [LSV 07], [ML 07]). However, this is possible only for discrete systems.

In the present paper we present a more general approach. Namely, we define
probabilities with which processes of a system enjoy given properties.

Set-theoretical models of random behaviours

A way of defining a probability space representing a random behaviour is to
define it as a projective limit of a projective system consisting of a directed family
of probability spaces characterizing initial parts of the represented behaviour,
each such a space obtained by endowing a set of processes with a suitable σ-
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algebra of subsets and with a suitable probability measure defined on this σ-
algebra. It can be done as follows.

Let B be a behaviour in an algebra of processes A = (A, ; ,+) in the sense
of definition 4.1, and let Ω(B) be the set of maximal elements of B with respect
to the prefix order v.

Our aim is to show how to provide Ω(B) with a suitable probability measure
µ on a given σ-algebra F of subsets of Ω(B). Our idea is to define µ with the
aid of probability distributions on the sets of maximal elements of initial parts
of the considered behaviour, called sections.

First of all, we define a directed partially ordered set of sections of the be-
haviour. This can be done as follows.

5.1. Definition. Two elements of B are said to be confluent iff they are pre-
decessors of an element of B relative to the prefix order. ]

5.2. Definition. A set I of elements of B is said to be confluence-free iff it does
not contain different elements that are confluent. ]

Note that the set of maximal elements of every subset of B which contains
all the least upper bounds of its finite subsets is a confluence-free set.

From Kuratowski - Zorn Lemma, which says that in every partially ordered
set in which every chain has an upper bound there exists a maximal element, we
obtain the following property.

5.3. Proposition. Each confluence-free set of elements of B is contained in a
maximal confluence-free set. ]

Note that the set of all sources of maximal elements of the behaviour B is a
maximal confluence-free set.

5.4. Definition. Each maximal confluence-free set of bounded initial segments
of maximal elements of the behaviour B is said to be a section of B. ]

5.5. Example. The following sets of processes of the behaviour B1 defined in
example 4.3 are sections of this behaviour (see figure 5.1):

I = {a+ c, a+ d, b+ c, b+ d}
J = {a+ d, b+ c, b+ d, a+ δ}
K = {a+ d, b+ c, b+ d, α+ c, β + c}
L = {a+ d, b+ c, b+ d, α+ δ, β + c} ]

5.6. Example. Let B2 be the behaviour of a producer p and a distributor d
as in example 4.4. For every real s ≥ 0 there exists a variant Q′ of the process
Q of the producer that has the length s. Similarly, for every real t ≥ 0 there
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exists a variant R′ of the process R of the distributor that has the length t.
Consequently, for every real s ≥ 0 and t ≥ 0, the set of processes of B2 of
the form ϕ + ψ such that ϕ is a run of the producer of the length s and ψ is
a process of the distributor of the length t is a non-empty set I(s, t). As two
different members of I(s, t) cannot be prefixes of a process in B2, the set I(s, t)
is a section of B2.

Let B3 be the behaviour of a producer p and a distributor d as in example
5.4. For every integer n ≥ 1, let J(n) be the set of processes of B3 of the form

(ϕ1 + ψ1)σ1...(ϕn + ψn)σn
where ϕi, ψi, σi represent variants of abstract processes [Q], [R], [S], respectively.
As two different members of J(n) cannot be prefixes of a process of B3, the set
J(n) is a section of B3. ]

5.7. Definition. We say that a section I of B precedes another such a section
J , and we write I � J , iff each element of J has a prefix in I. ]

5.8. Proposition. The set of all sections of B with the partial order � is a
directed set T (B). ]

For a proof it suffices to consider two arbitrary sections of B, say I and J ,
and to notice that the set K of maximal elements of the union of the downward
closures of I and J is a section of B.

Now, taking into account the directed set T (B), we may think of defining
the required probability space as a limit in the category PSPACES of a pro-
jective system of simpler probability spaces (see Appendix D for the concept of
a projective system and its limit).

For I ∈ T (B), let ΓI = (ΓI ,FI , µI) be probability spaces such that

(1) ΓI = I,
(2) FI is a σ-algebra of subsets of I.

For I, J ∈ T (B) such that I � J , let πIJ : ΓJ → ΓI be the mappings
assigning to each j ∈ J its predecessor i ∈ I. Due to I � J there exists such a
predecessor and due to the fact that I is confluence-free it is unique.

The following facts follow easily from definitions.

5.9. Proposition. If πIJ(F ) ∈ FI for all F ∈ FJ and µJ(π−1IJ (F )) = µI(F ) for
all F ∈ FI then πIJ : ΓI ← ΓJ is a morphism πIJ : ΓI ← ΓJ ]

5.10. Proposition. If πIJ(F ) ∈ FI for all F ∈ FJ and µJ(π−1IJ (F )) = µI(F )

for all F ∈ FI then (ΓI
πIJ← ΓJ : I, J ∈ T (B), I � J) is a projective system in

PSPACES. ]
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Let Γ = (Ω(B),F , µ) be a probability space such that F is the σ-algebra of
subsets of Ω(B) generated by the σ-algebras GI , I ∈ T (B), where every G ∈ GI is
an I-cylinder in the sense that together with an element with a prefix belonging
to I it contains also all the elements with this prefix, and where GI ⊆ GJ for
I � J . Let πI∗ be the mapping that assigns to each element of Ω(B) its unique
prefix in I.

5.11. Theorem. The probability space Γ = (Ω(B),F , µ) is a limit of the

projective system (ΓI
πIJ← ΓJ : I, J ∈ T (B), I � J), where each

ΓI = (ΓI ,FI , µI) is the probability space such that

(1) ΓI = I,
(2) FI is the σ-algebra of those subsets of I whose inverse-images under πI∗

belong to GI ,
(3) µ(π−1I∗ (F )) = µI(F ) for all F ∈ FI ,

and every πIJ : ΓI ← ΓJ is the morphism assigning to each j ∈ J its unique
predecessor i ∈ I. ]

5.12. Example. Consider the following probability measures on the sections I,
J , K, L defined in example 6.5 of the behaviour B1 of the system M of machines
M1 and M2 in example 4.3:

µI({a+ c}) = 1, µI({a+ d}) = µI({b+ c}) = µI({b+ d}) = 0
µJ({a+ δ}) = 1, µJ({a+ d}) = µJ({b+ c}) = µJ({b+ d}) = 0
µK({α+ c}) = µK({β + c}) = 0.5
µK({a+ d}) = µK({b+ c}) = µK({b+ d}) = 0
µL({α+ δ}) = µL({β + c}) = 0.5
µL({a+ d}) = µL({b+ c}) = µL({b+ d}) = 0.

Then I � J � L, I � K � L, and it is easy to verify that the probability
spaces corresponding to these measures satisfy the conditions of proposition 5.10.
For example, we have

µK({α+ c}) = µL(π−1KL({α+ c})) = µL({α+ δ}) = 0.5
µI({a+ c}) = µK(π−1IK({α+ c})) = µK({α+ c, β + c}) =
= µK({α+ c}) + µK({β + c}) = 0.5 + 0.5 = 1. ]

Random behaviours as described in this paper are similar to classical stochas-
tic processes as defined in [F 66], [Mey 66], and [Par 80]. In order to define them
we have to solve the problem of defining the respective projective systems of
probability spaces and the problem of the defining for such systems the respec-
tive limits.

In the case of the second problem the main point is to guarantee the existence
of the required extension of given probability measures. For some behaviours the
spaces of their runs are simple enough to exploit the known results on the ex-
istence of stochastic processes. For instance, with such a situation we have to
do in the case of the behaviour of the system in example 4.3 where the space of
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processes is contained in the product of finite sets. However, in general we need
universal results on the existence of limits of projective systems of probability
spaces. One of them can be the result that the respective limit exists if the prob-
ability measures of system components are regular in the sense that they can
be approximated by their values on members of a compact family of measurable
subsets, where compactness means that every subfamily with nonempty inter-
sections of all finite subfamilies has a nonempty intersection (see [Mey 66] for
detailed notions and results which can easily be adapted).

In the case of defining for the considered behaviour B a projective system of
probability spaces representing initial segments of this behaviour it is sometimes
possible to assume a limited dependence of processes of this behaviour on the
past, as in Markov processes.

To see this let us consider a random behaviour
Γ = (Ω(B),F , µ) which is a limit of a projective system

(ΓI
πIJ← ΓJ : I, J ∈ T (B), I � J) of probability spaces ΓI = (ΓI ,FI , µI), and

sections I and J such that I � J .
For every β ∈ J there exists in I a unique prefix α = πIJ(β), and a unique

ξ, written as link IJ(β), such that αξ = β. We say that the set of ξ such that
ξ = link IJ(β) for some β ∈ J , written as [I, J ], is a segment of B.

It is clear that the mapping πIJ : J → I is surjective. We call it the projection
of J on I.

Similarly, it is clear that the mapping link IJ : J → [I, J ] is bijective. We call
it the reduction of J to [I, J ].

Moreover, for every ξ ∈ [I, J ] there exists a unique α ∈ I such that αξ ∈ J ,
written as predIJ(ξ), and that πIJ(β) = predIJ(link IJ(β)).

Finally, by F[IJ] we denote the σ-algebra of those F ⊆ [I, J ] for which

link−1IJ (F ) ∈ FJ .
For every E ∈ FI we have pred−1IJ (E) ∈ FIJ .
For every E ∈ FI and for µJπ

−1
IJ (E) defined as µJ(π−1IJ (E)) we have

µJπ
−1
IJ (E) = µI(E).
For every ξ ∈ ΓI and every F ∈ FJ we have a conditional probability

µIJ(F |ξ), where

µJ(F ∩ π−1IJ (E)) =
∫
E
µIJ(F |ξ)dµJπ−1IJ (ξ) for every E ∈ FI

or, equivalently,

µJ(F ∩ π−1IJ (E)) =
∫
E
µIJ(F |ξ)dµI(ξ) for every E ∈ FI .

Now suppose that the choice of a run in a state does not depend on the
past in the sense that µIJ(F |ξ) = µIJ(F |ξ′) whenever cod(ξ) = cod(ξ′) and
µIJ(F |ξ) = µIJ(F ′|ξ) whenever link IJ(F ) = link IJ(F ′). Then the conditional
probabilities µIJ(F |ξ) can be regarded as values PIJ(G|x) of a function PIJ for
G = link IJ(F ) and x = cod(ξ), where

(*) PIJ(G|x) =
∫
G′ PKJ(G′′|u)dPIK(u|x)

for G = G′G′′ with G′ ∈ FIK and G′′ ∈ FKJ .
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Consequently, knowing µI for some I and the functions PIJ we can find µJ using
the formula

(**) µJ(F ) =
∫
ΓI
PIJ(link IJ(F )|cod(ξ))dµI(ξ).

5.13. Example. For the sections
I = {a+ c, a+ d, b+ c, b+ d},
K = {a+ d, b+ c, b+ d, α+ c, β + c},
L = {a+ d, b+ c, b+ d, α+ δ, β + c}

of the behaviour B1 in example 4.3 we have
I � K � L,
[I,K] = {a+ d, b+ c, b+ d, α+ c, β + c},
πIK(α+ c) = a+ c,
link IK(α+ c) = α+ c,
[K,L] = {a+ d, b+ c, b+ d, α+ δ, β + c},
πKL(α+ δ) = α+ c,
linkKL(α+ δ) = a+ δ.

Consequently, for
µI({a+ c}) = 1,
PIK({α+ c}|a+ c) = PIK({β + c}|a+ c) = 0.5,
PKL({a+ δ}|a+ c) = PKL({b+ c}|b+ c) = 1,

we obtain
µK({α+ c}) =

∫
ΓI
PIK({α+ c}|cod(ξ))dµI(ξ)

= PIK({α+ c}|a+ c)µI({a+ c}) = 0.5,

µK({β + c}) =
∫
ΓI
PIK({β + c}|cod(ξ))dµI(ξ)

= PIK({β + c}|a+ c)µI({a+ c}) = 0.5,

µL({α+ δ}) =
∫
ΓK

PKL({a+ δ}|cod(ξ))dµK(ξ)

= PKL({a+ δ}|a+ c)µK({ξ ∈ K : cod(ξ) = a+ c})
= PKL({b+ c}|a+ c)µK({α+ c}) = 0.5,

µL({β + c}) =
∫
ΓK

PKL({β + c}|cod(ξ))dµK(ξ)

= PKL({b+ c}|b+ c)µK({ξ ∈ K : cod(ξ) = b+ c})
= PKL({b+ c}|b+ c)µK({β + c}) = 0.5.

Similarly for other initial segments. ]

5.14. Example. Consider the behaviour B2 in example 4.4.
Let Φ and Ψ be respectively the set of processes of the producer and the set

of processes of the distributor.
Let Σ be the set of variants of the process [S] of transfer of material from

the producer to the distributor.
Let Π be the set of processes of the form ϕ+ ψ, where ϕ ∈ Φ

and ψ ∈ Ψ are respectively the component of the producer and the component
of the distributor.
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Let fs : Π → [0,+∞) be the function with fs(π) defined for every process
π ∈ Π as the amount of material at disposal of the producer participating in π
at the moment s of its local time.

Let gs : Π → [0,+∞) be the function with gt(π) defined for every process
π ∈ Π as the amount of material at disposal of the distributor participating in
π at the moment t of its local time.

Given real b ≥ a ≥ 0, q ≥ 0, and a Borel subset X of the interval [0,+∞),
suppose that P ′ab(X|q) is the probability that the producer, which has at the
moment a of its local time the amount q of material and acts, gets at the moment
b of its local time an amount x of material such that x ∈ X. Suppose that

P ′ac(X|q) =
∫
[0,+∞)

P ′bc(X|ξ)dP ′ab(ξ|q)

for all c ≥ b ≥ a ≥ 0 and q ≥ 0.
Given real b ≥ a ≥ 0, r ≥ 0, and a Borel subset Y of the interval [0,+∞),

suppose that P ′′ab(Y |r) is the probability that the distributor, which has at the
moment a of its local time the amount r of material and acts, gets at the moment
b of its local time an amount y of material such that y ∈ Y . Suppose that

P ′′ac(Y |r) =
∫
[0,+∞)

P ′′bc(Y |η)dP ′′ab(η|r)

for all c ≥ b ≥ a ≥ 0 and r ≥ 0.
Given a section I(s, t) of B2, let FI(s,t) be the least σ-algebra of subsets

of I(s, t) that contains all the inverse-images of Borel subsets of the product
[0,+∞)× [0,+∞) under the mappings hs′,t′ : π 7→ (fs′(π), gt′(π))
with 0 ≤ s′ ≤ s and 0 ≤ t′ ≤ t.

For 0 ≤ s′ ≤ s′′ and 0 ≤ t′ ≤ t′′ we have the σ-algebra FI(s′,t′)I(s′′,t′′) of

those F ⊆ [I(s′, t′), I(s′′, t′′)] for which link−1I(s′,t′)I(s′′,t′′)(F ) ∈ FI(s′′,t′′).
For q ≥ 0, r ≥ 0, and Borel subsets X and Y of the interval [0,+∞), we

define

PI(s′,t′)I(s′′,t′′)(link−1I(s′,t′)I(s′′,t′′) (f−1s′′ (X) ∩ g−1t′′ (Y ))|{(p, q), (d, r)}) =

= P ′s′s′′(X|q)P ′′t′t′′(Y |r)

Then for every q ≥ 0 and r ≥ 0 the function thus defined extends to a
unique probability measure PI(s′,t′)I(s′′,t′′)(.|{(p, q), (d, r)}) on the σ-algebra
FI(s′,t′)I(s′′,t′′) of subsets of [I(s′, t′), I(s′′, t′′)] such that the rule (*) is satis-
fied. Consequently, given a probability measure µI(0,0) on the σ-algebra FI(0,0)
of subsets of I(0, 0), by applying the rule (**) it is possible to define the prob-
ability measures µI(s,t) on FI(s,t) for all s ≥ 0 and t ≥ 0, and construct the
respective projective system and its limit. As every section of B2 is dominated
by some I(s, t), the result gives the required probability space.

Consider the behaviour B3 in example 4.4.
Let Φ, Ψ , Π, fs, gt, P

′
ab, P

′′
ab, hs,t, FI(s′,t′)I(s′′,t′′), PI(s′,t′)I(s′′,t′′), µI(s,t) be

as before, and let ∆′ and ∆′′ be given positive real numbers.
Suppose that the producer and the distributor act in steps, the producer ∆′

units of its local time in each step, the distributor ∆′′ units of its local time in
each step, and that each step ends with a transfer of an amount m of material
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from the producer to the distributor, where m = λ(q′, r′) for the producer with
an amount q′ of material and the distributor with an amount r′ of material.

Then the probability of the system consisting of the producer and the dis-
tributor to pass from a state ξ = {(p, q), (d, r)} to a state in a Borel subset Z of
the product [0,+∞)× [0,+∞) is

PI(0,0)I(∆′,∆′′)(Λ
−1
∆′∆′′(Z|ξ)

where Λ∆′∆′′ : π 7→ (f∆′(π)− λ(f∆′(π), g∆′′(π)), g∆′′(π)− λ(f∆′(π), g∆′′(π))).

On the other hand, FJ(n)J(n+1) is the σ-algebra of sets G(F ), where
F ∈ FI(0,0)I(∆′,∆′′) and γ ∈ G(F ) iff γ = πσπ with π ∈ F and σπ being the
transfer of the amount λ(q′, r′) of material for {(p, q′), (d, r′)} being the final
state of π.

Consequently, for every n = 1, 2, ..., every state ξ = {(p, q), (d, r)}, and every
G(F ) ∈ FJ(n)J(n+1), we can define

PJ(n)J(n+1)(G(F )|ξ) = PI(0,0)I(∆′,∆′′)(F |ξ)

and then combine PJ(n)J(n+1) to define PJ(n)J(m) for arbitrary 1 ≤ n ≤ m such
that the rule (*) is satisfied. Hence, given a probability measure µI(0,0), we can
define µJ(0) = µI(0.0) and µJ(n) for n = 0, 1, ... , and construct the respective
projective system and its limit. As every section of B3 is dominated by some
J(n), the result gives the required probability space. ]

Models related to Scott topology

The idea described in [VVW 04] can be applied to provide with probability mea-
sures behaviours which are continuous directed complete posets. Every such a
behaviour B together with its Scott open subsets is a topological space with the
Borel σ-algebra B of subsets generated by Scott open subsets. Every normalized
continuous valuation ν of Scott open subsets of B extends uniquely to a proba-
bility measure ν′ on B. Then the probability measure ν′ can be transported to
the restriction of B to the subspace Ω(B) formed by the maximal elements of B.
To this end, it suffices to define B′ = {f ∩Ω(B) : F ∈ B} and to assign the value
ν′(F ) to every F ∩ Ω(B) with F ∈ B. Consequently, we obtain a probability
space (Ω(B),B′, µ), as required.

However, in the present paper we try to develop a basis as universal as
possible for describing and studying random behaviours of concurrent systems,
a basis that would allow us to describe in a uniform way behaviours of systems
of various kinds, including behaviours that need not to be continuous directed
complete posets. To this end, we shall describe again how the required measure µ
on the σ-algebra B’ of subsets of the set Ω(B) of maximal elements of a behaviour
B can be obtained from probability distributions on the sets of maximal elements
of initial parts of B. The idea is similar to that for set theoretical models, but
now it exploits the topological properties of behaviours.
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First of all, we define a directed partially ordered set of subspaces of a be-
haviour B representing initial parts of B and a directed partially ordered set of
subspaces of these subspaces consisting of their maximal elements. This can be
done as follows.

5.15. Definition. Each subspace of a behaviour B that is downward closed and
contains all the exising least upper bounds of its subsets and all the sources of
initial segments of maximal elements of B is called an initial fragment of B. The
subspace I = Ω(P ) of an initial fragment P of B that consists of the maximal
elements of P is called a topological section (or briefly a section) of B. The set of
subsets of I = Ω(P ) of the form F ∩ I, where F belongs to the Borel σ-algebra
B of subsets of B, is a σ-algebra BI , called the natural σ-algebra of subsets of I.
]

It follows from this definition that every initial fragment of a behaviour is
Scott closed, that it is a directed complete poset, and that every topological
section consisting of bounded processes is a section in the sense of definition 5.4.

5.16. Example. Each downward closed subspace of the behaviour B1 in
example 4.3 that contains the existing least upper bounds of its subsets of B1

and contains the subset I = {a+ c, a+d, b+ c, b+d} of B1 is an initial fragment
of B1. In particular, the following subsets I, E, E′, E′′, F , G of B1 are initial
fragments of B1 and the following I, J , J ′, J ′′, K, L of B1 are the corresponding
sections of B1:

I = {a+ c, a+ d, b+ c, b+ d}
E = {a+ c, a+ d, b+ c, b+ d, a+ δ}
E′ = {a+ c, a+ d, b+ c, b+ d, α+ c, a+ δ}
E′′ = {a+ c, a+ d, b+ c, b+ d, β + c, a+ δ}
F = {a+ c, a+ d, b+ c, b+ d, α+ c, β + c}
G = {a+ c, a+ d, b+ c, b+ d, α+ c, a+ δ, α+ δ, β + c}

and the following subsets I, J , J ′, J ′′, K, L of B1 are the corresponding sections
of B1 (see figure 4.1):

I = Ω(I) = {a+ c, a+ d, b+ c, b+ d}
J = Ω(E) = {a+ d, b+ c, b+ d, a+ δ}
J ′ = Ω(E′) = {a+ d, b+ c, b+ d, α+ c, a+ δ}
J ′′ = Ω(E′′) = {a+ d, b+ c, b+ d, β + c, a+ δ}
K = Ω(F ) = {a+ d, b+ c, b+ d, α+ c, β + c}
L = Ω(G) = {a+ d, b+ c, b+ d, α+ δ, β + c} ]

5.17. Example. Each set of elements of the behaviour B2 in example 4.4 that
are dominated with respect to the prefix order by elements of a section I(s, t) of
this behaviour as in example 5.6 is an initial fragment of B2. Each section I(s, t)
as in example 5.6 is a topological section of B2 in the sense of definition 5.15.

The σ-algebra FI(s,t) of subsets of I(s, t) that was defined in example 5.14
consists of intersections of I(s, t) with members of the least σ-algebra cotaining
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sets {π ∈ B2 : fs′(π) ≤ x} with 0 ≤ s′ ≤ s and sets {π ∈ B2 : gt′(π) ≤ y}
with 0 ≤ t′ ≤ t. On the other hand, such sets are Scott closed if processes of
the producer and distributors consist of continuous segments. Consequently, the
σ-algebra FI(s,t) is then a subalgebra of the natural σ-algebra BI(s,t).

Each set of elements of the behaviour B3 in example 4.4 that are dominated
by elements of a section J(n) of this behaviour as in example 5.6 is an initial
fragment of B3 and J(n) itself is a topological section of B3. ]

A projective system consisting of a directed family of probability spaces char-
acterizing initial parts of a behaviour can be constructed due to the existence of
a directed set of topological sections of this behaviour and due to the existence
of projections of topological sections on dominated topological sections.

5.18. Proposition. Let P and Q be two initial fragments of a behaviour B
such that P ⊆ Q, and let I = Ω(P ) and J = Ω(Q). For every j ∈ J there exists
a unique i ∈ I, written as ρIJ(j), such that i v j. ]

Proof. Let Xj be the set of k ∈ P such that k v j. The set Xj is nonempty
since it contains dom(j). It is directed since every two elements of Xj consist of
prefixes of j and have the least upper bound that belongs to Xj . Consequently,
there exists the least upper bound m of Xj and m v j. As P is Scott closed, we
have m ∈ P . As m is the least upper bound of Xj , it must belong to I = Ω(P ),
and we can define ρIJ(j) as m. ]

From the fact that an initial fragment of a behaviour is downward closed and
contains the existing least upper bounds of its subsets we obtain the following
proposition.

5.19. Proposition. A subset X of an initial fragment P of a behaviour B is
Scott closed iff it is Scott closed in the directed complete poset P . ]

It follows from proposition 5.18 that for every U ∩ I with Scott open U the
set U ∩ J is the inverse image of U ∩ I under ρIJ(j). Consequently, we obtain
the following proposition.

5.20. Proposition. The correspondence ρIJ : J → I is a measurable mapping
from J equipped with the σ-algebra BJ to I equipped with the σ-algebra BI . ]

The set of initial fragments of a behaviour B is ordered by inclusion. Ac-
cording to proposition 5.18 the set of topological sections of B can be defined as
follows.
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5.21. Definition. We say that a topological section I of B precedes another
such a section J , and we write I � J , iff each element of J has a predecessor in
I. ]

5.22. Proposition. The set of all topological sections of B with the partial
order � is a directed set R(B). ]

For a proof it suffices to consider two arbitrary sections of B, say I and J ,
and to notice that the set K of maximal elements of the union of the downward
closures of I and J is a section of B.

Now we may use the directed set R(B) to construct the required probability
space as a projective limit of a projective system of probability spaces.

A projective system consisting of a directed family of probability spaces char-
acterizing initial fragments of a behaviour can be defined as follows.

For I ∈ R(B), let ΞI = (ΞI ,XI , µI) be probability spaces such that

(1) ΞI = I,
(2) XI is the σ-algebra BI of subsets of I.

For I, J ∈ R(B) such that I � J , let ρIJ : ΞJ → ΞI be the mappings as in
proposition 5.18.

The following facts follow easily from definitions.

5.23. Proposition. Every mapping ρIJ : ΞJ → ΞI is measurable and the
induced mapping F 7→ ρ−1IJ (F ) maps XI into XJ . ]

5.24. Proposition. If µI(ρ
−1
IJ (F )) = µI(F ) for all F ∈ XI then

ρIJ : ΞJ → ΞI is a morphism ρIJ : ΞJ → ΞI in PSPACES. ]

5.25. Theorem. If µJ(ρ−1IJ (F )) = µI(F ) for all F ∈ XI then

(ΞI
ρIJ← ΞJ : I, J ∈ R(B), I � J) is a projective system in PSPACES. ]

Let Ξ = (Ω(B),F , µ) be a probability space such that F is the σ-algebra BB
of subsets of Ω(B).

5.26. Theorem. The probability space Ξ = (Ω(B),F , µ) is the projective limit

of the projective system (ΞI
ρIJ← ΞJ : I, J ∈ R(B), I � J), where each

ΞI = (ΞI ,XI , µI) is the probability space such that

(1) ΞI = I,
(2) XI is the σ-algebra BI ,
(3) µ(ρ−1IB(F )) = µI(F ) for all F ∈ XI . ]
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The fact that the probability space characterizing a random behaviour of a
concurrent system is a projective limit of probability spaces characterizing initial
fragments of this behaviour can be exploited in an effective way because referring
only to initial fragments of this behaviour we are able to decide which subsets
of topological sections belong to the respective σ-algebras. Consequently, we can
try approximate the required probability space by simpler probability spaces.

Another approach can be to try to characterize the required probability dis-
tribution on the set Ω(B) with the aid of a probability space (B,B, µ) and try
to approximate the space (B,B, µ) by simpler probability spaces. To this end,
we can exploit simple theorems of measure theory.

Given an initial fragment P of a behaviour B, let B(P ) be the σ-algebra of
those Borel subsets of B whose inverse images under ρPB are Borel subsets of
P .

5.27. Theorem. For every initial fragments P and Q of B such that P ⊆ Q
there exists a conditional probability distribution µPQ : B(Q)× ΩP → [0, 1] on
B(Q) with respect to B(P ) and we have∫

E
µPQ(F |x)dµP (x) = µQ(F ∩ E)

for all F ∈ B(Q) and E ∈ B(P ). ]

A proof follows from the definition of the conditional probability.

5.28. Theorem. For every initial fragments P,Q,R of B such that
P ⊆ Q ⊆ R, every G ∈ B(R), and every x ∈ B, it holds

µPR(G|x) =
∫
B
µQR(G|y)dµPQ(y|x) ]

For a proof it suffices to notice that

µR(E ∩G) =
∫
E
µQR(G|y)dµQ(y) =

∫
E

∫
B
µQR(G|y)dµQ(y|x)dµP (x)

and

µR(E ∩G) =
∫
E
µPR(G|x)dµP (x)

Once a probability space (B,B, µ) as described is found, it is possible to use
it to transport the required probability measure µ to the set Ω(B). It suffices to
define µ′(F ∩Ω(B)) as µ(F ) for every F ∩Ω(B) with F ∈ B.
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Behaviour-oriented algebras

Basic notions

In chapter 3 it has been shown that every algebra of processes enjoys the
properties (A), (B), (C) of proposition 3.22.

In this chapter we introduce abstract algebras in which (A), (B), (C) hold,
called in behaviour-oriented algebras, and we prove that some of such algebras can
be represented as algebras of processes. Such algebras are different from algebras
of processes characterized in definition 3.24 in the sense that their elements
should be considered as abstract objects without any interenal structure rather
than as processes in a universe of objects.

Behaviour-oriented algebras are defined as follows.

6.1. Definition. A behaviour-oriented algebra is a partial algebra
A = (A, ; ,+), where A is a set, (α1, α2) 7→ α1;α2 is a partial operation in A,
and (α1, α2) 7→ α1 + α2 is a partial operation in A, such that the axioms (A),
(B), (C) hold. We say that such a behaviour-oriented algebra is of type K if also
(C9) holds. ]

The composite α1;α2 is written as α1α2.
The reduct (A, ; ) of A is a partial category pcat(A) satisfying (A1) - (A10),

called the underlying partial category of A. In this partial category two partial
unary operations α 7→ dom(α) and α 7→ cod(α) are definable that assign to an
element a source and a target, if they exist. The reduct (A,+) of A is a partial
commutative monoid pmon(A) satisfying (C1) - (C8) and containing a zero
element 0 such that α+ 0 = α for every α.

An element of A is said to be bounded if it has a source and a target. An
element α 6= 0 of A is said to be a (+)-atom of A provided that for every α1 ∈ A
and α2 ∈ A the equality α = α1 + α2 implies that either α1 = 0 and α2 = α or
α1 = α and α2 = 0. An identity of pcat(A) that is also a (+)-atom is said to
be an atomic identity.

An element α of A is said to be a (; )-atom of A provided that it is not an
identity of pcat(A) and for every α1 ∈ A and α2 ∈ A the equality α = α1α2

implies that either α1 is an identity and α2 = α or α1 = α and α2 is an identity.
An element α of A which is both a (+)-atom and (; )-atom is said to be a (+, ; )-
atom. In particular, atomic identities are (+, ; )-atoms.
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We say that A is discrete if every α ∈ A that is not an identity can be
represented in the form α = α1...αn, where α1,...,αn are (; )-atoms.

Let A = (A, ; ,+) be a behaviour-oriented algebra.

6.2. Definition. Given α ∈ A, by a cut of α we mean a pair (α1, α2) such that
α1α2 = α. ]

Due to the property (A5) the algebra A has the properties of partial algebras
of processes described in propositions 3.17 and 3.18. Consequently, cuts of every
α ∈ A are partially ordered by the relation vα, where x vα y with x = (ξ1, ξ2)
and y = (η1, η2) means that η1 = ξ1δ with some δ. Due to (A1) and (A2) for
x = (ξ1, ξ2) and y = (η1, η2) such that x vα y there exists a unique δ such that
η1 = ξ1δ, written as x → y. As in proposition 3.18 the partial order vα makes
the set of cuts of α a lattice LTα. Given two cuts x and y, by xtα y and xuα y
we denote respectively the least upper bound and the greatest lower bound of
x and y. From (A5) it follows that (x ← x uα y → y, x → x tα y ← y) is a
bicartesian square.

6.3. Definition. Given α ∈ A and its cuts x = (ξ1, ξ2) and y = (η1, η2)
such that x vα y, by a segment of α from x to y we mean β ∈ A such that
ξ2 = βη2 and η1 = ξ1β, written as α|[x, y]. A segment α|[x′, y′] of α such that
x vα x′ vα y′ vα y is called a subsegment of α|[x, y]. If x = x′ (resp. if y = y′)
then we call it an initial (resp. a final) subsegment of α|[x, y]. An initial segment
of α is called also a full prefix of α. ]

In the sequel elements of A are called hypothetical processes (or briefly, pro-
cesses) of A. Processes of A which are identities of the underlying partial cat-
egory pcat(A) are called hypothetical states (or briefly states) of A. Processes
which are atomic identities are called atomic states. A process α is said to be
global if α + β is defined only for β = 0. A process α is said to be bounded if it
has the source dom(α) and the target cod(α). For every process α, the existing
states u = dom(α) and v = cod(α) are called respectively the initial state and

the final state of α and we write α as u
α→ v. The operations (α1, α2) 7→ α1α2

and (α1, α2) 7→ α1 + α2 are called respectively the sequential composition and
the parallel composition.

6.4. Definition. If processes α1 and α1 are such that α1 + α2 is defined then
we say that they are concurrent and write α1 co α2. The relation co thus defined
is called the concurrency relation of A. ]

For example, processes α and δ in figure 3.2 are concurrent.
With the aid of concurrency relation we can generalize the introduced in

[Wink 03] notions of parallel and sequential independence of processes of Con-
dition/Event Petri nets (cf. also [EK 76]).
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6.5. Definition. Processes α1 and α2 such that α1 = c + ϕ1 + dom(ϕ2) and
α2 = c+ dom(ϕ1) +ϕ2 for a state c and actions ϕ1 and ϕ2 such that c+ϕ1 +ϕ2

is defined are said to be parallel independent. ]

In particular, processes α1 = ϕ1 + dom(ϕ2) and
α2 = dom(ϕ1) + ϕ2, where ϕ1 and ϕ2 are concurrent, are parallel independent.

6.6. Definition. Bounded processes α1 and α2 such that
α1 = c+ ϕ1 + dom(ϕ2) and α2 = c+ cod(ϕ1) + ϕ2 for a state c and actions ϕ1

and ϕ2 such that c+ϕ1 +ϕ2 is defined are said to be sequential independent. ]

In particular, bounded processes α1 = c+ ϕ1 + dom(ϕ2) and
α2 = c+ cod(ϕ1) +ϕ2, where ϕ1 and ϕ2 are concurrent, are sequential indepen-
dent.

An important feature of behaviour-oriented algebras is that in such algebras
concurrency of processes implies their independence. This is a direct consequence
of (C8).

From (C8) we obtain the following characterization of the parallel and the
sequential independence of processes.

6.7. Theorem. Processes of the pair v
α1← u

α2→ w (= (v
α1← u, u

α2→ w))

are parallel independent iff there exists a unique pair v
α′

2→ u′
α′

1← w such that

(v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w) is a bicartesian square. ]

6.8. Theorem. Processes of the pair u
α1→ v

α′
2→ u′ are sequential independent

iff there exists a unique pair u
α2→ w

α′
1→ u′ such that (v

α1← u
α2→ w, v

α′
2→ u′

α′
1← w)

is a bicartesian square. ]

Note that independence of any finite set of bounded processes can be defined
as independence of every two different processes from this set. Due to (A7) the
independence thus defined is equivalent to the existence of the corresponding
bicartesian n-cube.
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Underlying partial monoids

Let A = (A, ; ,+) be a behaviour-oriented algebra with the underlying partial
category pcat(A), with the underlying partial monoid pmon(A), with the op-
eration 4 of taking the greatest lower bound with respect to the partial order
/, where α1 / α2 iff α2 = α1 + ρ for some ρ, and with the function α 7→ h(α)
that assigns to each α the set of (+)-atoms less than or equal α with respect to
the partial order /.

Let A+ denote the set of (+)-atoms of A. Let A0 denote the set of identities
of the underlying partial category pcat(A), and A+0 = A+ ∩ A0 the subset of
atomic identities.

6.9. Lemma. If α1 + α2 is defined then the greatest lower bound α1 4 α2 of
α1 and α2 is 0. ]

Proof. Let α1 = (α14α2) + ξ and α2 = (α14α2) + η. Since α1 +α2 is defined,
we have α1 + α2 = (α1 4 α2) + (α1 4 α2) + ξ + η. Thus (α1 4 α2) + (α1 4 α2)
is defined and, by (B2), α1 4 α2 = 0. ]

6.10. Lemma. If α1 + α2 is defined then there exists the least upper bound of
α1 and α2, written as α1 5 α2, and α1 5 α2 = α1 + α2. ]

Proof. α1 + α2 is an upper bound of α1 and α2. If ζ is another upper bound of
α1 and α2 then for θ = ζ4 (α1 +α2) we have α1 / θ and α2 / θ, θ+ γ = α1 +α2,
α2 +δ = θ, and α2 + ε = θ. Hence α1 +δ+γ = α1 +α2 and α2 + ε+γ = α1 +α2.
Thus δ + γ = α2 and ε + γ = α1. Hence γ / α1 and γ / α2, i.e., γ = 0 by
lemma 6.9. Consequently, θ = ζ4 (α1 +α2) = α1 +α2. Finally, α1 +α2 / ζ, i.e.,
α1 + α2 = α1 5 α2. ]

6.11. Lemma. The correspondence α 7→ h(α) enjoys the following properties:

(1) if α1 6= α2 then h(α1) 6= h(α2),
(2) h(α1 4 α2) = h(α1) ∩ h(α2),
(3) if α1 + α2 is defined then h(α1)4 h(α2) = ∅,
(4) if α1 + α2 is defined then h(α1 + α2) = h(α1) ∪ h(α2). ]

Proof. For (1) refer to (B11). For (2) notice that ξ /α14α2 iff ξ /α1 and ξ /α2.
For (3) notice that if α1 +α2 is defined then we have α14α2 = 0. Consequently,
h(α1 ∩ α2) = ∅ and it suffices to apply (2). For (4) notice that if ξ ∈ h(α1 + α2)
then ξ / α1 + α2 and thus ξ / α1 or ξ / α2 since ξ is a (+)-atom. Consequently,
ξ ∈ h(α1) or ξ ∈ h(α2). Conversely, if ξ ∈ h(α1) or ξ ∈ h(α2) then ξ ∈ α1 or
ξ ∈ α2, i.e., ξ ∈ h(α1 + α2). ]

We recall that a tolerance relation in a set is a reflexive and symmetric binary
relation in this set, that for such a relation a tolerance preclass is a set whose
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every two elements are in this relation, and that a tolerance class is a maximal
tolerance preclass.

The relation co , where α1 co α2 iff α1 and α2 are concurrent or α1 = α2, is
a tolerance relation. We call it the tolerance relation of A and say about actions
α1 and α2 such that α1 co α2 that they tolerate each other.

By tol we denote the restriction of co to the set A+ of (+)-atoms of A.
The following fact is a consequence of (B7) and (B8).

6.12. Lemma. For each process α the set h(α) of (+)-atoms contained in α is
a tolerance preclass of the relation tol . ]

The following fact is a consequence of (B4).

6.13. Lemma. For every tolerance preclass C of the relation tol there exists a
process α such that h(α) = C. ]

From lemmas 6.11 - 6.13 we obtain that elements of the partial monoid
pmon(A) can be represented as tolerance preclasses of the relation tol and
combined with the aid of set theoretical operations. More precisely, we obtain
the following theorem.

6.14. Theorem. The underlying partial monoid pmon(A) = (A,+) of A is
isomorphic to a partial commutative monoid M = (A′,+′) with the neutral
element 0′ of tolerance preclasses of the tolerance relation tol , where

(1) A′ is the set of tolerance preclasses of tol that contains all finite preclasses
and is closed with respect to intersections and unions of families with an
upper bound in A′,

(2) the operation +′ is defined for pairs of disjoint preclasses from A′ as the set
theoretical union provided that its results belong to A′,

(3) 0′ is the empty set.

The isomorphism is given by the correspondence α 7→ h(α). ]

Let ∼ be the least congruence whose existence is guaranteed by (C7). Let
nat be the natural homomorphism from A to the quotient algebra A/ ∼.

6.15. Definition. Given an atomic identity p ∈ A+0, the image nat(p) of p
under the natural homomorphism nat is called an object corresponding to p, and
p is called an instance of this object. ]

By Aob we denote the set of objects corresponding to atomic identities of A
and we call elements of Aob objects definable in A. We show that the identities
of pcat(A) can be viewed as partial functions from Aob to A+0.
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6.16. Theorem. The restriction of pmon(A) to the subset A0 of identities
is isomorphic to a partial commutative monoid N = (A′′,+′′) with the neutral
element 0′′ of partial functions, where A′′ is a set of partial functions from Aob

to A+0, u +′′ v denotes the set theoretical union of partial functions u and v
provided that such functions have disjoint domains and their union belongs to
A′′, and 0′′ is the empty partial function. ]

Proof. Given an identity u, we define Hu as the set of pairs (nat(p), p) with
p ∈ h(u). From the fact that ∼ is a strong congruence on A it follows that
nat(p1) = nat(p2) implies p1 = p2 since otherwise p1 + p2 would be defined and,
consequently, nat(p1) + nat(p2) would also be defined, and (B2) could not hold.
Hence Hu is a partial function. The fact that u 7→ Hu defines an isomorphism
follows from theorem 6.14. ]

Given an identity u ∈ A0, each pair (nat(p), p) ∈ Hu can be interpreted as a
representant of an instance p of the object nat(p) ∈ Aob . Consequently, Hu can
be interpreted as a partial function defined on a set of objects definable in A that
assigns an instance to each object from its domain. For example, conditions of a
Condition/Event Petri net are objects definable in the algebra of finite processes
of this net and a function that for each condition from a subset of conditions of
the net assigns to this condition its logical value is a state of the net.

Elements of behaviour-oriented algebras as processes

Let A = (A, ; ,+) be a behaviour-oriented algebra of type K. With the charac-
terization just described of identities of pcat(A) we can characterize arbitrary
elements of A.

We shall represent each such element α by a partially ordered labelled set
Lα = (Xα,≤α, lα). Each element x ∈ Xα will play the role of an occurrence of
the instance lα(x) of the object nat(lα(x)). The partial order ≤α will reflect how
occurrences of instances of objects arise from other instances.

This way of representing elements of A will allow us to extend the correspon-
dence u 7→ Hu by assigning to each α ∈ A the isomorphism class of partially
ordered labelled sets that contains Lα.

The elements of Xα will be defined as packets of cuts of α, where a cut is
a decomposition of α into two components the sequential composition of which
yields α (see definition 6.2).

We start with some notions and observations.
Given a cut x = (ξ1, ξ2) of α and an atomic identity p, we say that p occurs

in x and call (x, p) an occurrence of p in x if p is contained
in cod(ξ1) = dom(ξ2).

Given an occurrence (x, p) of an atomic identity p in a cut x = (ξ1, ξ2) of α,
and an occurrence (y, q) of an atomic identity q in a cut y = (η1, η2) of α, we
say that these occurrences are adjacent and write (x, p) ∼α (y, q) if p = q and
p v (x uα y → x tα y), that is if p = q and (x uα y → x tα y) = c + ϕ1 + ϕ2
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with an identity c that contains p and with (x uα y → x) = c + ϕ1 + dom(ϕ2),
(x uα y → y) = c+ dom(ϕ1) + ϕ2, (y → x tα y) = c+ ϕ1 + cod(ϕ2),
(x→ x tα y) = c+ cod(ϕ1) + ϕ2.

Given a cut x of α, by atomicid(x) we denote the set of atomic identities
that occur in x. From (C7) we obtain that the cardinality of the set atomicid(x)
is the same for all cuts of α. We call it the width of α and write as width(α).
Taking into account also (C7) we obtain that the set of objects definable in A
and having instances in atomicid(x) is also the same for all cuts of α. We call it
the range of α and write as range(α).

6.17. Lemma. For each α ∈ A the adjacency relation ∼α is an equivalence
relation. ]

Proof. It suffices to prove that ∼α is transitive. Suppose that (x, p) ∼α (y, q)
with p = q and p v (x uα y → x tα y), and that (y, q) ∼α (z, r) with p = q = r
and p / (y uα z → y tα z). Hence by (C6) we have p / σ for every σ that is
a segment of (x uα y → x tα y) or (y uα z → y tα z). On the other hand,
taking into account the fact that the set of cuts of α is a lattice, we obtain that
(x uα z → x tα z) can be represented as the result of composing sequentially
such segments. Consequently, p / (xuα z → xtα z). Hence (x, p) ∼α (z, r). Thus
∼α is transitive. ]

6.18. Definition. Given α ∈ A and an atomic identity p, by an occurrence of
p in α we mean an equivalence class of occurrences of p in cuts of α. ]

6.19. Definition. Given α ∈ A, the set of occurrences of atomic identities in
α, written as Xα, is called the canonical underlying set of α. ]

6.20. Definition. Given α ∈ A, the correspondence [(x, p)] 7→ p between oc-
currences of atomic identities in α and the atomic identities themselves, written
as lα, is called the canonical labelling of (occurrences of atomic identities in) α.
]

The partial order ≤α on Xα can be defined as follows.
Given an occurrence (x, p) of an atomic identity p in a cut x = (ξ1, ξ2) of α

and an occurrence (y, q) of an atomic identity q in a cut y = (η1, η2) of α, we
say that (x, p) precedes (y, q) and write (x, p) <α (y, q) if x vα y, p occurs in
x, q occurs in y, and there is no cut v of x → y such that (x, p) ∼α (v, p) and
(y, q) ∼α (v, q).

6.21. Lemma. For each element α of A the relation <α is irreflexive and
transitive. ]
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Proof. The irreflexivity of <α follows directly from the definition. For the tran-
sitivity suppose that (x, p) <α (y, q) and (y, q) <α (z, r). Then from x vα y
and y vα z we obtain x vα z. On the other hand, p occurs in x and r
occurs in z. So, it remains to prove that there is no cut v of x → z such
that (x, p) ∼α (v, p) and (z, r) ∼α (v, r). To this end suppose the contrary
and consider y uα v → y tα v = c + ϕ1 + ϕ2, where c is an identity and
cod(η1) = c + cod(ϕ1) + dom(ϕ2) for (η1, η2) = y. It cannot be q / c + cod(ϕ1)
since it would imply (y uα v, p) ∼α (x, p) and (y uα v, q) ∼α (y, q). Similarly,
it cannot be q / c + dom(ϕ2) since it would imply (y tα v, r) ∼α (z, r) and
(y tα v, q) ∼α (z, q). Consequently, q cannot occur in y as it follows from
(x, p) <α (y, q) and (y, q) <α (z, r). ]

6.22. Lemma. For each element α of A the relation ≤α on Xα, where u ≤α v
iff u ∼α v or (x, p) <α (y, q) for some (x, p) ∈ u and (y, q) ∈ v, is a partial order.
]

Proof. It suffices to prove that (x, p) <α (y, q) excludes (y, q) <α (x, p). To this
end it suffices to notice that otherwise the identity x→ x would be the result of
composing sequentially x→ y and y → x, what is impossible according to (A3).
]

6.23. Definition. Given α ∈ A, the partial order ≤α is called the canonical
partial order of (occurrences of atomic identities in) α, and Lα = (Xα,≤α, lα) is
called the canonical instance of α. ]

6.24. Lemma. Given an α ∈ A, if nat(lα(u)) = nat(lα(v)) for
some u, v ∈ Xα then u ≤α v or v ≤α u. ]

Proof. It suffices to consider the case u 6= v. From nat(lα(u)) = nat(lα(v)) it
follows that in this case p = lα(u) and q = lα(v) cannot occur in the same cut.
Consequently, (x, p) ∈ u and (y, q) ∈ v for some cuts x and y such that x 6= y.
Moreover, x and y can be chosen such that x vα y or y vα x and then we obtain
respectively (x, p) ≤α (y, q) or (y, q) ≤α (x, p). ]

6.25. Lemma. For each α ∈ A and each object s ∈ Aob the set Zα(s) of u ∈ Xα

such that lα(u) = p for an instance p of s is a maximal chain with respect to the
partial order ≤α or it is empty. ]

Proof. Let Zα(s) = {u ∈ Xα : lα(u) = p for some p with nat(p) = s}. Suppose
that u1 <α u <α u2 for some u1, u2 ∈ Zα(s) and u with lα(u) not being an
instance of s. Then there exists (x, q) ∈ u with q being an instance of some
s′ ∈ Aob that is different from s and has an occurrence in a cut that does not
contain an occurrence of s. But this is impossible since every cut of α contains
an occurrence of s. ]
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6.26. Lemma. For each α ∈ A of finite width a subset Y ⊆ Xα is a maximal
antichain of the partially ordered set (Xα,≤α) iff it corresponds to the set of
occurrences of atomic identities in a cut y of α. ]

Proof. Let y be a cut of α. From the definition of the partial order ≤α we obtain
that equivalence classes of occurrences of atomic identities in y are pairwise
incomparable. Thus they form an antichain Y = H ′(y). According to (C7) for
each u ∈ Xα that does not belong to Y there exists v ∈ Y such that nat(lα(u)) =
nat(lα(v)) and, by lemma 6.24, v is comparable with u. Consequently, Y is a
maximal antichain.

Let Y be a maximal antichain of (Xα,≤α). Then all different u, v ∈ Y are
incomparable with respect to ≤α and it follows from the definition of ≤α that
there exists a cut x of α such that for some atomic identities p and q (x, p) is an
instance of u and (x, q) is an instance of v. As α is of finite width, it is possible
to construct step by step a cut y such that each element of Y has an instance in
y. Namely, given a cut yn such that (yn, p1),...,(yn, pn) are instances of elements
u1,...,un of Y , and an element u of Y that is incomparable with u1,...,un and
has instances (x1, pn+1),...,(xn, pn+1) such that
(x1, p1) ∼α (yn, p1),..., (xn, pn) ∼α (yn, pn), we define yn+1

as (x1 tα yn) uα ... uα (xn tα yn) if (yn, q) <α (x1, pn+1) for some q,
or as (x1 uα yn) tα ... tα (xn uα yn) if (x1, pn+1) <α (yn, q) for some q.
In the first case (xi uα yn → xi tα yn) = ci + ϕi1 + ϕi2 with an identity ci
containing pi and cod(ϕi2) containing pn+1, and we obtain
(xi → xi tα yn) = ci + ϕi1 + cod(ϕi2) with pn+1 contained in ci + cod(ϕi2)
and (yn → xi tα yn) = ci + cod(ϕi1) + ϕi2 with pi contained in ci + cod(ϕi1).
Hence (xi, pi) ∼α (xi tα yn, pi) and (xi tα yn, pn+1) ∼α (xi, pn+1).
From (yn → xitα yn) = ci+cod(ϕi1)+ϕi2 and yn → yn+1 → xitα yn we obtain
by (B4)
(yn → yn+1) = ci + cod(ϕi1) + γi and (yn+1 → xi tα yn) = ci + cod(ϕi1) + δi.
Hence (xi, pi) ∼α (yn+1, pi).
From (xi tα yn, pn+1) ∼α (xi, pn+1) and (x1, pn+1) ∼α ... ∼α (xn, pn+1) we
obtain (xi tα yn, pn+1) ∼α (x1, pn+1) for all i ∈ {1, ..., n}.
Hence (x1 u (xi ∨α yn) → x1 t (xi tα yn)) = di + ψi1 + ψi2 with identities di
containing pn+1 for all i ∈ {1, ..., n} and, finally,
(x1 u yn+1 → x1 t yn+1) = d+ ψ1 + ψ2 with an identity d containing pn+1.
Thus
(yn+1, p1) ∼α (yn, p1),..., (yn+1, pn) ∼α (yn, pn), (yn+1, pn+1) ∼α (x1, pn+1).
Similarly, in the second case
(yn+1, p1) ∼α (yn, p1),..., (yn+1, pn) ∼α (yn, pn), (yn+1, pn+1) ∼α (x1, pn+1), as
required. ]

6.27. Corollary. If the set Aob of objects definable in A is finite then for every
α ∈ A a subset Y ⊆ Xα is a maximal antichain of the partially ordered set
(Xα,≤α) iff it corresponds to the set of occurrences of atomic identities in a cut
y of α. ]
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6.28. Lemma. If α ∈ A is of finite width then the canonical partial order ≤α
is strongly K-dense. ]

Proof. Suppose that Y is a maximal antichain of (Xα,≤α) that consists of the
equivalence classes of occurrences of atomic identities in a cut y of α. Suppose
that Z is a maximal chain of (Xα,≤α). If all elements of Z are not above Y then
for each z ∈ Z the set f(z, Y ) of successors of z in Y is non-empty and it can at
most decrease with the increase of z. As α is of finite width and thus f(z, Y ) is
finite, there exists at least one element of Z that belongs to Y . Similarly when
all elements of Z are not below Y . Finally, if Z has elements both below and
above Y , then the set g(z1, z2, Y ) of elements of Y that are between an element
z1 of Z that is below Y and an element z2 of Z that is above Y is non-empty
due to (C9) and it can at most decrease when z1 and z2 approach Y . As α is of
finite width and thus such a set is finite, Z has an element in Y . ]

It is straighforward that if A is of type K, as supposed, and the set Aob of
objects definable in A is finite then the correspondence
α 7→ Lα = (Xα,≤α, lα) just described between elements of A and lposets in
the category LPOSETS of lposets and their morphisms enjoys the following
properties.

6.29. Lemma. Let A is a behaviour-oriented algebra of type K, as supposed,
and let the set Aob of objects definable in A be finite. If γ = α + β then Lγ is
a coproduct object in LPOSETS of Lα and Lβ with the canonical morphisms
given by the correspondences

iα,α+β : [((ξ1, ξ2), p)] 7→ [((ξ1 + dom(β), ξ2 + β), p)]

iβ,α+β : [((η1, η2), p)] 7→ [((dom(α) + η1, α+ η2), p)] ]

6.30. Lemma. Let A is a behaviour-oriented algebra of type K, as supposed,
and let the set Aob of objects definable in A be finite. If γ = αβ with cod(α) =
dom(β) = c then Lγ is the pushout object in LPOSETS of the injections of Lc
in Lα and in Lβ given by

kc,α : [((c, c), p)] 7→ [((α, c), p)]

kc,β : [((c, c), p)] 7→ [((c, β), p)]

with the canonical morphisms given by the correspondences

jα,αβ : [((ξ1, ξ2), p)] 7→ [((ξ1, ξ2β), p)]

jβ,αβ : [((η1, η2), p)] 7→ [((αη1, η2), p)] ]
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Existence of a representing homomorphism

In the case of a discrete behaviour-oriented algebra A of type K, i.e. a discrete
behaviour-oriented algebra in which (C9) holds, where the set Aob of objects
definable in A is finite, all the lposets Lα are finite and thus they do not contain
segments with isomorphic proper subsegments. Consequently, all Lα are strongly
K-dense processes in the universe U(A) = (Aob, A+0,nat |A+0) and they can
be composed as it is described in section 3. Thus we come to the following
representation of behaviour-oriented algebras.

6.31. Theorem. If A is is a discrete behaviour-oriented algebra of type K
such that the set Aob of objects definable in A is finite then the correspondence
α 7→ [Lα] is a homomorphism from A to the algebra KPROC(U(A)) of weakly
K-dense processes in the universe U(A) of objects which are definable in A. ]

In the case of a behaviour-oriented algebra A in which (C9) holds and Aob is
finite but not discrete it is not obvious that the lposets Lα are processes because
in order to be processes they must satisfy the condition (3.3) of definition 2.6
that is trivial only for discrete lposets. However, the fact that the lposets Lα
satisfy this condition is a consequence of the strong property (A4). Thus we
come to the following result.

6.32. Theorem. If A is a behaviour-oriented algebra of type K such that the
set Aob of objects definable in A is finite then the correspondence α 7→ [Lα]
is a homomorphism from A to the algebra KPROC(U(A)) of weakly K-dense
processes in the universe U(A) of objects which are definable in A. ]

The representation for algebras of processes

In the case of behaviour-oriented algebras which are algebras of processes
the lposets consisting of canonical underlying sets, canonical partial orders, and
canonical labellings of their elements are instances of processes being these ele-
ments.

In order to demonstrate this suppose that A = (A, ; ,+) is an algebra of
weakly K-dense processes in a universe U of objects. Let α be a process from
A and let L = (X,≤, ins) be an instance of α.

6.33. Lemma. There exists an isomorphic correspondence λα,L between the
partially ordered set of cuts of α and the partially ordered set of cross-sections
of L. ]

For a proof it suffices to apply proposition 2.12.
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6.34. Lemma. To every occurrence (x, p) of an object instance p there cor-
responds a unique element µα,L(x, p) of the cross-section λα,L(x) such that
ins(µα,L(x, p)) = p. ]

A proof is immediate.

6.35. Lemma. Occurrences (x, p) and (y, q) of object instances are adjacent iff
µα,L(x, p) = µα,L(y, q). ]

A proof follows due to lemmas 6.33, 6.34, (A5) and (C8).

6.36. Corollary. The adjacency relation ∼α is an equivalence relation. ]

The elements of the underlying set Xα of the canonical instance of a process
α can be defined as equivalence classes of ∼α.

6.37. Definition. Given an atomic identity p, by an occurrence of p in α we
mean an equivalence class of occurrences of p in cuts of α. ]

6.38. Definition. The set of occurrences of atomic identities in α, written as
Xα, is called the canonical underlying set of α. ]

6.39. Definition. The correspondence [(x, p)] 7→ p between occurrences of
atomic identities in α and the atomic identities themselves, written as insα, is
called the canonical labelling of (occurrences of atomic identities in) the element
α. ]

The partial order ≤α on Xα can be defined as follows.
Given an occurrence (x, p) of an atomic identity p in a cut x = (ξ1, ξ2) of α

and an occurrence (y, q) of an atomic identity q in a cut y = (η1, η2) of α, we
say that (x, p) precedes (y, q) and write (x, p) <α (y, q) if x vα y, p occurs in
x, q occurs in y, and there is no cut v of x → y such that (x, p) ∼α (v, p) and
(y, q) ∼α (v, q).

6.40. Lemma. The relation (x, p) <α (y, q) holds if
and only if µα,L(x, p) < µα,L(y, q). ]

A proof follows from the definition of (x, p) <α (y, q) due to the weak K-
density of L.

6.41. Corollary. For each α ∈ A the relation ≤α on Xα, where
u ≤α v iff u ∼α v or (x, p) <α (y, q) for some (x, p) ∈ u and (y, q) ∈ v,

is a partial order. ]
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6.42. Definition. The partial order ≤α is called the canonical partial order of
(occurrences of atomic identities in) α. The triple Lα = (Xα,≤α, lα) is called
the canonical instance of α. ]

It is straightforward that the correspondence α 7→ Lα = (Xα,≤α, lα) just
described between actions of KPROC(U) and their canonical instances enjoys
the following properties.

6.43. Lemma. If γ = α + β then Lγ is a coproduct object in LPOSETS of
Lα and Lβ with the canonical morphisms given by the correspondences iα,α+β
and iβ,α+β as in lemma 6.29. ]

6.44. Lemma. If γ = αβ with cod(α) = dom(β) = c then Lγ is the pushout
object in LPOSETS of the injections of Lc in Lα and in Lβ given by kc,α and
kc,β as in lemma 6.30 with the canonical morphisms given by the correspondences
jα,αβ and jβ,αβ as in lemma 6.30. ]
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Providing processes with structures

The idea

We have shown that every element of a behaviour-oriented algebra defines a
unique set (the canonical underlying set) and a unique structure on this set (the
structure that consists of the canonical partial order and the canonical labelling),
and a unique lposet (the canonical instance). Now we want to show how some
elements of such an algebra or, more precisely, their canonical underlying sets,
can be provid ed with some additional structures.

Lemmas 6.29 and 6.30 of the previous chapter suggest that structures for
the canonical instances of elements should be related to the structures for the
canonical instances of the components of these elementss.

Let T = (B,mor) be a structure type as defined in Appendix E.
Let A = (A, ; ,+) be an algebra of weakly K-dense processes in a universe

U = (V,W, ob) of objects.
The canonical instance of each element of A can be provided with a struc-

ture of type T on its underlying set. However, the choice of such a structure
cannot be arbitrary since elements of the algebra A and their instances can be
related and then we expect also the corresponding structures to be related in a
similar way. Consequently, we propose to formalize such a choice by assigning to
each α ∈ A the canonical instance Lα = (Xα,≤α, lα), by providing the assigned
instances with a suitable structures strα in a way consistent with the opera-
tions on processes, and by transporting the structures thus introduced from the
canonical instances of processes to arbitrary isomorphic lposets with the aid of
the respective isomorphisms. This can be done as follows (cf. [Wink 07b]).

The structures for the canonical instances of elements of A should be related
as follows to the structures for the canonical instances of the components of
these elements.

7.1. Definition. Elements of the algebra A are said to be consistently provided
with structures of type T if there exists a correspondence α 7→ strα such that,
for every α ∈ A, strα is a structure of type T on the canonical underlying set
Xα of α and the following conditions are fulfilled:

(1) if α + β is defined then strα+β is a coproduct object of the coproduct in
STRUCT(T ) of strα and strβ ,
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(2) if αβ is defined and cod(α) = dom(β) = c then there exist morphisms
kc,α : str c → strα and kc,β : str c → strβ such that strαβ is a pushout object
of the pushout in STRUCT(T ) of these morphisms. ]

Examples

Examples that follow illustrate the idea.

7.2. Example. Let LPO be the structure type of labelled partial orders with
order and labelling preserving morphisms. To each element α of A we can assign
the structure lpoα = (≤α, lα) on the canonical underlying set Xα. If the set Aob

of objects occurring in A is finite then 6.29 and 6.30 imply that the propositions
correspondence α 7→ lpoα fulfils the conditions (1) and (2) of definition 7.1 for
the structure type LPO . ]

7.3. Example. Let WPO be the structure type of weighted partial orders
wpo = (≤, d), where ≤ is a partial order on a set X
and d : X ×X → Real ∪ {−∞,+∞} is a function such that

(a) d(x, x) = 0,
(b) d(x, y) = −∞ if x and y are incomparable with respect to ≤,
(c) d(x, y) = sup{d(x, z) + d(z, y) : z 6= x, z 6= y, x ≤ z ≤ y} if there exists z

such that z 6= x, z 6= y, x ≤ z ≤ y,

and where morphisms are order and weight preserving mappings. If the algebra
A is generated by a set of (+, ; )-atomic processes and if the set Aob of objects
occurring in A is finite then to each process α of A we can assign structure
wpoα = (≤α, dα) To this end it suffices to define dα on (+, ; )-atoms generating A
and then extend it on entire A such that the conditions (1) and (2) of definition
7.1 are fulfilled for the structure type WPO . Values of functions dα can be
interpreted as delays between elements of the canonical underlying set Xα of
α. Together with data about occurrence times of minimal elements of Xα they
determine occurrence times of all elements of Xα. For instance, in the case of
an action α with a linear flow order the occurrence time of each x ∈ Xα is
t′ + dα(x′, x), where x′ is the minimal element of Xα and t′ is the occurrence
time of x′. ]

7.4. Example. Suppose that the set Aob of objects occurring in A is finite.
Suppose that B is a subset of (; )-atoms of A such that to each β ∈ B there
corresponds a structure grβ of a graph on the canonical set Xβ of β. Suppose
that A′ is the subalgebra of A generated by B. Then grdom(β) and grcod(β)

must be graphs and the correspondence β 7→ grβ has a unique extension on
entire subalgebra A′ and this extension fulfils the conditions (1) and (2) of
definition 7.1 for the structure type GRAPHS . Notice that elements of A′ thus
provided can be interpreted as derivations of graphs from graphs by applying
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graph grammar productions in the sense of the so called double pushout approach
(cf. [CMR 96]). ]

Providing processes with context relations

Applications of graph grammar productions to graphs in the sense of double
pushout approach are examples of processes in which some subgraphs of trans-
formed graphs are involved but remain unchanged. Put in another way, some
object occurrences in processes play the role of a context for other object occur-
rences. Situations of this kind can be reflected by providing processes with the
respective acyclic binary relations of context dependence. This can be done as
follows.

7.5. Proposition. If the algebra A is generated by a set A′ of not necessarily
atomic processes and if it is possible to assign to each α ∈ A′ an acyclic binary
relation cxtα on Xα, called after [Wink 05] a context relation, such that:

(1) for all elements of Xα, (x, y) ∈ cxtα excludes both x ≤α y and y ≤α x,
and the reflexive and transitive closure of the following relation R, where
cxt+α denotes the transitive closure of cxtα, is a partial order with the same
minimal and maximal elements as for ≤α:
(x, y) ∈ R iff
x ≤α y or
(x <α z and (z, y) ∈ cxt+α for some z) or
(x ≤α t and z <α y and (z, t) ∈ cxtα for some z and t),

(2) the conditions (1) and (2) of definition 7.1 are fulfilled for the structure type
ABREL of acyclic binary relations,

then it is possible to extend the correspondence α 7→ cxtα on A such that the
conditions (1) and (2) of definition 7.1 are fulfilled for the structure type ABREL.
]

Proof. It suffices to prove that cxtαβ is an acyclic binary relation in Xαβ . To
this end suppose the contrary and suppose that Z is a cycle in cxtαβ . Suppose
that c is the cross-section of Lαβ such that head(Lαβ , c) and Lα are isomorphic
and tail (Lαβ , c) and Lβ are isomorphic. As cxtα and cxtβ are acyclic, Z must
consist of a part Z− in head (Lαβ , c) and a part Z+ in tail (Lαβ , c). However, this
is impossible since otherwise there would be x, y, z such that x and z are in c,
they are different, x ≤β y, and (y, z) ∈ cxtβ , and it would imply that the partial
order defined by ≤β and cxtβ could not have the same minimal elements as for
≤β . ]

7.6. Example. Suppose that a machine m produces some material for users
exploiting it in an unspecified manner. Suppose that the machine m is equipped
with a switch S to resume production (the position on) and to break it (the
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position off ). Define an instance of m to be a pair (m, a), where a ≥ 0 is the
available amount of material. Define an instance of S to be a pair (S, s), where s is
on or off . Define V ′ = {m,S}, W ′ = Wm ∪WS , where Wm = {(m, a) : a ≥ 0},
and WS = {(S, on), (S, off )}. Define ob′(w) = m for w = (m, a) ∈ Wm and
ob′(w) = S for w = (S, s) ∈ WS . Then U′ = (V ′,W ′, ob′) is a universe of
objects.

The work of the machine m in an interval [t′, t′′] of global time is a concrete
process in U′ that, when considered without taking into account the switch, can
be defined as WORK = (XWORK ,≤WORK , insWORK ), where
XWORK is the set {q(t) : t ∈ [t′, t′′]} of values of the real-valued function t 7→ q(t)
that specifies the amount of material that has been produced until t ∈ [t′, t′′],
≤WORK is the restriction of the usual order of numbers to XWORK ,
insWORK (x) = (m, a(t)) for x = q(t), where a(t) is the amount of material
available at t ∈ [t′, t′′].

Switching on the machine m in a state s0 = (m, a0) is a concrete process
that can be defined as ON = (XON ,≤ON , insON ), where
XON = {x1, x2, x3, x4},
x1 <ON x3, x1 <ON x4, x2 <ON x3, x2 <ON x4,
insON (x1) = insON (x3) = s0, ins (x2) = (S, off ), insON (x4) = (S, on).

Switching off the machine m in a state s1 = (m, a1) is a concrete process
that can be defined as OFF = (XOFF ,≤OFF , insOFF ), where
XOFF = {x1, x2, x3, x4},
x1 <OFF x3, x1 <OFF x4, x2 <OFF x3, x2 <OFF x4,
insOFF (x1) = insOFF (x3) = s1, insOFF (x2) = (S, on),
insOFF (x4) = (S, off ).

Switching on the machine m in a state s0 followed by a work of m and
by switching off m in a state s1 is a concrete process that can be defined as
RUN = (XRUN ,≤RUN , insRUN ), where
XRUN = XON ′ ∪XWORK ′ ∪XOFF ′ ,
≤RUN is the transitive closure of ≤ON ′ ∪ ≤WORK ′ ∪ ≤OFF ′ ,
insRUN = insON ′ ∪ insWORK ′ ∪ insOFF ′ ,
for a variant ON ′ of ON , a variant WORK ′ of WORK , and a variant OFF ′ of
OFF , such that the maximal element of XON ′ with the label (S, on) coincides
with the minimal element of XOFF ′ with the label (S, on), the maximal element
of XON ′ with the label s0 coincides with the minimal element of XWORK ′ with
the label s0, the maximal element of XWORK ′ with the label s1 coincides with
the minimal element of XOFF ′ with the label s1, and these are the only common
elements of pairs of sets from among XON ′ , XWORK ′ , XOFF ′ .

The abstract processes [WORK ], [ON ], [OFF ], and [RUN ], are represented
graphically in figure 7.1.

Consider the processes [WORK ], [ON ], [OFF ], [RUN ]. In the case of such
processes and their combinations, we can consider the subalgebra of the respec-
tive algebra of processes generated by variants of ([WORK ] + {(S, on)}), [ON ],
[OFF ], and endow ([WORK ] + {(S, on)}) with a context relation as it is illus-
trated in figure 7.2 with a dotted arrow. ]
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Figure 7.1: [WORK ], [ON ], [OFF ], [RUN ]
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7.7. Proposition. If the algebra A is generated by a set A0 of (; )-atoms such
that the elements of A0 that are not (+)-atoms cannot be obtained by composing
in parallel other elements of A0 and if the elements of A0 can be provided with
context relations cxt+α such that the condition (1) of proposition 7.5 is fulfilled
then:
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(1) it is possible to extend the correspondence α 7→ cxtα on A such that the
conditions (1) and (2) of definition 7.1 are fulfilled for the structure type
ABREL,

(2) a diagram D = (v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w) in pcat(A) is a bicartesian
square in pcat(A) if and only if there exist c, ϕ1, ϕ2 such that
c is an identity,
there is no identity d 6= 0 such that d v ϕ1 or d v ϕ1,
c+ϕ1+ϕ2 is defined with a partition ofXc+ϕ1+ϕ2

into three mutually disjoint
subsets X ′c, X

′
ϕ1

, X ′ϕ2
such that the restrictions of Lc+ϕ1+ϕ2

to these subsets
are respectively instances of c, ϕ1, ϕ2,
α1 = c+ ϕ1 + dom(ϕ2), α2 = c+ dom(ϕ1) + ϕ2,
α′1 = c+ ϕ1 + cod(ϕ2), α′2 = c+ cod(ϕ1) + ϕ2,
(x, y) ∈ cxtc+ϕ1+ϕ2

only if both x and y belong to X ′ϕ1
or to X ′ϕ2

, or x
belongs to X ′c. ]

Proof. The first part of the proposition is immediate. The fact that the existence
of the respective c, ϕ1, ϕ2 implies that the diagram D is a bicartesian square
in pcat(A) follows from (C8) and from the fact that the conditions (1) and (2)
of definition 7.1 are satisfied for the correspondence α 7→ cxtα. To prove the
converse take into account the fact that, due to the assumed properties of A,
every diagram in pcat(A) that is a bicartesian square in the algebra of processes
that contains A is a bicartesian square in pcat(A) as well. Consequently, it
suffices to prove that cxtα enjoys the expected properties for the respective c,
ϕ1, ϕ2, X ′c, X

′
ϕ1

, X ′ϕ2
. To this end suppose the contrary. Then in one of the

sets X ′ϕ1
, X ′ϕ2

, say in X ′ϕ1
, there exists x that is not minimal and such that

(x, y) ∈ cxtc+ϕ1+ϕ2 for some y ∈ X ′ϕ2
and, consequently, x′ <c+ϕ1+ϕ2 y for

some x′ ∈ X ′ϕ1
. However this is impossible because then cxtc+ϕ1+ϕ2 could not

be a context relation for α2α1. ]
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Behaviour-oriented partial categories

Basic notions

In chapter 3, proposition 3.13, it has been stated that every partial category of
processes enjoys the properties (A1) - (A10).

In this chapter we introduce abstract algebras in which (A1) - (A10) hold,
called in behaviour-oriented partial categories, and we prove that such partial
categories can be represented as partial categories of processes.

Behaviour-oriented partial categories are essentially specific multiplicative
transition systems in the sense of [Wink 11]. They are defined as follows.

8.1. Definition. A behaviour-oriented partial category, or briefly a BOPC, is
a partial category A = (A, ; ), where A is a set and (α1, α2) 7→ α1;α2 is a partial
operation in A such that the axioms (A1) - (A10) hold. ]

In A two partial unary operations α 7→ dom(α) and α 7→ cod(α) are definable
that assign to an element a source and a target, if they exist.

An element α of A is said to be a atom of A provided that it is not an
identity, has a source and a target, and for every α1 ∈ A and α2 ∈ A the
equality α = α1α2 implies that either α1 is an identity and α2 = α or α2 is an
identity and α1 = α.

We say that A is discrete if every α ∈ A that is not an identity can be
represented in the form α = α1...αn, where α1,...,αn are atoms.

Note that if A is discrete then its every element has a source and a target
and thus A is a category.

As in the case of behaviour-oriented algebras, by a cut of α ∈ A we mean a
pair (α1, α2) such that α1α2 = α.

The partial category A has the properties of partial categories of processes
described in propositions 3.17 and 3.18. Consequently, cuts of every α ∈ A are
partially ordered by the relation vα, where x vα y with x = (ξ1, ξ2)
and y = (η1, η2) means that η1 = ξ1δ with some δ. Due to (A1) and (A2) for
x = (ξ1, ξ2) and y = (η1, η2) such that x vα y there exists a unique δ such that
η1 = ξ1δ, written as x → y. As in proposition 3.18 the partial order vα makes
the set of cuts of α a lattice LTα. The lattice LTα is obviously a behaviour-
oriented partial category. Given two cuts x and y, by x tα y and x uα y we
denote respectively the least upper bound and the greatest lower bound of x
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and y. From (A5) it follows that (x ← x uα y → y, x → x tα y ← y) is a
bicartesian square.

Given α ∈ A and its cuts x = (ξ1, ξ2) and y = (η1, η2) such that x vα y, by
a segment of α from x to y we mean β ∈ A such that ξ2 = βη2 and η1 = ξ1β,
written as α|[x, y]. A segment α|[x′, y′] of α such that x vα x′ vα y′ vα y is
called a subsegment of α|[x, y]. If x = x′ (resp. if y = y′) then we call it an initial
(resp. a final) subsegment of α|[x, y]. An initial segment ι of α is called also a
prefix of α, written as ι pref α.

As in the case of partial categories of processes, in the set Asemibounded of
those α ∈ A which are semibounded in the sense that their source dom(α) one
can define as follows a relation v, where

α v β whenever every prefix of α is a prefix of β
and this relation is a partial order, i.e. (Asemibounded,v) is a poset.

As in the case of behaviour-oriented algebras, elements of A are called hypo-
thetical processes (or briefly, processes) of A. Processes of A which are identities
of A are called hypothetical states (or briefly states) of A. Processes which are
atomic identities are called atomic states. A process α is said to be bounded if it
has the source dom(α) and the target cod(α). For every process α, the existing
states u = dom(α) and v = cod(α) are called respectively the initial state and

the final state of α and we write α as u
α→ v. The operation (α1, α2) 7→ α1α2 is

called the composition. The independence of bounded processes can be defined
exploiting the chracterization of parallel and sequential independence of processe
in theorems 6.7 and 6.8.

8.2. Definition. Processes u
α1→ v and u

α2→ w are said to be parallel in-

dependent iff there exist unique processes v
α′

2→ u′ and w
α′

1→ u′ such that

(v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w) is a bicartesian square. ]

8.3. Definition. Processes u
α1→ v and v

α′
2→ u′ are said to be sequential

independent iff there exist unique processes u
α2→ w and w

α′
1→ u′ such that

(v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w) is a bicartesian square. ]

These definitions are adequate in subalgebras of behaviour-oriented partial
categories provided that bicartesian squares in such subalgebras are bicartesian
squares in the original behaviour-oriented partial categories. This appears to be
true if the respective subalgebras are inheriting in the following sense.

8.4. Definition. A subalgebra A′ of a behaviour-oriented partial category A
is said to be inheriting if it is closed with respect to components of its elements
in the sense that arrows α and β of A are also arrows of A′ whenever αβ is an
arrow of A′. ]
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This following proposition reflects the crucial property of inheriting subalge-
bras of behaviour-oriented partial categories.

8.5. Proposition. If A′ is an inheriting subalgebra of a behaviour-oriented
partial category A then:

(1) each bicartesian square of A whose arrows are in A′ is a bicartesian square
in A′,

(2) each bicartesian square in A′ is a bicartesian square in A. ]

Proof. The first part of this proposition is immediate. For the second part it
suffices to exploit the property (A6) of A and the fact that A′ is an inheriting
subalgebra of A.

Behaviour-oriented partial categories are models of concurrent system richer
than transition systems in the sense that they specify not only states, transitions,
and independence of transitions of the modelled systems, but also their processes
(runs) and how processes compose. Moreover, independence becomes a definable
notion, and it can be defined not only for transitions, but also for compound
processes.

8.6. Example. Consider the universe U2 of a producer and a distributor and
the conrete processes Q, R, S in U2 described in example 2.8. By combining
the abstract processes corresponding to the possible variants of concrete pro-
cesses Q, R, S we obtain a subalgebra A2 = (A2, ; ) of the partial category
pcatgPROC(U2) of global processes in U2. This subalgebra is a BOPC in the
sense of definition 8.1. ]

8.7. Example. Define a transition system without a distinguished initial state
as M = (S,E, T ) such that S is a set of states, E is a set of events,
and T ⊆ S × E × S is a set of transitions, where (s, e, s′) ∈ T stands for the
transition from the state s to the state s′ due to the event e. Assume that E
contains a distinguished element ∗ standing for ”no event”, and assume that for
every state s ∈ S the set T contains an idle transition (s, ∗, s) standing for ”stay
in s”. Then M can be represented by the graph G(M) = (T, dom, cod), where
dom(s, e, s′) = (s, ∗, s) and cod(s, e, s′) = (s′, ∗, s′) for every (s, e, s′) ∈ T .

Write s
e→ s′ to indicate that (s, e, s′) ∈ T . Denote by Lts the set of triples of

the form α = s
x→ s′ where x is any finite word over the alphabet E − {∗} such

that x = e1...em for α = s0
e1→ s1

e2→ s2...sm−1
em→ sm with s0 = s and sm = s′,

or x is the empty word represented by ∗ and s′ = s.
Define dom(s

x→ s′) = s
∗→ s and cod(s

e1→ s′) = s′
∗→ s′.

For triples α1 = s1
x1→ s′1 and α2 = s2

x2→ s′2 such that s′1 = s2 define the result

of composing α1 and α2 as α1α2 = s1
x1x2→ s′2.

It is easy to verify that the set Lts with the composition thus defined is a BOPC
LTS (M) in the sense of definition 8.1. In this BOPC each ordering vα is linear



86 Behaviour-oriented partial categories

and (v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w) is a bicartesian square iff α1 and α′1 are identities
or α2 and α′2 are identities. ]

8.8. Example. Consider the transition system M from example 8.7. Consider
a symmetric irreflexive relation I ⊆ (E−{∗})2, called an independence relation,
and the least equivalence relation ‖I between words over the alphabet
E − {∗} such that words uabv and ubav are equivalent whenever (a, b) ∈ I. The
equivalence classes of such a relation are known in the literature as Mazurkiewicz
traces with respect to I (see [Maz 88]). Denote by Ts the set of triples as in
example 8.7 but with words over the alphabet E − {∗} replaced by traces with
respect to I. Define dom and cod and the composition as in example 8.7, but
with the concatenation of words replaced by the induced concatenation of traces.

It is easy to verify that the set Ts with the composition thus defined is a
BOPC TS (M, I) in the sense of definition 8.1, and that this BOPC is a homo-
morphic image of the BOPC from example 8.7. However, in this system there
exist nontrivial bicartesian squares, namely, the squares

(v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w) such that α1 = u
x1→ v, α2 = u

x2→ w,

α′1 = w
x1→ u′, α′2 = v

x2→ u′ with (a, b) ∈ I for all (a, b) such that a occurs in x1
and b occurs in x2. ]

Independence and equivalence of transitions

In the definitions 8.2 and 8.3 we have characterized the natural concepts of
sequential and parallel independence of processes similar to the concepts intro-
duced in [EK 76] as the existence in the respective BOPC of appropriate bicarte-
sian squares. Now we shall use this characterization to define independence and
a natural equivalence of elements of behaviour-oriented partial categories simi-
lar to the considered in [WN 95] independence and equivalence of transitions in
transition systems with independence. This will allow us to adapt and study the
concept of a region similar to that introduced in [ER 90].

8.9. Examples. In the BOPC A2 in example 8.6 processes π + dom(ρ) and
dom(π) + ρ are parallel independent, processes π + dom(ρ) and cod(π) + ρ are
sequential independent, and transitions dom(π)+ρ and π+cod(ρ) are sequential

independent. In the BOPC LTS (M) in example 8.7 processes u
α1→ v and u

α2→ w
are parallel independent only if one of them is an identity. Similarly, processes

u
α1→ v and v

α′
2→ u′ are sequential independent only if one of them is an identity.

In the BOPC TS (M) in example 8.8 processes u
α1→ v and u

α2→ w are parallel
independent iff (a, b) ∈ I for all a occurring in α1 and all b occurring in α2.

Similarly, processes u
α1→ v and v

α′
2→ u′ are sequential independent iff (a, b) ∈ I

for all (a, b) such that a occurs in α1 and b occurs in α′2. ]
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8.10. Definition. By the natural equivalence of elements of a BOPC A = (A, ; )
we mean the least equivalence relation ≡ in A such that α1 ≡ α′1 whenever in

this BOPC there exists a bicartesian square (v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w). ]

8.11. Examples. In the BOPC A2 in example 8.6 processes π + dom(ρ) and
cod(ρ) + π are equivalent in the sense of definition 8.10. In the BOPC LTS (M)
in example 8.7 the natural equivalence coincides with the identity relation. In
the BOPC TS (M) in example 8.8 we have α1 ≡ α′1 whenever

(v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w) with α1 and α′1 representing the same trace t1, and
α2 and α′2 representing the same trace t2, for (a, b) ∈ I for all (a, b) such that a
occurs in t1 and b occurs in t2. ]

Regions

The existence in behaviour-oriented partial categories of the natural equivalence
of processes allows us to adapt and exploit the concept of a region similar to
that introduced in [ER 90].

8.12. Definition. By a region of a BOPC A = (A, ; ) we mean a nonempty
subset r of the set of states of A such that:

dom(α) ∈ r and cod(α) /∈ r and α′ ≡ α
implies dom(α′) ∈ r and cod(α′) /∈ r,

dom(α) /∈ r and cod(α) ∈ r and α′ ≡ α
implies dom(α′) /∈ r and cod(α′) ∈ r. ]

8.13. Example. Consider the BOPC A2 in example 8.6. In this BOPC the
sets [(p, q)] = {(p, q)} × ({d} × [0,+∞)) with q ≥ 0,
the sets [(d, r)] = {(d, r)} × ({p} × [0,+∞)) with r ≥ 0, and disjoint unions of
such sets are regions. ]

8.14. Example . Consider the transition system M ′ in figure 8.1. Consider
the independence relation I ′ = {(a, b), (a, b1), (a1, b), (a1, b1)} and the BOPC

TS (M ′, I ′). In this BOPC we have processes α = u
[a]→ v, β = u

[b]→ w,

α′ = w
[a]→ u′, β′ = v

[b]→ u′ α′′ = t
[a]→ w′, β′′ = z

[b]→ v′, α1 = u′
[a1]→ v′,

β1 = u′
[b1]→ w′, α′1 = w′

[a1]→ u, β′1 = v′
[b1]→ u α′′1 = v

[a1]→ z, β′′1 = w
[b1]→ t, where

[a],[a1],[b],[b1] are traces correspondig to a, a1, b, b1, and compositions of these
processes. For example,

αβ′ = βα′ = γ = u
[ab]→ u′, α1β

′
1 = β1α

′
1 = γ1 = u′

[a1b1]→ u,
processes α,α′ are equivalent, processes β,β′ are equivalent, and we have regions
E = {u,w, t, v′, z}, F = {u, v, z, t, w′}, G = {v, u′, w′}, H = {w, u′, v′}, E ∪ G,
F ∪H, and {u, v, w, z, t, u′, v′, w′}. ]
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Figure 8.1
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From the definition of a region we obtain the following proposition.

8.15. Proposition. If A = (A, ; ) is a BOPC, r is a region of A,

and (v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w) is a bicartesian square in A, then v ∈ r implies
that u ∈ r or u′ ∈ r. ]

Due to the property (A7) of behaviour-oriented partial categories we obtain
the following proposition.

8.16. Proposition. If A = (A, ; ) is a BOPC, r is a region of A,

and (v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w) is a bicartesian square in A with morphisms

which are not identities, then for every decomposition u
α1→ v = u

α11→ v1
α12→ v

such that u, v ∈ r we have v1 ∈ r, and for every decomposition

w
α′

1→ u′ = w
α′

11→ w1
α′

12→ u′ such that w, u′ ∈ r we have w1 ∈ r. ]

The following three propositions follow from the definition of a region.
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8.17. Proposition. The set of all states of A is a region of A. ]

8.18. Proposition. If p and q are disjoint regions of A then p ∪ q is a region
of A. ]

8.19. Proposition. If p and q are different regions of A such that p ⊆ q then
q − p is a region of A. ]

Given a chain (ri : i ∈ I) of regions with r =
⋂

(ri : i ∈ I) and a process α
such that dom(α) ∈ r and cod(α) /∈ r, there exists i0 ∈ I such that dom(α) ∈ ri
and cod(α) /∈ ri for i > i0. Consequently, for every process α′ such that α′ ≡ α
we have dom(α) ∈ ri and cod(α) /∈ ri for i > i0, and thus dom(α) ∈ r and
cod(α) /∈ r. Similarly, for α such that dom(α) /∈ r and cod(α) ∈ r and for
α′ ≡ α. So, r is a region. Hence, taking into account Kuratowski - Zorn Lemma,
we obtain the following results.

8.20. Proposition. Every region of A contains a minimal region. ]

The propositions 8.19 and 8.20 imply the following properties.

8.21. Proposition. Every state of A belongs to a minimal region. ]

8.22. Proposition. If a state s of A does not belong to a region r then there
exists a minimal region r′ such that r ∩ r′ = ∅ and s belongs to r′. ]

8.23. Proposition. Every region of A can be represented as a disjoint union
of minimal regions. ]

Processes as labelled posets

Now we shall concentrate on behaviour-oriented partial categories which enjoy
a specific but still very natural property. We shall call them clean behaviour-
oriented partial categories, and we shall show that their elements can be inter-
preted as processes in a universe of objects.

We start with suitable notions and observations.
Let A = (A, ; ) be a BOPC.

8.24. Definition. Given α ∈ A and a cut x = (ξ1, ξ2) of α, by a state
corresponding to such a cut x we mean cod(ξ1), and we write such a state as
stateα(x). ]

It is easy to see that the lattice LTα of cuts of α viewed as a category is a
BOPC and that the obvious extension of the correspondence x 7→ stateα(x) to
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the mapping mpα from LTα to A preserves the composition. Given two cuts x
and y, by xtαy and xuαy we denote respectively the least upper bound and the
greatest lower bound of x and y. The diagram (x← xuα y → y, x→ xtα y ← y)
is a bicartesian square in LTα. From (A5) it follows that the image under the
mapping mpα of such a diagram is a bicartesian square in A.

8.25. Example. Consider the BOPC A2 in example 8.6. For the process
τ = [T ] = σ′(π+ρ)σ′′ of this BOPC described in example 2.8 we have the BOPC
LTτ shown in figure 8.2 and its minimal regions

i = {(u, τ)},
j = {(σ′, (π + ρ)σ′′), ..., (σ′(π + dom(ρ)), (cod(π) + ρ)σ′′)},...,
j′ = {(σ′(dom(π) + ρ), (π + cod(ρ))σ′′), ..., (σ′(π + ρ), σ′′)},...,
k = {(σ′, (π + ρ)σ′′), ..., (σ′(dom(π) + ρ), (π + cod(ρ))σ′′)},...,
k′ = {(σ′(π + dom(ρ)), (cod(π) + ρ)σ′′), ..., (σ′(π + ρ), σ′′)},
l = {(τ, u)}. ]

8.26. Example. Consider the BOPC TS (M ′, I ′) in example 8.14. For the
process δ = γγ1 = αβ′α1β

′
1 of this system we have the BOPC LTδ shown in

figure 8.3 and its minimal regions
e = {(u, δ), (β, α′γ1), (ββ′′1 , α

′′α′1)}, g = {(α, β′γ1), (γ, γ1), (γβ1, α
′
1)},

e′ = {(αα′′1 , β′′β′1), (γα1, β
′
1), (δ, u)}, f = {(u, δ), (α, β′γ1), (αα′′1 , β

′′β′1)},
h = {(β, α′γ1), (γ, γ1), (γα1, β

′
1)}, f ′ = {(ββ′′1 , α′′α′1), (γβ1, α

′
1), (δ, u)}. ]

Figure 8.2

LTτ

(u, τ) - (σ′, (π + ρ)σ′′) - ... - (σ′(π + dom(ρ)), (cod(π) + ρ)σ′′)

6 6

(σ′(π + ρ), σ′′) - (τ, u)(σ′(dom(π) + ρ), (π + cod(ρ))σ′′) - ... -
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Figure 8.3
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Let A = (A, ; ) be an arbitrary BOPC. system.
Given an element α of A, by Rα we denote the set of minimal regions of the

BOPC LTα.
Using regions of A we want to assign to each process α of A a labelled

partially ordered set (an lposet)
Lα = (Xα,≤α, lα). Each element x ∈ Xα is supposed to play the role of an
occurrence in α of a minimal region lα(x) of A. The partial order ≤α is sup-
posed to reflect how occurrences of minimal regions arise from other minimal
occurrences.

The underlying set Xα of Lα is supposed to be defined referring to the set
Rα of minimal regions of the BOPC LTα and to a relation `α between minimal
regions of LTα and minimal regions of A.

We are going to show how to define the respective lposet Lα for every element
of A.

8.27. Proposition. Every minimal region r ∈ Rα is convex in the sense that
w ∈ r for every w such that u vα w vα v for some u ∈ r and v ∈ r. ]

Proof. Suppose that r ∈ Rα and a vα c vα b for a, b ∈ r and c /∈ r. Define
r− to be the set of u ∈ r such that u vα c or u′ vα c for some u′ that can be
connected with u by a side of a bicartesian square with the nodes of the opposite
side not in r. Define r+ to be the set of u ∈ r such that c vα u or c vα u′ for
some u′ that can be connected with u by a side of a bicartesian square with the
nodes of the opposite side not in r. There is no bicartesian square with a side
connecting some u ∈ r and v ∈ r such that u vα c vα v and with the nodes
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of the opposite side not in r because by (A6) it would imply c ∈ r. By (A8)
there are no bicartesian squares with sides connecting some u′ with u ∈ r and
v ∈ r such that u vα c vα v and with the nodes of the opposite sides not in r.
Consequently, the sets r− and r+ are disjoint. On the other hand, r is a minimal
region of LTα and thus r ⊆ r− ∪ r+. Moreover, there is no bicartesian square
connecting an element of r− with an element of r+ and with the nodes of the
opposite side not in r. Consequently, r cannot be a minimal region of LTα as
supposed. ]

In the set Rα there exists a partial order that can be defined as follows.

8.28. Definition. Given x, y ∈ Rα, we write x �α y iff for every v ∈ y there
exists u ∈ x such that u vα v, for every u ∈ x there exists v ∈ y such that
u vα v, and the following conditions are satisfied:

(1) t ∈ x iff w ∈ y, for every bicartesian square (u ← t → w, u → v ← w) with
u ∈ x and v ∈ y,

(2) t′ ∈ x iff w′ ∈ y, for every bicartesian square (t′ ← u→ v, t′ → w′ ← v) with
u ∈ x and v ∈ y. ]

8.29. Proposition. If minimal regions x, y ∈ Rα are not disjoint and different
then neither x �α y nor y �α x . ]

Proof. Suppose that x and y are different minimal regions of LTα such that
x ∩ y 6= ∅. Then x − y and y − x are nonempty and there exist u ∈ x − y,
v ∈ y−x, and w, z ∈ x∩y such that u and w are adjacent nodes of a bicartesian
square U , z and v are adjacent nodes of a bicartesian square V , and the nodes
of the bicartesian square W = (w ← w uα z → z, w → w tα z ← z) are in x∩ y.

Consider the case in which w = u tα u′ for some u′ not in x and z = v uα v′
for some v′ not in y, as it is depicted in figure 8.4. Then u′ ∈ y, v′ ∈ x, and the
condition (1) is not satisfied for z vα v and the bicartesian square
(v ← z → v′, v → v tα v′ ← v′). Consequently, x �α y does not hold.

Similarly, in the other possible cases we come to the conclusion that neither
x �α y nor y �α x. ]
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Figure 8.4
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8.30. Proposition. If minimal regions x, y ∈ Rα are disjoint then either x �α y
or y �α x. ]

Proof. It is impossible that u and v are incomparable for all u ∈ x and v ∈ y
since one of the regions x or y contains u tα v or u tα v.

Suppose that u vα v for u ∈ x and v ∈ y. As x and y are disjoint and convex,
it suffices to prove that every element of y has a predecessor in x. Consider
w ∈ y. If v vα w then u vα w. If w vα v then u′ vα w for u′ = u uα w and
by considering the bicartesian square (u′ ← u→ v, u′ → w ← v) we obtain that
u′ ∈ x. If w and v are incomparable then either vuαw ∈ y and we may replace w
by v uα w and proceed as in the previous case, or v tα w ∈ y and by considering
the bicartesian square (u′ ← u→ w, u→ v tα w ← w) we obtain that u′ vα w
for u′ ∈ x. On the other hand, u vα v for u ∈ x and v ∈ y excludes v′ vα u′ for
u′ ∈ x and v′ ∈ y since x and y are convex. Hence x �α y.

Similarly, in the case v vα u we obtain y �α x. ]

8.31. Proposition. The relation �α is a partial order on Rα.

Proof. The transitivity of the relation �α follows from the definition of this rela-
tion. The antisymmetry follows from the transitivity and from the propositions
8.29 and 8.30. ]

The relation `α between minimal regions of LTα and minimal regions of A
can be defined as follows.



94 Behaviour-oriented partial categories

8.32. Proposition. For every minimal region m of LTα there exists a minimal
region r of A such that the set stateα(m) = {stateα(u) : u ∈ m} is contained in
r, and we write m `α r. ]

Proof. Given a minimal region m of LTα, let r be a minimal element of the set
of regions of A containing the set stateα(m). As the image of every bicartesian
square of LTα under the mapping mpα from LTα to A is a bicartesian square in
A, and for every partition of m into two disjoint nonempty subsets m′ and m′′

there exists in LTα a bicartesian square connecting m′ and m′′, the same holds
true for r. Consequently, r is a minimal region of A. ]

Finally, the lposet Lα = (Xα,≤α, lα) can be defined by defining Xα as the set
of pairs (m, r) such that m ∈ Rα and m `α r, the relation ≤α as the partial order
on Xα such that x ≤α x′ for x = (m, r) and x′ = (m′, r′) whenever m �α m′,
and lα(x) as r for x = (m, r) ∈ Xα.

8.33. Example. Consider the BOPC A2 described in example 8.6, its minimal
regions [(p, q)], [(d, r)] described in example 8.13, and the minimal regions i,
j,...,j′, k,...,k′, l of LTτ for τ = [T ] = σ′(π+ ρ)σ′′ as in example 8.25. We obtain
Lτ = (Xτ ,≤τ , lτ ), where

Xτ = {(i, [(p, q0 +m)]), (i, [(d, r0 −m)]), (j, [(p, q0)]), ..., (j′, [(p, q1)]),
(k, [(d, r0)]), ..., (k′, [(d, r1)]), (l, [(p, q1 −m′)]), (l, [(d, r1 +m′)])},

(i, [(p, q0 +m)]), (i, [(d, r0 −m)]) ≤τ
{(j, [(p, q0)]) ≤τ ... ≤τ (j′, [(p, q1)])}, {(k, [(d, r0)]) ≤τ ... ≤τ (k′, [(d, r1)])}
≤τ (l, [(p, q1 −m′)]), (l, [(d, r1 +m′)]),

lτ ((i, [(p, q0 +m)])) = [(p, q0 +m)], lτ ((j, [(p, q0)])) = [(p, q0)],
lτ ((j′, [(p, q1)])) = [(p, q1)], lτ ((k, [(d, r0)])) = [(d, r0)],...,
lτ ((k′, [(d, r1)]) = [(d, r1)], lτ ((l, [(p, q1 −m′)])) = [(p, q1 −m′)],
lτ ((l, [(d, r1 +m′)])) = [(d, r1 +m′)].

The corresponding [Lτ ] is essentially as that in figure 2.2. ]

8.34. Example. Consider the BOPC TS (M ′, I ′) described in example 8.14, its
minimal regions E, F , G, H, and the minimal regions e, g, e′, f , h, f ′ of LTδ
for δ = γγ1 = αβ′α1β

′
1 as in example 8.26. We obtain Lδ = (Xδ,≤δ, lδ), where

Xδ = {(e, E), (g,G), (e′, E), (f, F ), (h,H), (f ′, F )},
(e, E) ≤δ (g,G) ≤δ (e′, E), (f, F ) ≤δ (h,H) ≤δ (f ′, F ),
lδ((e, E)) = lδ((e

′, E) = E, lδ((g,G)) = G,
lδ((f, F )) = lδ((f

′, F )) = F , lδ((h,H)) = H.
The corresponding [Lδ] is presented in figure 8.5. ]
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Figure 8.5
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8.35. Proposition. For every element u of LTα, and for every x, y ∈ Rα such
that x �α y, and x �α x′ for some x′ ∈ Xα such that u ∈ x′, and y′ �α y for
some y′ ∈ Xα such that u ∈ y′, there exists z ∈ Xα such that u ∈ z, and x �α z,
and z �α y. ]

Proof. For x′ = x it suffices to define z as x. For y′ = y it suffices to define z as y.
Consider the case in which x′ 6= x and y′ 6= y. By proposition 8.29 in this case x
and y are disjoint, x′ and x are disjoint, and y′ and y are disjoint. Consequently,
u does not belong to x, u does not belong to y, and, by proposition 8.22, there
exists z ∈ Xα that is disjoint both with x and with y, as required. ]

Crucial for a representation of behaviour-oriented partial categories are the
properties of A described in proposition 8.35 and in the following propositions.

8.36. Proposition. Every two different minimal regions x and y of LTα such
that x `α r and y `α r for a minimal region r of A are disjoint. ]

Proof. The correspondence between u
δ→ v such that u = (ξ1, ξ2), v = (η1, η2),

η1 = ξ1δ, ξ2 = δη2 and mpα(u)
δ→ mpα(v) is a functor Fα from LTα to A. Due
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to (A5) this functor preserves bicartesian squares. Consequently, mp−1α (r) is a
region in LTα.

Say that elements a, b ∈ mp−1α (r) are connected if in LTα there exists a bi-
cartesian square S with one side with the vertices a and b and with the opposite
side with the images of vertices under mpα not in r. The reflexive and transitive
closure of the respective connection relation in mp−1α (r) is an equivalence and
divides mp−1α (r) into a family D of disjoint components. Some of these compo-
nents can be non-separable in the sense that they contain elements a and b such
that a ∈ s iff b ∈ s for every region s ⊆ mp−1α (r). The reflexive and transitive
closure of this relation divides D into a family of equivalence classes with unions
being minimal regions of LTα. The minimal regions thus obtained form a unique
decomposition of mp−1α (r) into a disjoint union of minimal regions. As x and
y are different minimal regions contained in mp−1α (r), they must be different
elements of this unique decomposition. Consequently, they must be disjoint. ]

8.37. Proposition. For every α in A and for x, y ∈ Xα, the equality
lα(x) = lα(y) implies x ≤α y or y ≤α x. ]

Proof. It suffices to take into account propositions 8.30 and 8.36. ]

Towards a representation

The construction of the labelled poset Lα = (Xα,≤α, lα) for every element α of
a BOPC A is such that due to the properties (A1) - (A4) of A we obtain that
no segment of Lα is isomorphic to its subsegment. This suggests that elements
of BOPCs represent processes in a universe of objects.

To see this, consider the universe U(A) = (V (A),W (A), ob(A)) of objects,
where V (A) is the set of decompositions of the set of states of A into disjoint
unions of minimal regions of A, W (A) is the set of pairs w = (v, r) consisting
of a decomposition v of the set of states of A into a disjoint union of minimal
regions of A and of a minmal region r ∈ v, and (ob(A))(w) = v for every
w = (v, r) ∈ W (A). Due to proposition 8.23 the sets V (A) and W (A) are
nonempty. Given α ∈ A, consider the lposet L∗α = (X∗α,≤∗α, l∗α), where X∗α is the
set of triples (m, v, r) such that such thatm ∈ Rα andm `α r and (v, r) ∈W (A),
the relation ≤∗α is the partial order on X∗α such that x ≤∗α x′ for x = (m, r, v)
and x′ = (m′, r′, v′) whenever m �α m′ and r = r′ implies v = v′ and m = m′

implies r = r′, and l∗α(x) = (v, r) for x = (m, r, v) ∈ X∗α. a As the minimal
regions of every decomposition v ∈ V (A) are disjoint, due to proposition 8.30
we obtain easily that the set X∗α|v = {x ∈ X∗α : (ob(A))(l∗α(x)) = v} is a maximal
chain and has an element in every cross-secton of L∗α. As also every element of
X∗α belongs to a cross-section of L∗α, we obtain that L∗α is a concrete process in
U(A). Consequently, we obtain the following proposition.
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8.38. Proposition. Given a behaviour-oriented partial category A, the cor-
respondence α 7→ [L∗α] = [(X∗α,≤∗α, l∗α)] between elements of A and pom-
sets is a mapping from A to the partial category of processes in the universe
U(A) = (V (A),W (A), ob(A)). ]

8.39. Example. Consider the BOPC represented by the diagram in figure 8.6,
where αβ′ = βα′, α′γ′ = γα′′, δγ′′ = γ′δ′. In this system

the diagrams (v
α← u

β→ w, v
β′

→ u′
α′

← w), (u′
α′

← w
γ→ u, u′

γ′

→ z
α′′

← u),

(t
δ← u′

γ′

→ z, t
γ′′

→ u′′
δ′← z) are cartesian squares,

the sets uwu = {u,w, u}, vu′z = {v, u′, z}, tu′′ = {t, u′′},
wu′uz = {w, u′, u, z}, uv = {u, v}, wu′t = {w, u′, t}, uzu′′ = {u, z, u′′} are
minimal regions,
and we have the following decompositions of the set of states into disjoint unions
of minimal regions

I = {uwu, vu′z, tu′′}, J = {uv,wu′uz, tu′′}, K = {uv,wu′t, uzu′′}.
Consequently, the respective universe of objects is U′ = (W ′, V ′, ob′), where

V ′ = {I, J,K},
W ′ = {(I, uwu), (I, vu′z), (I, tu′′), (J, uv), (J,wu′uz), (J, tu′′),
(K,uv), (Kwu′t), (K,uzu′′)},
ob′(I, uwu) = ob′(I, vu′z) = ob′(I, tu′′) = I,
ob′(J, uv) = ob′(J,wu′uz) = ob′(J, tu′′) = J ,
ob′(K,uv) = ob′(K,wu′t) = ob′(K,uzu′′) = K.

Figure 8.6
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Consider the process π = αβ′δγ′′ of this system. The lattice LTπ of decomposi-
tions of this process is essentially identical with the system itself, and we have
the following set of minimal regions of this lattice
Rπ = {uwu, vu′z, tu′′, uv, wu′uz,wu′t, uzu′′},
where
uwu �π vu′z �π tu′′, uv �π wu′uz �π tu′′, uv �π wu′t �π uzu′′.
Consequently,
X∗π = {(uwu, I, uwu), (vu′z, I, vu′z)(tu′′, I, tu′′), (uv, J, uv),

(wu′uz, J, wu′uz), (tu′′, J, tu′′), (uv,K, uv),
(wu′t,K,wu′t), (uzu′′,K, uzu′′)}

with the partial order ≤π induced by �π, and we obtain the process in U′ shown
in figure 8.7. ]

Figure 8.7

[L∗π]

(I, uwu) (J, uv) (K,uv)

6 6

�
�
�
���

@
@
@

@@I 6

(I, vu′z) (J,wu′ut) (K,wu′t)

6

�
�
�
���

@
@

@
@@I 6 6

(I, tu′′) (J, tu′′) (K,uzu′′)

8.40. Example. Consider the BOPC represented by the diagram in figure 8.8,

where αβ′ = βα′ 6= ϕ. In this diagram (q
α← p

β→ r, q
β′

→ s
α′

← r) is a bicartesian
square, the sets pq = {p, q}, pr = {p, r}, qs = {q, s}, rs = {r, s} are minimal
regions, and X = {pq, rs}, Y = {pr, qs} are decompositions of the set of states
into disjoint unions of minimal regions. For the process ϕ the lattice LTϕ of
decompositions of this process consists of the least element a = (p, ϕ) and the
greatest element b = (ϕ, s). Consequently, L∗ϕ is a process as shown in figure 8.9
and it is identical with L∗∗ϕ . ]
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Figure 8.8
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Note that the correspondence α 7→ [L∗α] = [(X∗α,≤∗α, l∗α)] need not be a
homomorphism. To see this it suffices to consider a BOPC A that is the reduct
of an algebra of processes, and in this BOPC a process γ = αβ, where α =
dom(ϕ) + ψ and β = ϕ+ cod(ψ). It is easy to see that [L∗γ ] 6= [L∗α][L∗β ].

However, every process L∗α can be transformed into a process L∗∗α such that
the correspondence α 7→ [L∗∗α ] is a homomorphism. This can be done as follows.

The fact that all (m, r, v) ∈ X∗α with the same r and v form a chain implies
the following proposition.

8.41. Proposition. The following relation between elements of X∗α is an equiv-
alence relation: (m, r, v) 'α (m′, r′, v′) iff v′ = v, r′ = r, m `α r, m′ `α r, and
m′′ `α r for all m′′ such that m vα m′′ vα m′ or m′ vα m′′ vα m. ]

Due to this proposition it is straightforward to prove the following proposi-
tion.



100 Behaviour-oriented partial categories

8.42. Proposition. The triple L∗∗α = (X∗∗α ,≤∗∗α , l∗∗α ) with
X∗∗α = X∗α/ 'α,
x ≤∗∗α x′ whenever (m, r, v) ≤∗α (m′, r′, v′) for all (m, r, v) ∈ x
and (m′, r′, v′) ∈ x′,
and l∗∗α (x) = l∗α(m, r, v) for (m, r, v) ∈ x,
is a concrete process in U(A). ]

8.43. Example. Consider a system M consisting of machines M1 and M2

as in example 2.7. Its global processes form a subalgebra A1 of the algebra
pcatgPROC(U1) of global processes in the universe U1 described in example
2.2. This subalgebra consists of processes that can be obtained by combining the
processes a+ c, a+d, b+ c, b+d, αc = α+ c, αd = α+d, βc = β+ c, βd = β+d,
γ, δa = δ + a, δb = δ + b with the aid of composition and construction of limits.
It is a BOPC with bicartesian squares

(a+ c
αmc← a+ c

δa→ a+ d, a+ c
δa→ a+ d

αmd← a+ d),

(b+ c
βc← a+ c

δa→ a+ d, b+ c
δb→ b+ d

βd← a+ d),
minimal regions A = {a + c, a + d}, B = {b + c, b + d}, C = {a + c, b + c},
D = {a+ d, b+ d},
and decompositions P = {A,B}, Q = {C,D} of the set of states into disjoint
unions of minimal regions.
The respective universe of objects is U(A1) = (V (A1),W (A1), ob(A1)), where
W (A1) = {A,B,C,D}, V (A1) = {P,Q},
(ob(A1))(A) = (ob(A1))(B) = P , (ob(A1))(C) = (ob(A1))(D) = Q.
For every process π of A1 we have the corresponding lattice LTπ of decom-
positions of π, the corresponding set Rπ of minimal regions of this lattice, the
corresponding partial order �π on Rπ, and the corresponding process L∗π in U1.
For example, for π = αcβcδbγβc we have the lattice of decompositions of π shown
in figure 8.10, the set
Rπ = {x, y, z, p, q, r, s} of minimal regions, where

x = {(a+ c, π)} ` A,C,
y = {(αc, βcδbγβc), (αcδa, βdγβc)} ` A
z = {(αcβc, δbγβc), (αcβcδb, γβc)} ` B
p = {(αc, βcδbγβc), (αcβc, δbγβc)} ` C
q = {(αcδa, βdγβc), (αcβcδb, γβc)} ` D
r = {(αcβcδbγ, βc)} ` A,C
s = {(π, b+ c))} ` B,C

the process L∗π in U1 shown in figure 8.11, and the corresponding process L∗∗π
in U1 shown in figure 8.12. ]
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Figure 8.10
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Now we want to prove that the correspondence
α 7→ [L∗∗α ] = [(X∗∗α ,≤∗∗α , l∗∗α )] between elements of a BOPC A and processes
in the universe U(A) = (V (A),W (A), ob(A)) of objects enjoys the following
property.

8.44. Proposition. If γ = αβ with cod(α) = dom(β) = c then L∗∗γ is the
pushout object in the category LPOSETS of the injections of L∗∗c in L∗∗α and
in L∗∗β . ]

Proof. Let d ∈ LTγ be the cut (α, β) of γ. The correspondence iα : (α1, α2) 7→
(α1, α2β) is an isomorphism between the lattice LTα and the sublattice LTγ,α
of LTγ consisting of the cuts between (dom(γ), γ) and (α, β). Similarly, the
correspondence iβ : (β1, β2) 7→ (αβ1, β2) is an isomorphism between the lattice
LTβ and the sublattice LTγ,β of LTγ consisting of the cuts between (α, β) and
(γ, cod(γ)).

Let r be a region of LTγ and let rα and rβ be respectively the part of r in
LTγ,α and the part of r in LTγ,β . Every bicartesian square that is contained in
LTγ,α and has a side outside of rα must be disjoint with rα or must have the
entire opposite side in rα. Consequently, rα is a region of LTγ,α. Similarly, rβ is
a region of LTγ,β .

Due to (A6) every bicartesian square that is contained in LTγ and has a
side in rα and the opposite side disjoint with r can be decomposed into two
bicartesian squares of which one has a side in rα and the opposite side disjoint
with rα. Consequently, rα is a minimal region of LTγ,α whenever r is a minimal
region of LTγ , and rα ⊆ m for every minimal region of LTγ that contains m.
Similarly, every bicartesian square that is contained in LTγ and has a side in
rβ and the opposite side disjoint with r can be decomposed into two bicartesian
squares of which one has a side in rβ and the opposite side disjoint with rβ .
Consequently, rβ is a minimal region of LTγ,β whenever r is a minimal region of
LTγ , and rα ⊆ n for every minimal region of LTγ that contains n.

Thus every minimal region r of LTγ has a part rα in LTγ,α and a part rβ
in LTγ,β , these parts are minimal regions of LTγ,α and LTγ,β , respectively, and
they determine r uniquely. Moreover, if both rα and rβ are nonempty then, due
to the convexity of minimal regions of LTγ , the cut d = (α, β) belongs to r.

Exploiting these facts we can verify that (L∗∗α
kγ,α→ L∗∗γ

kγ,β← L∗∗β ) is a pushout

of (L∗∗α
jα,c← L∗∗c

jβ,c→ L∗∗β ) with
jα,c : [m, r, v] 7→ [m′, r, v] for m containing (c, c) and m′ containing (α, c)
jβ,c : [m, r, v] 7→ [m′, r, v] for m containing (c, c) and m′ containing (c, β)
kγ,α : [m, r, v] 7→ [m′, r, v] for m containing (α1, α2) and m′ containing (α1, α2β)
kγ,β : [m, r, v] 7→ [m′, r, v] for m containing (β1, β2) and m′ containing (αβ1, β2)
]
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Consequently, we obtain the following result.

8.45. Proposition. Given a behaviour-oriented partial category A, the corre-
spondence α 7→ [L∗∗α ] = [(X∗∗α ,≤∗∗α , l∗∗α )] between elements of A and processes in
the universe U(A) = (V (A),W (A), ob(A)) of objects is a homomorphism from
A to the partial category of processes in U(A). ]
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Discrete BOPCs

As we have observed in the previous chapter, discrete behaviour-oriented par-
tial categories are in fact arrows-only categories. If we reduce such categories to
their states and bounded atoms then we obtain transition systems. If we endow
the transition systems thus obtained with the existing in the original categories
information on independence of atomic bounded processes then we obtain struc-
tures close to introduced in [WN 95] transition systems with independence and
to other similar models as those in [Sh 85] and [Bedn 88].

Transition systems with independence

For the rest of the paper transition systems with independence are defined as
follows.

9.1. Definition. A transition system with independence is
Θ = (S,Tran, dom, cod , I), where S is a set of states, Tran is a set of transitions,
dom, cod : Tran → S are functions assigning to each transition τ a source,
dom(τ), and a target, cod(τ), and I is a binary independence relation in Tran
such that

(1) (s, α, s′)I(u, β, u′) implies s = u or s′ = u,
(2) (s, α, s1)I(s, β, s2) implies the existence of unique (s1, β

′, u) and
(s2, α

′, u) such that (s, α, s1)I(s1, β
′, u) and (s, β, s2)I(s2, α

′, u),
(3) (s, α, s1)I(s1, β

′, u) implies the existence of unique (s, β, s2) and
(s2, α

′, u) such that (s, α, s1)I(s, β, s2) and (s, β, s2)I(s2, α
′, u),

(4) if π = ((s, πi, si) : i ∈ {1, ..., n}) is a family of transitions such that
(s, πi, si)I(s, πj , sj) for all i, j ∈ {1, ..., n} such that i 6= j
then in T (Π) regarded as a graph there exists a unique n-cube Q(π) such
that (u, α, v)I(u, β, w) and (u, β, w)I(w, δ, t) and (u, α, v)I(v, γ, t) for each
2-face of this cube that consists of transitions (u, α, v), (u, β, w), (v, γ, t),
(w, δ, t). ]

Note that the properties (1) - (3) correspond to the basic axioms character-
izing transition systems with independence of [WN 95].

The following proposition describes how descrete categories of processes de-
fine transition systems with independence.

9.2. Proposition. Let Π be a discrete BOPC with the set SΠ of states
and the set AΠ of atomic processes. Let T (Π) = (S,Tran, dom, cod , I), where
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S = SΠ , Tran is the set of triples (s, α, s′) such that α ∈ AΠ , s = dom(α),
s′ = cod(α), dom and cod are the mappings from Tran to S defined by
dom(s, α, s′) = s and cod(s, α, s′) = s′, and I is the least binary relation in
Tran such that (s, α, s1)I(s, β, s2) whenever α and β are parallel independent
and (s, α, s1)I(s1, β

′, u) whenever α and β′ are sequential independent.
Then T (Π) is a transition system with independence. ]

The properties (1) - (3) formulated in definition 9.1 follow from the defini-
tion of independence of processes in behaviour-oriented partial categories as the
existence of a suitable bicartesian square. The property (4) follows from (A7).
Thus we may call T (Π) the transition system with independence corresponding
to the category of processes Π.

Generated behaviour-oriented partial categories

By defining Paths(Θ) as the set of paths of Θ, and by defining in the obvious
way the source and the target of each path p and the composition of paths p1
and p2 such that p2 follows p1, we obtain the category of paths of Θ, written as
PATHS (Θ). By defining ∼Θ as the least equivalence relation in Paths(Θ) such
that p1 ∼Θ p2 whenever p1 = rαβs and p2 = rβ′α′s with αIβ and the unique
α′ and β′ such that αIβ′ and β′Iα′, we obtain a congruence in the category
PATHS (Θ), and the respective quotient category, RUNS (Θ), called the category
of runs of Θ.

9.3. Theorem. For each transition system with independence, Θ, the category
of its runs, RUNS (Θ), is a discrete behaviour-oriented partial category. ]

Proof outline. A diagram (v
π1← u

π2→ w, v
π′
2→ u′

π′
1← w) in RUNS (Θ) is a bicartesian

square in iff it consists of independent transitions or by applying decompositions
as in (A6) it can be decomposed into bicartesian squares consisting of indepen-
dent transitions. As among the other required properties only (A5) and (A7) are
not obvious, it suffices to verify (A5) and (A7).

For (A5) this can be done as follows.
First, it is convenient to fix some terminology. Given two paths p1 and p2

such that p1 = rαβs and p2 = rβ′α′s with αIβ and the unique α′ and β′

such that αIβ′ and β′Iα′, we call the pair (p1, p2) a derivation step. Given a
sequence p1, ...pn of paths such that each pair (pi, pi+1) of contiguous paths in
this sequence is a derivation step, we call such a sequence a derivation of pn from
p1. Given two paths p1 and p2, by the distance between p1 and p2, written as
d(p1, p2) we mean the length of the shortest derivation of p2 from p1, if such a
derivation exists, or +∞ otherwise. Finally, given two representations ξ1ξ2 and
η1η2 of a run from RUNS (Θ), i.e., ξ1ξ2 = η1η2, by the distance between such
representations, written as d(ξ1, ξ2; η1, η2), we mean the least distance between
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paths p1 and p2 such that p1 = p11p12 for some p11 ∈ ξ1 and p12 ∈ ξ2, and
p2 = p21p22 for some p21 ∈ η1 and p22 ∈ η2.

In order to verify that the equality ξ1ξ2 = η1η2 implies the existence of σ1,
σ2, π1, π2, π′1, π′2 as in (A5) we proceed by induction on the distance between
the representations ξ1ξ2 and η1η2.

If the distance between the representations is 0 then the required property
is immediate.

Suppose that the property holds true for the distance not exceeding n and
consider ξ1, ξ2, η1, η2 such that d(ξ1, ξ2; η1, η2) = n+ 1.

In RUNS (Θ) there exist ζ1 and ζ2 such that d(ξ1, ξ2; ζ1, ζ2) = n and
d(ζ1, ζ2; η1, η2) = 1. Consequently, there exist unique τ1, τ2, and a unique bi-

cartesian square (v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w) such that ξ1 = τ1α1, ξ2 = α′2τ2,
ζ1 = τ1α2, ζ2 = α′1σ2.

Now, if one of the equalities η1 = ζ1, or η2 = ζ2, holds true then also the
other holds true, and we have the required property.

Otherwise, there exist γ1, γ2, and indecomposable β1, β2, β′1, β′2 such that
β1Iβ2, β1Iβ

′
2, β2Iβ

′
1, and ζ1 = γ1β1, η1 = γ1β2, ζ2 = β′2γ2, η2 = β′1γ2, as shown

in figure 9.1.

Figure 9.1: A representation of ξ1ξ2 = η1η2
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As d(τ1, α2; γ1, β1) ≤ n, d(α′1, τ2;β′2, γ2) ≤ n, and β1, β2, β′1, β′2 are inde-
composable, we obtain one of the diagrams in figure 9.2 with all their rectangles
being bicartesian squares and the outermost rectangle determining the respective
representation of ξ1ξ2 = η1η2, as required.

Figure 9.2: More detailed representations of ξ1ξ2 = η1η2
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A proof of (A7) can be carried out by decomposing the bicartesian squares

(vi
πi← u

πj→ vj , vi
π′
j→ u′ij

π′
i← vj) into atomic bicartesian squares which correspond

to pairs of independent transitions, by exploiting the properties (1) - (4) of
the independence relation of Θ and constructing from the atomic bicartesian
squares thus obtained the corresponding atomic bicartesian n-cubes, and by
combining these n-cubes along their matching (n−1)-faces and thus constructing
the required bicartesian n-cube for the original runs. ]

The relation between transition systems with independence and categories
of processes can be described regarding these structures as objects of categories
which can be defined as follows.
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9.4. Definition. A morphism from a transition system with independence
Θ = (S,Tran, dom, cod , I) to another such a system
Θ′ = (S′,Tran ′, dom ′, cod ′, I ′)
is a pair (f, g) of mappings f : S → S′ and g : Tran → Tran ′ such that
dom ′(g(α)) = f(dom(α)) and cod ′(g(α)) = f(cod(α)) and αIβ implies g(α)I ′g(β).
]

By TI we denote the category of transition systems with independence and
their morphisms.

9.5. Definition. A morphism from a discrete behaviour-oriented partial cate-
gory Π to a discrete behaviour-oriented partial category Π ′ is a functor from Π
to Π ′ that preserves bicartesian squares. ]

By P we denote the category of discrete behaviour-oriented partial categories
and their morphisms.

Due to theorem 9.3 we obtain the following result.

9.6. Theorem. Each transition system with independence Θ generates freely
the discrete behaviour-oriented partial category RUNS (Θ) in the sense that
each morphism from Θ to the transition system with independence T (Π) that
corresponds to a discrete behaviour-oriented partial category Π has a unique
extension to a morphism from RUNS (Θ) to Π. ]

It is clear that the correspondence Θ 7→ RUNS (Θ) defines a functor RUNS :
TI → P and the correspondence Π 7→ T (Π) defines a functor T : P → TI.
Consequently, 9.6 can be formulated as follows.

9.7. Theorem. The functor RUNS : TI→ P is the left adjoint of the functor
T : P→ TI. ]
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Recapitulation

The present paper has its origins in [Wink 82], where algebras of finite processes
of Condition/Event Petri nets with invariant sets of admitted markings have
been characterized and called behaviour algebras. The ideas of [Wink 82] have
been extended in a way described in [Wink 07a]. The novelty of this extension
consists in a new system of axioms such that a subsystem of this system does
not require finiteness of processes or the existence of indivisible processes and
thus allows one to model also continuous processes. The new system has been
formulated due to discovery of the relation between independence of processes
and existence of bicartesian squares in categories of bounded processes that has
been described in [Wink 03]. It has been obtained from the characterization of
algebras of bounded processes of finite Condition/Event Petri nets that has been
described in [Wink 06] by omitting the axioms on decomposability of processes
into atoms and on two only instances of each condition.

In [Wink 07b] we have presented a class of algebras of processes in universa
of objects that contains also algebras with unbounded, continuous, and partially
continuous processes. In [Wink 07a] and [Wink 07b] we have shown that such
algebras are models of the new system of axioms and thus that they are behaviour
algebras in the new sense. We have shown that there exists a correspondence
between elements of behaviour algebras and lposets, and that in the case of a
subclass of this class this correspondence results in a representation theorem.
Finally, we have shown a way of extending the obtained results on algebras of
processes with rich internal structures.

An early attempt of formulating an adequate system of axioms has been
described in [Wink 05]. Its main line was to introduce a model of processes
with context-dependent actions and rich internal structures and by defining and
studying algebras of such processes in order to find out their characteristic prop-
erties.

Now, due to the results obtained for the new system of axioms, it seems
that an adequate framework for modelling complex processes can be obtained
with the aid of behaviour-oriented algebras and their subalgebras. For instance,
processes with context-dependent components as in [MR 95] and [BBM 02] can
be represented as elements of the subalgebra of an algebra of processes in a
universe of objects that is generated by processes consisting of two concurrent
components: one representing the proper process and the other representing the
necessary context. Similarly, processes with rich internal structures as in [Wink
05] can be represented as elements of suitable subalgebras of behaviour-oriented
algebras that are consistently endowed with the respective structures as it is
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described in section 8. For example, graph processes in the sense of [CMR 96]
can be represented as proceses consistently provided with graph structures.

A problem that still remains open is how to come from the representation of
processes of behaviour algebras with finite sets definable objects to a represen-
tation of processes of behaviour algebras with infinite sets of definable objects.

Behaviour-oriented algebras are thought as a framework for defining be-
haviours of concurrent systems. Behaviours of concrete systems can be defined
as prefix-closed directed complete subsets of algebras of processes in suitable
universes of objects. Such subsets inherit from the algebras they come from
structures which reflect how processes compose, the prefix order, and possibly
specific features of the represented behaviours. They can be constructed with
the aid of operations similar to those in known algebras of behaviours in other
similar calculi.

Many of the possibilities of behaviour-oriented algebras offer also partial
algebras with one only operation of sequential composition, called
behaviour-oriented partial categories, or briefly BOPCs. We have shown that
some of such simplified algebras ca be represented as partial categories of global
processes in some universes of objects. This result is interesting because it means
that the proposed in the paper notion of a process is in a sense universal.

What we have presented in the paper about random behaviours suggests
that algebras of processes in universes of objects and their subalgebras and
reducts offer also an adequate framework for constructing models of concurrent
systems with random behaviours. This framework seems to be universal enough
to construct probabilistic models not only for discrete, but also for continuous
and hybrid concurrent systems with random behaviours.
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Appendix A: Posets and their cross-sections

Given a partial order ≤ on a set X, i.e. a binary relation which is reflexive,
anti-symmetric and transitive, we call P = (X,≤) a partially ordered set, or
briefly a poset, by the strict partial order corresponding to ≤ we mean <, where
x < y iff x ≤ y and x 6= y, by a chain we mean a subset Y ⊆ X such that x ≤ y
or y ≤ x for all x, y ∈ Y , and by an antichain we mean a subset Z ⊆ X such
that x < y does not hold for any x, y ∈ Z.

A.1. Definition. Given a poset P = (X,≤), by a strong cross-section of P we
mean a maximal antichain Z of P that has an element in every maximal chain of
P . By a weak cross-section, or briefly a cross-section, of P we mean a maximal
antichain Z of P such that, for every x, y ∈ X for which x ≤ y and x ≤ z′ and
z′′ ≤ y with some z′, z′′ ∈ Z, there exists z ∈ Z such that x ≤ z ≤ y. ]

A.2. Definition. We say that a partial order ≤ on X (and the poset P =
(X,≤)) is strongly K-dense (resp.: weakly K-dense) iff every maximal antichain
of P is a strong (resp.: a weak) cross-section of P (cf. [Petri 80] and [Plue 85],
where K-density is defined as the strong K-density in our sense). ]

A.3. Definition. For every cross-section Z of a poset P = (X,≤), we define
X−(Z) =≤ Z(= {x ∈ X : x ≤ z for some z ∈ Z})
and X+(Z) = Z ≤= ({x ∈ X : z ≤ x for some z ∈ Z}),
and we say that a cross-section Z ′ precedes a cross-section Z ′′ and write
Z ′ � Z ′′ iff X−(Z ′) ⊆ X−(Z ′′). ]

A.4. Proposition. The relation � is a partial order on the set of cross-sections
of P = (X,≤). For every two cross-sections Z ′ and Z ′′ of P there exist the
greatest lower bound Z ′ ∧ Z ′′ and the least upper bound Z ′ ∨ Z ′′ of Z ′ and Z ′′

with respect to �, where Z ′ ∧Z ′′ is the set of those z ∈ Z ′ ∪Z ′′ for which z ≤ z′
for some z′ ∈ Z ′ and z ≤ z′′ for some z′′ ∈ Z ′′, and Z ′ ∨ Z ′′ is the set of those
z ∈ Z ′ ∪ Z ′′ for which z′ ≤ z for some z′ ∈ Z ′ and z′′ ≤ z for some z′′ ∈ Z ′′.
Moreover, the set of cross-sections of P with the operations thus defined is a
distributive lattice. ]

Proof. The set Z ′ ∧ Z ′′ is an antichain since otherwise there would be x < y
for some x and y in this set. If x ∈ Z ′ then there would be y ∈ Z ′′ and there



114 Appendix A: Posets and their cross-sections

would exist z′ ∈ Z ′ such that y ≤ z′. However, this is impossible since Z ′ is an
antichain. Similarly for x ∈ Z ′′.

The set Z ′ ∧ Z ′′ is a maximal antichain since otherwise there would exist
x that would be incomparable with all the elements of this set. Consequently,
there would not exist z′ ∈ Z ′ and z′′ ∈ Z ′′ such that z′ ≤ x ≤ z′′, or z′′ ≤ x ≤ z′,
or z′, z′′ ≤ x, and thus there would be x ≤ z′ and x ≤ z′′ for some z′ ∈ Z ′ and
z′′ ∈ Z ′′ that are not in Z ′ ∧ Z ′′. Consequently, there would exist z, say in Z ′′,
such that x ≤ z ≤ z′. Moreover, z ∈ Z ′ ∧ Z ′′ since otherwise there would be
t ∈ Z ′ such that t ≤ z ≤ z′, what is impossible.

In order to see that Z ′ ∧ Z ′′ is a cross-section we consider x ≤ y such that
x ≤ t and u ≤ y for some t ∈ Z ′∧Z ′′ and u ∈ Z ′∧Z ′′, where t ∈ Z ′ and u ∈ Z ′′.
Without a loss of generality we can assume that y ≤ y′ for some y′ ∈ Z ′ since
otherwise we could replace y by an element of Z ′. Consequently, there exists
z ∈ Z ′′ such that x ≤ z ≤ y. On the other hand, z ∈ Z ′ ∧ Z ′′ since otherwise
there would be z′ ∈ Z ′ such that z′ ≤ z ≤ y, what is impossible. In a similar
manner we can find z ∈ Z ′ ∧ Z ′′ for the other cases of t and u.

In order to see that Z ′∧Z ′′ is the greatest lower bound of Z ′ and Z ′′ consider
a cross-section Y which precedes Z ′ and Z ′′ and observe that
y ≤ z′ ∈ Z ′ and y ≤ z′′ ∈ Z ′′ with z′ and z′′ not in Z ′ ∧ Z ′′ and y ∈ Y implies
the existence of t ∈ Z ′ such that y ≤ t ≤ z′ or u ∈ Z ′′ such that y ≤ u ≤ z′′.

Similarly, Z ′ ∨Z ′′ is a cross-section and the least upper bound of Z ′ and Z ′′.
The last part of the proposition is a consequence of the easily verifiable

inequality Z ∧ (Z ′ ∨ Z ′′) � (Z ∧ Z ′) ∨ (Z ∧ Z ′′) ]

A.5. Definition. For cross-sections Z ′ and Z ′′ of a poset P = (X,≤) such that
Z ′ � Z ′′ we define a segment of P from Z ′ to Z ′′ as the restriction of P to the
set [Z ′, Z ′′] = X+(Z ′) ∩ X−(Z ′′), written as P |[Z ′, Z ′′]. A segment P |[Y ′, Y ′′]
such that Z ′ � Y ′ � Y ′′ � Z ′′ is called a subsegment of P |[Z ′, Z ′′]. If Z ′ 6= Y ′

or Y ′′ 6= Z ′′ (resp.: if Z ′ = Y ′, or if Y ′′ = Z ′′) then we call it a proper (resp.: an
initial, or a final) subsegment of P |[Z ′, Z ′′]. ]

The following proposition follows easily from definitions.

A.6. Proposition. For every strong or weak cross-section Z of a poset P =
(X,≤) the reflexive and transitive closure of the union of the restrictions of the
partial order ≤ to X−(Z) and to X+(Z) is exactly the partial order ≤. ]

A.7. Proposition. A poset P = (X,≤) is said to be locally complete if every
segment P |[Z ′, Z ′′] of P is a complete lattice. ]

A.8. Definition. Given a partial order ≤ on a set X and a function
l : X → W that assigns to every x ∈ X a label l(x) from a set W , we call
L = (X,≤, l) a labelled partially ordered set, or briefly an lposet, by a chain
(resp.: an antichain, a cross-section) of L we mean a chain (resp.: an antichain,
a cross-section) of P = (X,≤), by a segment of L we mean each restriction of L
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to a segment of P , and we say that L is K-dense (resp.: weakly K-dense, locally
complete) iff ≤ is K-dense (respectively: weakly K-dense, locally complete). ]

By LPOSETS we denote the category of lposets and their morphisms, where
a morphism from an lposet L = (X,≤, l) to an lposet L′ = (X ′,≤′, l′) is defined
as a mapping b : X → X ′ such that, for all x and y, x ≤ y iff b(x) ≤′ b(y),
and, for all x, l(x) = l′(b(x)). In the category LPOSETS a morphism from
L = (X,≤, l) to L′ = (X ′,≤′, l′) is an isomorphism iff it is bijective, and it is
an automorphism iff it is bijective and L = L′. If there exists an isomorphism
from an lposet L to an lposet L′ then we say that L and L′are isomorphic. A
partially ordered multiset, or briefly a pomset, is defined as an isomorphism class
ξ of lposets. Each lposet that belongs to such a class ξ is called an instance of
ξ. The pomset corresponding to an lposet L is written as [L].





Appendix B: Directed complete posets

Let (X,v) be a partially ordered set (poset). A subset Y ⊆ X is said to be down-
ward closed (resp. : upward closed) if Y =v Y (= {x ∈ X : x v y for some y ∈
Y }) (resp. : Y = Y v (= {x ∈ X : y v x for some y ∈ Y })). If the least upper
bound of such a subset Y exists then it is written as

⊔
Y . A nonempty subset

Y ⊆ X is said to be em bounded complete if every bounded subset of Y has a
least upper bound. A nonempty subset Y ⊆ X is said to be directed if for all
x, y ∈ Y there exists z ∈ Y such that x, y v z. The Scott topology of (X,v)
is the topology on X in which a subset U ⊆ X is open iff it is upward closed
and disjoint with every directed Y ⊆ X which has the least upper bound tY .
A poset is said to be coherent if every of its consistent subsets has a least upper
bound. A poset is said to be a directed complete partial order (DCPO) if every
of its directed subsets has a least upper bound.

Let (X,v) be a DCPO. An element x ∈ X is said to approximate an element
y ∈ X, or that x is way below y, if in every directed set Z such that y v tZ
there exists z such that x v z. An element x ∈ X is said to be a compact if
it approximates itself. A subset B ⊆ X is called a basis of (X,v) if for every
x ∈ X the set of those elements of B which approximate x is directed and has
the least upper bound equal to x. The DCPO (X,v) is said to be continuous if
it has a basis, and ω-continuous if it has a countable basis. The DCPO (X,v) is
said to be an algebraic domain if every y ∈ X is the directed least upper bound
of all compact elements x such that x v y.





Appendix C: Probability spaces

Given a set X, by a σ-algebra of subsets of X we mean a set F of subsets of
X such that X ∈ F and F is closed under complements and countable unions,
and we call the pair (X,F) a measurable space. If X is given with a topology
τ then the least σ-algebra that contains τ is called the Borel σ-algebra of the
topological space (X, τ).

Given measurable spaces (X,F) and (X ′,F ′), a mapping
f : X → X ′ is said to be F-measurable, or a morphism from (X,F) t (X ′,F ′),
iff f−1(F ′) ∈ F for every F ′ ∈ F ′.

By MES we denote the category of measurable spaces and their morphisms.
By a probability space we mean a triple (Ω,F , µ), where Ω is a set (the set

of possible realizations of a random phenomenon), F is a σ-algebra of subsets
of Ω, and µ is a real valued function on F , called a probability measure, such
that 0 ≤ µ(F ) ≤ 1 for all F ∈ F , µ(∅) = 0, µ(Ω) = 1, and µ(F0 ∪ F1 ∪ ...) =
µ(F0) + µ(F1) + ... for mutually disjoint F0, F1,... from F .

Given two probability spaces Ω = (Ω,F , µ) and Ω′ = (Ω′,F ′, µ′) by a mor-
phism from Ω to Ω′ we mean a triple f : Ω → Ω′, where f is a mapping from
Ω to Ω′ such that f−1(F ′) ∈ F and µ(f−1(F ′)) = µ′(F ′) for every F ′ ∈ F ′.

By PSPACES we denote the category of probability spaces and their mor-
phisms.

Given a probability space Ω = (Ω,F , µ) and a σ-algebra E ⊆ F , there exists a
function f : F×Ω → [0, 1] such that, for every F ∈ F , the function ω 7→ f(F |ω)
( = f(F, ω)), is E-measurable and for all E ∈ E it satisfies the equation∫

E
f(F |ω)dµ(ω) = µ(F ∩ E).

Function f is called a conditional probability distribution in (Ω,F) with re-
spect to E . If f is such that F 7→ f(F |ω) is a probability measure on F for every
ω ∈ Ω then it is called a strict conditional probability distribution in (Ω,F)
with respect to E . Every function ω 7→ f(F |ω) is called a variant of conditional
probability of F with respect to E .
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A partial category can be defined in exactly the same way as an arrows-only
category in [McL 71], except that sources and targets may be not defined for
some arrows that are not identities and then the respective compositions are
not defined. Limits and colimits in partial categories can be defined as in usual
categories.

Let A = (A, ; ) be a partial algebra with a binary partial operation
(α, β) 7→ α;β, where α;β is written also as αβ. An element ι ∈ A is called an
identity if ιφ = φ whenever ιφ is defined and ψι = ψ whenever ψι is defined. We
call elements of A arrows or morphisms and say that A is a partial category if
the following conditions are satisfied:

(1) For every α, β, and γ in A, if αβ and βγ are defined then α(βγ) and (αβ)γ
are defined and α(βγ) = (αβ)γ; if α(βγ) is defined then αβ is defined; if
(αβ)γ is defined then βγ is defined.

(2) For every identity ι ∈ A, ιι is defined.

The conditions (1) and (2) imply the following properties.

(3) For every α ∈ A, there exists at most one identity ι ∈ A, called the source
or the domain of α and written as dom(α), such that ια is defined, and at
most one identity κ ∈ A, called the target or the codomain of α and written
as cod(α), such that ακ is defined.

(4) For every α and β in A, αβ is defined if and only if cod(α) = dom(β). If αβ
is defined then dom(αβ) = dom(α) and cod(αβ) = cod(β).

For (3) suppose that ι1 and ι2 are identities such that ι1α and ι2α are defined.
Then ι2α = α and ι1(ι2α) = ι1α. Hence, by (1), ι1ι2 is defined and ι1 = ι2.
Similarly for identities ι1 and ι2 such that αι1 and αι2 are defined.

For (4) suppose that cod(α) = dom(β) = ι. Then αι and ιβ are defined
and, by (1), (αι)β = αβ is defined. Conversely, if αβ is defined then taking
ι = cod(α) we obtain that αι is defined and, consequently, αβ = (αι)β = α(ιβ);
the existence of ιβ implies dom(β) = ι. In a similar way we obtain dom(αβ) =
dom(α) and cod(αβ) = cod(β).

As usual, a morphism α with the source dom(α) = s and the target cod(α)

is represented in the form s
α→ t.

Note that α 7→ dom(α) and α 7→ cod(α) are definable partial operations as-
signing to a morphism α respectively the source and the target of this morphism,
if such a source or a target exists.
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Dealing with arrows-only categories rather than with categories in the usual
sense is sometimes more convenient since it allows us to avoid two sorted struc-
tures and more complicated denotations.

Given a morphism α, a morphism β such that α = γβε is called a segment
of α.

Given a partial category A = (A, ; ), let A′ be the set of quadruples (α, σ, τ, β)
where σατ is defined and σατ = β, or dom(α) and σ are not defined and ατ
is defined and ατ = β, or cod(α) and τ are not defined and σα is defined and
σα = β, or dom(α) and cod(α) are not defined and α = β.
The set A′ thus defined and the partial operation

((α, σ, τ, β), (β, σ′, τ ′, γ)) 7→ (α, σ′σ, ττ ′, γ)
form a category occ(A), called the category of occurrences of morphisms in mor-
phisms in A.

Given a partial category A = (A, ; ) and its morphism α, let A′α be the set
of triples (ξ1, δ, ξ2) such that ξ1δξ2 = α.
The set A′α thus defined and the partial operation

((η1, δ, εη2), (η1δ, ε, η2)) 7→ (η1, δε, η2)
form a category decα, called the category of decompositions of α. In this category
each triple (ξ1, δ, ξ2) in which δ is an identity, and thus δ = cod(ξ1) = dom(ξ2),
is essentially a decomposition of α into a pair (ξ1, ξ2) such that ξ1ξ2 = α and it
can be identified with this decomposition.

Given partial categories A = (A, ; ) and A′ = (A′, ;′ ), a mapping
f : A → A′ such that f(α);′ f(β) is defined and f(α);′ f(β) = f(αβ) for every
α and β such that αβ is defined, and f(ι) is an identity for every identity ι,
is called a morphism or a functor from A to A′. Note that such a morphism
becomes a functor in the usual sense if A and A′ are categories.

Diagrams, limits and colimits in partial categories can be defined as in usual
categories.

A direct system is a diagram (ai
αij→ aj : i ≤ j, i, j ∈ I), where (I,≤) is a

directed poset, αii is identity for every i ∈ I, and αijαjk = αik for all i ≤ j ≤ k.

The inductive limit of such a system is its colimit, i.e. a family (ai
αi→ a : i, j ∈ I)

such that αi = αijαj for all i ∈ I and for every family (ai
βi→ b : i, j ∈ I) such

that βi = αijβj for all i ∈ I there exists a unique a
β→ b such that βi = αiβ for

all i ∈ I.
A projective system is a diagram (ai

αij← aj : i ≤ j, i, j ∈ I), where (I,≤) is a
directed poset, αii is identity for every i ∈ I, and αijαjk = αik for all i ≤ j ≤ k.

The projective limit of such a system is its limit, i.e. a family (ai
αi← a : i, j ∈ I)

such that αi = αjαij for all i ∈ I and for every family (ai
βi← b : i, j ∈ I) such

that βi = βjαij for all i ∈ I there exists a unique a
β← b such that βi = βαi for

all i ∈ I.

A bicartesian square is a diagram (v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w) such that

v
α′

2→ u′
α′

1← w is a pushout of v
α1← u

α2→ w and v
α1← u

α2→ w is a pullback of

v
α′

2→ u′
α′

1← w, i.e. such that for every v
β1→ u′′

β2← w such that α1β1 = α2β2
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there exists a unique u′
β→ u′′ such that β1 = α′2β and β2 = α′1β, and for every

v
γ1← t

γ2→ w such that γ1α
′
2 = γ2α

′
1 there exists a unique u

γ← t such that
γ1 = γα1 and γ2 = γα2.

The concept of a bicartesian square can be generalized to the concept of a
bicartesian n-cube. This can be done as follows.

Given a partial graph G, by a n-cube in G we mean a subgraph G′ of G whose
nodes correspond to sequences (a1, ..., an) of binary coordinates ai = 0 or 1, and
whose arrows lead from one node to another whenever one of the coordinates
of the latter is obtained from the corresponding coordinate of the former by
replacing 0 by 1. The arrow with all coordinates 0 and the arrows leading from
this node to other nodes are termed initial. The node with all coordinates 1 and
the arrows leading to this node from other nodes are termed final. Subgraphs of
G′ whose all nodes have some of the coordinates identical are m-cubes for the
respective m ≤ n, called m-faces of G′.

As partial categories are also partial graphs, all these notions apply to partial
categories as well. In particular, one can define a bicartesian n-cube in a partial
category C as an n-cube C ′ in A that commutes and is such that, for each
face C ′′ of C ′, the family of initial arrows of C ′′ extends to a unique limiting
cone for the remaining part of C ′′, and the family of final arrows of C ′′ extends
to a unique colimiting cone for the remaining part of C ′′. For example, each
bicartesian square is a bicartesian 2-cube.
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By structures we mean slightly modified versions of structures in the sense of
Bourbaki’s Elements (cf. [Bou 57] and [BuDe 68]). We define them as follows.

Let Ens and BijEns denote respectively the category of sets and mappings
and the category of sets and bijective mappings. Let P : Ens → Ens be the
powerset functor, i.e. the fuctor such that P(X) is the set of subsets of X and
(P(f))(Z) = f(Z) for every mapping f : X → X ′ and every Z ⊆ X. Let
× : Ens×Ens→ Ens be the bifunctor of cartesian product, i.e. the functor such
that ×(X,Y ) is the cartesian product X × Y of X and Y and (×(f, g))(x, y) =
(f(x), g(y)) for every mappings f : X → X ′, g : Y → Y ′ and every
(x, y) ∈ X × Y . For every set A, let A denotes the constant functor from Ens
to Ens, i.e., the functor that assigns the set A to every set X and the identity
of A to every mapping f : X → X ′.

E.1. Definition. By a structure form we mean a functor
F : Ens→ Ens. ]

E.2. Definition. Given a structure form F : Ens → Ens, by a structure of
this form on a set X we mean an element s of the set F (X). ]

For example, a binary relation ρ on a set X is a structure on X of the form
brel : X 7→ P(X × X), a graph with a set V of vertices (nodes), a set E of
edges (arrows) such that E ∩ V = ∅, a source function s : E → V , and a target
function t : E → V , is a structure G = (V,E, s, t) on the set X = V ∪ E of the
form graphs : X 7→ P(X)× P(X)× P(X ×X)× P(X ×X), a topology τ on a
set X is a structure of the form top : X 7→ P(P(x)) on X, etc.

In [Bou 57] only structures of such forms have been considered that can be
built from the identity functor and constant functors using the powerset functor
P : Ens→ Ens and the bifunctor × : Ens× Ens→ Ens of cartesian product.
However, there is no real need of such a restriction.

E.3. Definition. By a structure type we mean a pair T = (B,mor) that consists
of a functor B : BijEns→ BijEns (a specification of structure species), and of
a family mor of sets mor(X, s,X ′, s′) of mappings f : X → X ′ called morphisms
(a specification of morphisms), where

(1) s ∈ B(X) and s′ ∈ B(X ′),
(2) the superposition fg : X → X ′′ of f ∈ mor(X, s,X ′, s′)
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and g ∈ mor(X ′, s′, X ′′, s′′) belongs to mor(X, s,X ′′, s′′),
(3) if f : X → X ′ is a bijection such that s′ = B(f)(s) then

f ∈ mor(X, s,X ′, s′) and f−1 ∈ mor(X ′, s′, X, s).

We say that such a structure type is a structure type of structures of a form
F : Ens→ Ens if B(f) = F (f) for every bijection f : X → X ′

and B(X) ⊆ F (X) for every set X. ]

For example, the type of binary relations can be defined as the pair BREL =
(BBREL,morBREL), where BBREL : BijEns → BijEns with BBREL(X) being
the set of binary relations on X, and where morBREL specifies morphisms in
morBREL(X, s,X ′, s′) as mappings f : X → X ′ such that (x, y) ∈ s implies
(f(x), f(y)) ∈ s′.

The type of acyclic binary relations can be defined as the pair ABREL =
(BABREL,morABREL), where BABREL : BijEns→ BijEns with
BABREL(X) being the set of acyclic binary relations on X, and where morABREL

specifies morphisms in morABREL(X, s,X ′, s′) as mappings f : X → X ′ such
that (x, y) ∈ s implies (f(x), f(y)) ∈ s′.

The type of partial orders can be defined as the pair PO = (BPO ,morPO),
where BPO : BijEns→ BijEns with BPO(X) being the set of partial orders on
X, and where morPO specifies morphisms as order preserving mappings.

The type of graphs can be defined as the pair
GRAPHS = (BGRAPHS ,morGRAPHS ), where
BGRAPHS : BijEns → BijEns with BGRAPHS (X) being the set of quadruples
G = (V,E, s, t) of the form graphs : X 7→ P(X)×P(X)×P(X×X)×P(X×X)
such that V and E are disjoint subsets of X, X = V ∪ E, s : E → V ,
t : E → V , and where morGRAPHS specifies morphisms
f : G = (V,E, s, t) → G′ = (V ′, E′, s′, t′) as mappings f : X = V ∪ E → X ′ =
V ′ ∪E′ such that f(V ) ⊆ V ′, f(E) ⊆ E′, f(s(x)) = s′(f(x), f(t(x)) = t′(f(x)).

The type of topologies can be defined as the pair
TOP = (BTOP ,morTOP ), where BTOP : BijEns → BijEns with BTOP (X)
being the set of topologies on X, and where morTOP specifies morphisms as
continuous mappings.

The type of algebras of a signature Σ can be defined as the pair ALG(Σ) =
(BALG(Σ),morALG(Σ)), where
BALG(Σ) : BijEns → BijEns with BALG(Σ)(X) being the set of systems
of operations (possibly partial) on X, each operation corresponding to an
element of the signature Σ, and where morALG(Σ) specifies morphisms in
morALG(Σ)(X, s,X

′, s′) as homomorphisms from (X, s) to (X ′, s′), that is map-
pings f : X → X ′ such that, for every operation ω from s and for the corre-
sponding operation ω′ from s′, the result ω′(f(x), f(y), ...) is defined and equal
f(ω(x, y, ...)) whenever ω(x, y, ...) is defined. A homomorphisms f from (X, s) to
(X ′, s′) is said to be strong if also ω(x, y, ...) is defined whenever ω′(f(x), f(y), ...)
is defined. Each (X, s) such that s ∈ BALG(Σ)(X) is called a partial algebra of
type ALG(Σ), and each partial algebra (X ′, s′) of this type such that X ′ ⊆ X
and this inclusion is a homomorphism from (X ′, s′) to (X, s) is called a subalgebra
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of (X, s). By a congruence (resp.: a strong congruence) in a partial algebra (X, s)
we mean an equivalence in X such that the natural mapping that assigns to ev-
ery element the equivalence class containing this element is a homomorphism
(resp. a strong homomorphism).

For Σ = {s, t} and BALG(Σ)(X) defined as the set of pairs of operations
s : X → X and t : X → X such that s(s(x)) = t(s(x)) = s(x) and s(t(x)) =
t(t(x)) for all x ∈ X, ALG(Σ) is the type of structures which can be called
algebraic graphs. Consequently, each (X, s, t) such that (s, t) ∈ BALG(Σ) is an
algebraic graph (partial if s and t are partial functions) with all elements x ∈ X
playing the role of edges and those elements x ∈ X for which s(x) = t(x) = x
playing also the role of vertices.

For Σ = {+} and BALG(Σ) defined as the set of operations + : X ×X → X
such that x+ (y+ z) = (x+ y) + z whenever either side is defined, x+ y = y+x
whenever either side is defined, and such that there exists a neutral element 0
such that x+ 0 is defined and x+ 0 = x for all x ∈ X, is the type of structures
which can be called partial commutative monoids. Consequently, each (X,+)
such that + ∈ BALG(Σ) is a partial commutative monoid.

In a similar way one can define the type RELS (Σ) of relational structures of
a signature Σ.

In general, structure types specify structures on sets and their morphisms.

E.4. Definition. Given a structure type T = (B,mor), by a structure of this
type on a set X we mean an element s of the set B(X), and by a morphism from
a set X with a structure s ∈ B(X) to a set X ′ with a structure s′ ∈ B(X ′) we
mean a mapping f : X → X ′ such that f ∈ mor(X, s,X ′, s′). ]

By STRUCT(T ) we denote the category of sets provided with structures of
type T and the respective morphisms.





Appendix F: Transition systems and Petri nets

Transition systems are models of systems which operate in discrete steps.
A transition system is a structure T = (S,L,Tran) where S is a set of states,

L is a set of labels, and Tran ⊆ S×L×S is the transition relation. Equivalently,
it is a graph with nodes representing states of the system represented by T , and
labelled arcs represnting transitions from a state to a state due to executing
actions represented by labels.

Usually, transition systems are considered together with an initial state i ∈ S.
Petri nets are models of concurrent systems, that is systems whose parts may

operate independently.
A Petri net (or briefly a net) is a triple N = (S, T, F ) that consists of two

disjoint sets S and T (a set S of S-elements and a set T of T -elements) and of a
binary relation F ⊆ S×T ∪T ×S (a flow relation). Equivalently, it is a directed
bipartite digraph with two types of nodes (S-elements represented as circles and
T -elements represented as boxes) and with arcs running from S-elements to T -
elements or from T -elements to S-elements (represented by elements of the flow
relation F ). Depending on interpretation, it is called a Place/Transition net or
a Condition/Event net.

In a Place/Transition net N = (S, T, F ) each S-element s ∈ S represents
a place which may contain a number of marks, called tokens. Any distribution
M : S → {0, 1, 2, ...} of tokens over places represents a state of the system
represented by N , called a marking. Each T -element t ∈ T represents a transition
which may fire at a marking M if M(s) > 0 for every s ∈ S such that sF t. When
t fires at M then a new marking M ′ is obtained where M ′(s) = M(s) − 1 if
s ∈ pre(t)−post(t), M ′(s) = M(s)+1 if s ∈ post(t)−pre(t), and M ′(s) = M(s)
otherwise, for the sets pre(t) = {s ∈ S : sF t} and post(t) = {s ∈ S : tFs}.

Usually, Place/Transition nets are considered together with an initial mark-
ing and then they are called net systems.

In a Condition/Event net, written as N = (B,E, F ) instead of N = (S, T, F )
and called an elementary net if B and E are finite, each b ∈ B represents a
condition which may hold in the system represented by N , each subset c ⊆ B,
called a case, represents the set of those conditions which hold in a state of
this system, and each element e ∈ E represents an event which may occur in
c if pre(e) ⊆ c and post(e) ∩ c = ∅ for the set pre(e) = {b ∈ B : bFe} and
the set post(e) = {b ∈ B : eFb}. Each element of B can also be regarded as a
place which carry a token when the corresponding condition holds and is empty
otherwise, and a case can be regarded as the marking containig one token in
every place of this case and no token in every other place.
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Also Condition/Event nets and elementary nets are considered together with
an initial marking and then they are called respectively Condition/Event systems
or elementary net systems.

The behaviour of a net system can be represented by an acyclic net N =
(B,E, F ) in which every e ∈ E represents a unique occurrence of a T -element
of the net system, and every b ∈ B represnts the presence of a token in a place
represented by an S-element of net system as the result of a unique occurrence of
a T -element. Such a net, whose elements can be labelled with the corresponding
elements of the net system, is called an occurrence net (see [RT 86] for formal
definitions). When reduced to the occurrences of T -elements and provided with
the relation that relates every two different occurrences of T -elements with a
common predecessor representing the presence of a token in a place becomes
whai is called an event structure.
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