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Preface

The monograph discusses mathematical foundations and recent theoretical de-
velopments in analysis of time series that is random temporal phenomena. Prac-
tical applications of the discussed methodology are mostly left out and intended
for the second part of this book.

My motivations to write this monograph were twofold. I believe that a thorough
knowledge of probabilistic and statistical modelling tools of time series analysis
are necessary for understanding of its major current developments and thus also
for an active research in this field. Secondly, theoretical aspects of time series
analysis are relatively advanced technically and this frequently makes potential
young researchers shy away from its topics. I tried to make this initiation pro-
cess a little bit easier while avoiding an obvious trap of a short-cut, i.e. getting
completely lost.

I attempted to make this book self-contained and assume only the knowledge of
probability and statistics on intermediate level.

The monograph can be broadly divided into two parts: the one devoted to mod-
elling and prediction of time series the second one to estimation and inference
for time series; the division is clearly seen from the list of contents. I discuss sev-
eral subjects which are intensively researched nowadays such as modelling and
inference for long-range dependent data and novel methods of dependence quan-
tification. There are however, many important fields of active research which
are left undiscussed such as e.g. state-space modelling, multivariate time series
(cf. e.g. Liitkepohl (2007)), various aspects of nonstationarity (cf. e.g. Hurd and
Miamee (2007)) and nonlinear and nonparametric time series modelling (Fan
and Yao (2003)).

I have drawn on many sources writing this monograph. The most important
ones are Brockwell and Davis (1991), Pourahmadi (2001), Shumway and Stoffer
(2006) and Ibragimow and Linnik (1971). Other books which can be consulted
include e.g. Hamilton (1994) (especially for econometric applications) and Cryer
and Chan (2008). Lindsay (2006) shows a different perspective on time series
analysis based on point processes. Lahiri (2003) discusses resampling methods
for dependent data and Taniguchi and Kakizawa (2000) advanced asymptotics
of time series. McQuarrie and Tsai (1998) focuses on model selection and Makri-
dakis et al. (1998) on forecasting. Applications of the time series analysis and
specific models useful in financial engineering are discussed in Taylor (2005),
Tsay (2010) and Ruppert (2011).

It is also necessary to mention here an excellent introductory book Chatfield
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(2003) and a never aging masterpiece Hannan (1967).

Chosen parts of sections 1 and 3-9 may serve as a basis of MSc or PhD one-
semester course on time series analysis.

Piotr Pokarowski and Hubert Szymanowski were among the first readers of the
original version and they contributed much to its improvement. I thank them
both.



1

Introduction to time series

In this section we define time series concept, discuss linear subspaces related to
it and its covariance structure. Weakly and strictly stationary time series are
introduced together with several examples such as linear processes which will
play important role further on.

1.1 Time series: basics

In the book we will discuss analysis and modelling of measurements of some
recurring phenomenon taken at consecutive time points. These time points can
be minutes, days, months, quarters, etc. Any set of measurements (x;) indexed
by time will be modeled by a sequence of random variables (X;):er, where T is a
countable subset of integers Z signifying consecutive time points. Such stochastic
process (Xi)er is called time series. For the most part of the book we consider
the situation when the observations are quantitative and we assume that X; € R.
However, we will also briefly address the case when outcomes are qualitative,
typical example being when they correspond to the consecutive words, or letters,
in a book or a piece of human utterance. Usually, the index set T" will be a set
of natural numbers N = {1,2,...} or integers Z ={...,—-2,—1,0,1,2,...}. The
second type of indexing is frequently adopted in modelling and corresponds to
(sometimes implicit) assumption that the observations are recorded from infinite
past on. Note that taking T = N or T = Z is adequate in situations when
time points are equidistant. This may be sometimes problematic as e.g. when
values of a certain financial index are recorded on consecutive working days.
Then imposing stationarity structure on the underlying model, what we will
frequently do here, will obviously ignore weekend effect.

Additional assumption which will (almost always) be adapted is that X; are
random variables defined on a probability space ({2, F, P) such that they are
square integrable i.e. X; € L£2(2,F,P),t € T. This will enable us to treat
elements of time series as elements of Hilbert space £2(£2, F, P).

Below we give an example of time series and its representation using statistical
package R.

library (MASS)

USpop <- ts(data=scan("USPOP.DATA"), start=1790, end=1990,
frequency=0.1)

# option frequency- no. of obs per time unit, in this case unit
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#=1 year,frequency=0.1 means 1 observation every 10 years
ts.plot (USpop, gpars=list(xlab="Year", ylab="Population",
type="o"))

Population
1.5e+08 2.0e+08 2.5e+08
l

1.0e+08

5.0e+07
|

0.0e+00
|

1800 1850 1900 1950

Year

1.2 Linear subspaces related to (X;)

Random variable random variable X; of time series (X;)ier will be considered,
unless it is explicitly stated otherwise, as an element of £2(§2,F, P), that is
the space of square integrable real random variables on ({2, F, P) with a scalar
product

<X,)Y >=EXY = /X(w)Y(w)dP(w).

In general, for complex random variables, we define < X, Y >= EXY =
J X (w)Y (w)dP(w), where Y stands for a complex conjugate of Y. When X €
L2(02,F, P), we let

X[ =< X, X >.

Note, however, that sometimes notation for (X;):er will be shortened to X. We
will interchangingly use EX? and ||X||? to denote squared norm of a random
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variable X € £2. Consistently with the geometry of £? we will use the notion
X 1Y when < XY >=0.
Denote by sp(X¢)ier a linear span of random variables {X;,t € T'}. We define
two basic linear subspaces of £2(£2,F, P) related to time series (X;);er. The
first relates to the entire time series and the second to its history up to time ¢
(moment ¢ being included).

H(X) =3p(X;,t € T)(closure in £?)
:{alXt1+a2Xt2+...+anth, tl,...tnGT, al,...,aneR,ngN}

and
H, = Hy(X) = 55(X,,5 < 1), (1.1)

Obviously, we have

Hy(X) € Ha(X) € -+ C H(X).

Moreover, for T' = Z, we define remote past subspace H_., as

H o =H o(X) =) Hi(X), (1.2)
teZ

Note that H_., is a closed subspace and as 0 (random variable equal 0 almost
everywhere) belongs to any H; it also belongs to H_.,. We show below that
H_ ., may contain more elements.

Example 1.2.1 Let Xy = € + &4, t € 7Z, where €; are mean zero uncorrelated
random variables such that Ee? < oo and Ee? < 0o. We check thate € H_ o (X).
Indeed, consider

X+ Xt A X g1 Gyt FE

t
= =: 5 € H,.
Wy |t‘ ‘t| +e€ t+e ¢

Note that as ||Si||> = ES? = Ee?/|t| — 0 when t — —oo, thus w; — € in L?
and this together with wy € Hy yields € = limy_, o wy € H_o. Indeed, suppose
that it belongs to its complement: ¢ € H® | = |, Hf, then it belongs to Hf,
for a certain ty. As the last set is open there is an open neighbourhood U of
limy . wy, contained in it. However, this is impossible as U C Hy C Hy for
t <ty contradicts € = limy_, _ o wy ,wy € Hy as any open neighborhood of € con-
tains elements of Hy for sufficiently large |t|.

Note also that it follows from the given reasoning that if (X:) satisfies (X; +
Xi1 4+ X jy41)/|t] = w when t — —oco then w € H_o(X).
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1.3 Weakly and strictly stationary processes

We define a basic second order characteristic of time series.

Definition 1 An autocovariance function of a (real-valued) time series (X;)ier
is defined as

vx(s,t) = Cov(X,, X}) = E(X,—EX,)(X,—EX,)) = < X,—EX,, X,—EX, >
(1.3)

From the Schwarz inequality follows that value vy (s,t) is finite if X;, X, € £?
(what we assume). For complex-valued time series the corresponding definition
is

vx(s,t) = E((Xs — EX) (X — EXy)). (1.4)
Note that yx (t,t) = Var(X;). We define now weakly stationary time series.
Definition 2 Time series (Xi)iez is weakly stationary if

(i) EX,=m, tei;
(ii) vx(s,t) =yx(s+r,t+r), for any r,s,t€Z.

It is sometimes assumed in the definition of weak stationarity that Var(X;) <
oo, t € Z. Note however that since X; € L%(2,F, P), we have Var(X;) <
EX? < oo and this assumption is redundant. It follows from the second condition
that Var(X;) is constant and does not depend on t. We will call such process
shortly WS (weakly stationary) time series.

For processes with T = N weak stationarity is defined completely analogously.
For weakly stationary process we have that vx(s,t) = vx(s — ¢,0)) and thus
vx(s,t) is a function s — ¢ only. In such case we define autocovariance function
vx(h) : Z — R as a function of one variable

vx (h) == vx(h,0) = vx(s,t), for s—t=h. (1.5)
ACVF is frequently used shorthand for autocovariance function. We list basic
properties of yx (h):

(i) Var(Xe) = 7(0), t € Z;

i) |y(h)] <~(0), h € Z;
(iii) v(h) =~(=h) (y(h) =y(—h) for complex-valued time series);
)

(iv) vx () non-negative definite, i.e. for any a1,...,a, € R t1,...,t, € R,
Z aiaj'yx(ti - tj) > 0. (16)
1<i,j<n

Proof. Note that (ii) follows from
|Cov(Xen, Xe)| < (VarXepn)'? (VarXe)'/? = (0)/27(0)"/? = 7(0).

In order to prove (1.6) let w = (X3, — EXyy,..., Xy, — EX;,) and a =
(a1,...,a,)". Then expression in (1.6) equals
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Var(a'w) = Zaiaj’yx(ti —t;) > 0.
4,7

Observe that (iv) asserts that autocovariance matrix T'), = (yx(t; — tj))ij<n
is non-negative definite. Note that TI',, is a Toeplitz matrix. Dropping the as-

sumption of weak stationarity in a general case we have that (vx (¢, tj))i i<n 18
non-negative definite. The property that matrix I',, is non-negative definite for
any n € N characterizes autocovariance functions i.e. the following result is true.

Theorem 1.3.1 Let y(h) : Z — R be that for any n Ty, = (v(i — j))ij<n S
non-negative definite. Then there exists time series (X¢)iez such that y(h) is its
autocovariance function.

Proof. As T',, is non-negative definite then multivariate n-dimensional normal
distribution N(0, T';,) exists. It is easy to see that if we specify finite dimen-
sional distribution in n consecutive points as N(0, I';,), then the family of these
distributions is consistent i.e. it satisfies assumptions of Kolmogorov’s existence
theorem. The conclusion then follows from Kolmogorov’s theorem.

Another characterization of the autocovariance is Herglotz’s theorem discussed
later. Now we define a stronger property of time series than weak stationarity.

Definition 3 Time series (X;)iez (not necessarily belonging to L£?) is strictly
stationary if for any t1,ta, ..., tx,h € Z

(Xt Xtgs e or Xep) 2 (Xeyins Xegts -+ Xyt (1.7)

where R denotes equality of distributions.

Heuristically, time series is strictly stationary when its distributional properties
do not depend on the moment from which the process is observed. Indeed, if
the process is observed not from the moment 0 but from the moment h, then
time moment ¢; with respect to new origin corresponds to moment ¢; + h with
respect to the old one. If we stipulate that the distributions of observations at
time points t1,...,t; with respect to the new origin are the same as the those
of observations taken at time points tq,...,t; with respect to the old one then
this entails (1.7). Observe that in particular this means that distributions of any
two variables X and X; are equal. We will call such process shortly SS (strictly
stationary) time series.

As equality of two univariate distributions implies equality of their means and
equality of two bivariate distributions ensures equality of their covariances (if
means and covariances exist) we have that that strictly stationary time series
such that its elements are square integrable is weakly stationary. Thus, for all
practical purposes, strict stationarity entails weak stationarity.

In the case of strictly stationary time series observations X, ..., X,, have the
same distribution and its parameters can be estimated based on one trajectory
X1(w),..., X, (w) when n is large. Technical difficulty here which does not occur
for i.i.d. sequences is that the observations are possibly dependent and usually
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for the sake of inference additional properties such as ergodicity or more specific
structure of time series has to be imposed. In the case of weakly stationary time
series one can estimate its invariant characteristics such as mean, variance and
covariance and their parameters such as spectral distribution.

In order to appreciate the difference between weak and strict stationarity con-

sider a sequence of independent variables (X;):ez such that Xo; 2 N(0,2)

and Xot41 9 X3 — 1, where x? — 1 denotes centred x? distribution with one
degree of freedom. Such time series is weakly stationary as its mean is 0 and its
covariance function vx (s,t) = 2I{s = ¢} depends only on s—¢ but it is obviously
not strictly stationary as marginal distribution for even and odd indices differ.
Frequently a scale invariant version of autocovariance function is used. Namely,
let (X¢)tez be WS time series such that vx (0) > 0 i.e. variables X; are not equal
to the mean of the process. An autocorrelation function (abbreviated to ACF)
is defined as

Vx (h) 1x (h)
px (k) = p(Xitn, Xt) O (0172 ~ 7x(0)"
It follows easily form the properties of the autocovariance function that px (h) =
px(—h) and |px (h)| < px(0) = 1. The plot below shows empirical autocorrela-
tion function discussed further for residuals of the quadratic fit for uspop.dat.
Confidence intervals depicted there correspond to white noise; their form will be
derived in Chapter 7. Note that the value of empirical ACF for h = 0, similarily
to p(0), is also always 1.

(1.8)

Series USres

1.0

0.5

ACF

0.0
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Example 1.3.2 We stress that two different stationary time series may have
the same autocorrelation function. Namely, let Y; be arbitrary zero mean WS
time series and consider two WS processes defined as

X =Y, — ¢Yi 1
W, =Y, — ¢ Yy,

where ¢ is an arbitrary constant different from 1. ACF's for both processes coin-
cide. Indeed,

vx (k) =y (h) = ¢y (h — 1) = dyy (h+ 1) + ¢*yy (h)
yw(h) =y (h) — ¢ty (h—1) — ¢ 'y (h+ 1) + ¢ >y (h).

and as one easily checks that as yw (0) = vx(0)/¢?%, px(h) = pw (k). Obviously
for ¢ # 1 we have that Xy # W;.

1.3.1 Main examples

We discuss now the main classes of weakly and strongly stationary processes
which be frequently used in this book. A building block of many models of time
series is a white noise process.

Example 1.3.3 (white noise) Example above (1.8) is a special case of the sit-
uation when (Xi)icz i a sequence of uncorrelated (i.e. Cov(Xs, Xt) = 0 for
r # s) with mean m and variance o > 0. This is obviously weakly stationary
time series as yx(r,s) = 0205, where 6.5 = I{r # s} and is strictly stationary
if variables are independent. When m = 0 (Xy)iez is called (weak) white noise
in the case of uncorrelated random variables and strong white noise when they
are independent. The white noise will be abbreviated to WN(0,0?) and denoted
either by (e:) or (Zy).

We note that in the literature notation WN(0, o) may refer to either a weak or
a strong white noise. Here, unless stated otherwise, it will always refer to a weak
white noise.

Linear process discussed below is a versatile tool used to model stationary time
series. It is defined as a discrete convolution of white noise process.

Example 1.3.4 (linear process) Let (e¢)icz be WN(0,02) and 1; € €%, mean-
ing that Z;’;_Oo 1/)? < 00, be a fixred doubly-infinite sequence. Linear process is
defined by

Xi= Y W, teL (1.9)

j=—o00
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It can be easily shown that the right hand side belongs to L2 for each t; to this
end it is enough to convince oneself that its partial sums form a Cauchy sequence
and use the fact that every Cauchy sequence is convergent in L£2. Moreover, one
can check that EXy = 0. Also, continuity of scalar product < -,- > implies that

m n
< Xipgg, Xy >= mLILILlOO < Z Yi€tik—i, Z pigr—j >
’ 1=—m Jj=—n
m n o0 o0
= lim Z Z Vithj < EpghinEj >= 02 Z Yithi—p = 0 Z Yk,

n,m—0oo . . .
1=—mjJj=—n 1=—00 1=—00

where we used the observation that < e¢q—,€4—; >7# 0 only for j =i —k and

the equality
Z ihi_g = Z YitPigk-

1=—00 1=—00

Thus vx (s,t) depends on s —t only. Whence (Xt)iez is WS time series. When
(1) is strong WN(0,0?) then X, is SS time series.

When 9; = 0 for j < 0 in (1.9) then linear process becomes one-sided linear
process or moving average of infinite order denoted by MA (o)

Xy = ey, teL (1.10)
j=0

In this case X; depends on g for s < ¢ only and moreover X; € H;(g). Frequently
used case of one-sided linear process is obtained when 1; = 0 for j > ¢. Then

q
Xi =Y e
=0

In traditional notation used for ARMA processes coefficients v; are usually
named 6; and with ¢y = 1 one has

Xt :5t+91€t—1 +"'+9q5t—q- (111)

Such a process is called the moving average of order ¢ and denoted by MA(q).
Observe that if (g;) is a strong WN(0,0?), then M A(q) is g-dependent that is
for |h| > ¢ variables X; i X, are independent. In particular, when ¢ = 0 MA(q)
reduces to white noise process described in (i). Linear process is a very versatile
model of time series which is frequently used in modelling and theoretical con-
siderations. Main reason for this is that by choosing appropriate sequence (1;)
we can approximate given dependence structure. One of the possible generaliza-
tions of the linear process is Volterra series . Namely, suppose that for certain
functions gx(uq,...,ux) called Volterra kernels the following expression is well
defined
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oo o
Z Z i (Uty o Uk )E—uy * - €ty (1.12)

k=1uy,...,up=0

where (g¢) is a strong white noise. Note that when all functions g for & > 1
are 0, expression (1.12) yields a linear process. In general conditions on gi(+) for
which (1.12) is meaningful can be quite restrictive.

Example 1.3.5 (nonlinear autoregression) Very intuitive dynamics of time se-
ries is given by linear autoregression AR(p) of order p € N, namely

Xe=01 X1+ -+ 0pXip +eu, (1.13)

where (g¢) is WN(0,02). From the formal point of view (1.13) is nothing else
then regression equation with X; as a dependent variable and lagged variables
Xi1,...,Xi—p as the predictors. Stationary solutions to (1.13) will be discussed
in Chapter 4. Of course, linear dependence of Xy on Xy_1,..., Xy, is a serious
restriction of the model and generalizations of the linear autoregressive structure
were sought.

One of the possibilities is nonparametric autoregressive conditionally hetero-
scedastic model (NARCH) which stipulates that

X =f( X, Xop) Fo(Xom1, oo, Xy p)er,

where f and o are some functions parametric form of which is not known or
does not exist. Although flexible, this model is very hard to estimate for large p
due to curse of dimensionality: enormously large samples are needed to discern
characteristic features of both unknown functions. Thus we fall between Scylla
of model misspecification and Charybdis of unidentifiability. Much more modest
and reasonable model than the last one is additive autoregression (AAR)

Xy :fl(thl)+"'+fp(Xt7p)+5tv (1'14)

the autoregressive ’brother’ of an additive model, which avoids ’curse of dimen-
sionality’. Functions fi,..., f, can be estimated using backpropagation algo-
rithm, see e.g. Wood (2006).

Another model being nonlinear generalization of AR(1) time series is defined as

Xt = R(Xt_l,gt), (115)

where R is a measurable function. Conditions under which (1.15) has a strictly
stationary solution has been studied in Diaconis and Freedman (1999). They
have shown that the following conditions are sufficient: there exists a > 0 and
o such that

E(logL.) <0 and L.+ |R(x0,20)| € LY, (1.16)

where
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o /
L. — sup |R(z, ) R;(x )l
oy |z — 2/

The first part of condition (1.16) asserts that on average a Lipschitz constant
of the function R(-,¢) is strictly smaller than 1. Note that, intuitively, when
stationary solution exists it is of the form X; = g(...,e¢—1,&¢) . Measures of
dependence for such processes will be studied in Chapter 2.

1.4 Problems

1. Prove that:

(1) a linear process defined in (1.9) is well defined i.e. infinite sum defining X
is convergent in £? (to this end check that X = " e, ; is a Cauchy
sequence in £2) ;

(i) EX, = 0.

2. Define harmonic process

S
Xt = E wjel)\jtgtv

j=—o0

where (1;) € €2, ¢; € C, \; € R, and () is WN(0,0?). Justify the following
statements:

(i) X; is well defined and EX; = 0;

(ii) Check that (X;) is weakly stationary by calculating vyx (s, t).

3. Let (Y:) be defined as

Yy =m+e + 0164—1 + 0126112,

where g; is WN(0, 02). Check that it is weakly stationary and find the autoco-
variance function of this process.

4. Show that for a linear process defined in (1.9) y(h) — 0 when h — oo. Produce
an example of a weakly stationary process which does not have this property.
5.5. Let (X;) be mean-zero stationary process. Find A, B such that (4, B) =
argminy pFy (A, B), where for h € Z

Fi(A,B) = E(Xyyn, — A— BX})?,

by two methods:

(i) analytically, by finding the stationary point of criterion function F, (A, B);
(ii) geometrically, by interpreting A + BX; as the perpendicular projection of
Xi+n onto subspace sp(1, X3).

6. Let X, Z be independent standard normal N(0,1) random variables and let
Y = X% + Z, where k € N. Find the optimal linear predictor of ¥ based on X
and E(Y|X) (i.e. the best predictor among all square integrable functions of X)
and the respective prediction errors. Interpret the result.
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7. Let (X;) be a mean 0 Gaussian process. Check that E(X:14|X:) = p(h) Xy,
that is
p(h) Xy = inf E(Xpin — 9(X0))?,

where infimum is taken over all functions g such that g(X;) is square integrable.
Compare the result with the result of problem 6.

8. Prove that if (X, Xy,...,X,) has a joint multivariate normal distribu-
tion with mean 0, then optimal predictor of X based on Xj,..., X, namely
E(X|X1,...,X,) is linear, that is

E(X|X1,,Xn) :ale—i—...—l—aan

for certain aq,...,a, € R.

Hint. Consider a1 X7 + ... + a, X, which is the orthogonal projection of X on
sp(X1,...,X,) and note that < X —=>"" | a;X;, X, =0 > for k=1,...,n, thus
X —>" , a;X; and X}, are independent.

9. Consider an iid sequence (X;) with finite second moment and let S,, :=
>, X;. (i) Prove that Cov(Sy,S;) = min(k,!)Var(X;). (ii) Prove that S, is
not weakly stationary unless X; = 0.






2

Quantification of dependence for time series

We discuss here main standard measures of dependence such as moments, cu-
mulants and mixing coeflicients as well as a concept of ergodicity. Moreover,
predictive and functional measures are introduced as well as measures stemming
from information theory. We show how such measures intervene in statements of
the Central Limit Theorem for dependent data. For more extensive discussion of
relevant subjects we refer to Rosenblatt (1985), Doukhan and Louhichi (1999)
and Ibragimow and Linnik (1971).

2.1 Moments and cumulants

Autocovariance of two random variables is (unscaled) measure of their linear
dependence. Below we define cumulants which generalize concept of covariance
to many random variables and shortly describe their relation to moments. Let
X =(Xy,...,X) and

g = BXY X,

Consider expansion of characteristic function ¢x of random vector X

<g/ Z'l/1+1/2+---+l/k (Ul Ijk) v v,
ex(t1,. .. ty) = Eexp{it’ X} = Z ﬁmx B R
vitedvesn L ke
Z'l/
+olt") = D0 —mie + ot

lv|<n
We consider parallel expansion of log px (t1,...,t)

(v v )Z'V1+V2+-“+l/k y 5
logox(tr, . nte) = Tt o) =
it tre<n Vit Vg:

7;” v n
= D e+ ot

lvI<n

where
tr =", o v=ulo oy, Y=+ 4
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Definition 4 Cumulant of X{*,..., X* is defined as c;(/l""’u’“) . In particular
cumulant of X1,..., Xy is

cum(Xy, ..., Xg) —cgé D

that is coefficient related to ty - ty - - -ty in expansion of log(t) when the term

i* is omitted.

Now we consider correspondence between cumulants and moments. We can write
1
ox(t) = exp(log px (t)) = Z a{ log gox(t)}q

and comparing coeflicients on both sides we have

1 v! 1 (AP
mX =2 Y oo chx
p=

q20 XV 4.4 x@D=p

where the sum is over tuples ()\(1), ce )\(Q)) of ordered multi-indices. This means
that e.g. tuples AL, ..., A@) and (A@ ..., A1) both contribute to the sum
above.

In particular we have

B(Xi X)) =Y > Dy, -+ Dy,,

g>1 dfferent partitions vy---vg
ViU Urg={1,2,....k}

where D,,, = cum(X,,,...,X,,,) and {aq,...,an} = v,. This is obviously due
to the fact that number of ordered partitions of {v1,...,v,} equals ¢! times the
number of different partitions.

Expanding analogously log Ee®t'*

, using formula,

—1)¢-1
logx = Zixq, x| <1

q=1 q
we get
(-net T
W = m
X ; muz;wnzy q AWML A@h 11;[1 *
ordered indices
In particular for v = (1,...,1) we obtain

cum(Xy, .., Xg) =Y Y (D) g-DE([] X)) E(]] Xi) (21

S 21 S

where the second sum ranges over different partitions of {1,...,k}.
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It follows from (2.1) in particular that cum(X;) = EX; and cum(Xp, Xa) =
EX1Xs — EX1EXy = Cov(Xy, X2), thus cum(Xjy,..., X%) can be considered
as generalization of covariance. Below we state three most useful properties of
cumulants.

Proposition 2.1.1 (i) If for non-void subset I C {1,...,k} coordinates Xy are
independent of Xje then cum(Xy,..., X;) = 0.

(ii) Cumulants of order k > 2 of multivariate normal distribution are equal 0.
(Z%) cum(a1X1 + 61Y1, Xo, ... ,Xk) =

= OqCum(Xl,Xg, R ,Xk) + ﬁlcum(Yi,X2, . ,Xk).

Proof. In order to check (i) observe that if J = I¢ we have
log EetX = log Eet®1Xi+t5Xy) — log EetiXr 4 log Ee'tsXs

and as the right-hand side does not contain in its expansion the term ¢y - ...ty
this proves (i). Analogously, the characteristic function of multivariate N(m, X)
distribution equals ¢(t) = exp(t'm—t'Xt). And the only terms in the expansion
of log ¢(t) = t'm —t’' X't correspond to linear terms ¢; and quadratic terms ¢; - t;.
Part (iii) is obvious.

Part (i) is very useful. Note that the analogous property for moments is not
satisfied.

Theorem 2.1.2 (Diagram formula)

Consider random wvariables X5, = 1,...,1, j = 1,...,J; arranged in an
array:

(1L,1) ... (L,41)

(11) ... (I,1)
and

Ji
Y= Xu. i=1....L
k=1
Then the following diagram formula holds
cum(Yy,...,Yr) = Z*cum(Xij,ij €)X - x cum(Xy,, 15 € vp)
where the sum X* is over all indecomposable partitions of the array i.e. such

partitions that sum of elements of its proper sub-partition does not contain whole
rows of diagram.

2.2 Ergodicity and mixing

Consider general probability space (£2,.4, P) and a measurable transform T :
(2,A,P) — (2,A,P). We call T measure preserving transform if induced
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measure PT~! coincides with P i.e. for any A € A we have P({w € A}) =
PT 7 ({we A}) = P({w: T(w) € A}). We define a family J of sets in A which
are T-invariant i.e. such that 7-1(A) = A. It is easy to check that J is o-algebra
which will be called the o-algebra of T-invariant sets.

Definition 5 Measure preserving T is called ergodic on (£2, A, P) if for any
A € J we have P(A) = P(A)? i.e. P(A) equals 1 or 0. Moreover T is called
mixing if for any A, B € A we have

P(ANT™(B)) — P(A)P(B), n — oo.

We will now define the analogous properties for time series (X;)iez. To this
end observe that if we define X(w) = (..., Xp_1(w), Xp(w), Xx(w)...), X is a
measurable transform of (£2, A) to (R%, B(R%)), where B(RZ) denotes o-algebra
of Borel sets in RZ. Denote by PX ™!, as usual, measure P induced by X. Define
now the right shift U as

(U(x)k = k-1,

where x = (..., Zk—1, Tk, Tp41 . ..). We call U right shift because if we move an
(imaginary) register to the right, value at position k is taken over by the value
xk—1 which resided at position k—1 before. Observe that when (X;):cz is weakly
stationary than U preserves measure PX~!. Indeed, consider a cylinder C in B
of the form C = {x : x4, € Ay,...,x¢, € A}, where Ay,..., Aj are Borel sets
in R. Then

PX N UH0)) = PX ' ({x: (Ux)s, € A1,...,(UX);, € Ar})
=PX '({x:my_ 1 €A1, ... 1 € Ag})
= P({w : Xt1,1 € Aq,.. .th,1 S Ak})
=P({w: Xy, € Ay,... Xy, € Ay}) = PX7H0),

where the penultimate equality follows from weak stationarity. It is easily seen
that this property extends from cylinders to any sets in B(RZ).

Definition 6 We call weakly stationary (Xi)iez ergodic process (respectively,
mizing process) if right shift U is ergodic (respectively, mixing) with respect to
pPX—1.

Thus it means, in the case of ergodicity, that for any A € J, where J are
invariant sets for U we have P({w : X(w) € A}) = 0 or 1. Analogously, for
mixing, we have that

P({w: X(w) € ANU"BY}) — P(A)P(B). (2.2)

Note that condition (2.2) written for two cylinders A = {x : x4, € Ay,..., 24, €
Ar}and B ={x:xy, € B,...,2y, € B} yields

P{w: X(w) e ANUTB})
= P({X:, € A1,..., Xy, € A, Xopy—n € B, ..., Xu,—n € Bi})
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— P({th € Aq,... ,th S Ak)P(le € By, ... ,le S Bl}) (23)

when n — oco. Note that the above convergence yields an intuitive interpretation
of mixing as a sort of independence condition of the past from the present.
Interpretation of ergodicity in similar vein will be given at the end of the section.
The term ergodic was coined by G. Birkhoff from Greek words ’ergon’ meaning
'work’ and ’hodos’-’path’.

We have the following simple properties of ergodic and mixing time series.

Proposition 2.2.1 (i) If weakly stationary (Xi)icz is mizing it is also ergodic;
(i) If (e¢)tez is strong white noise then (¢)icz is mizing;

(iii) Let h : RN — R be measurable and X; = h(...,Y;_1,Y;) be one-sided
moving function, where Yy is mizing (ergodic). Then (X3) is mizing (ergodic).

Proof. In order to prove (i) observe that if A € J it follows from (2.2) applied to
A = B that PX"}ANU™A) = PX"1(A) = [PX!(A)]? and thus ergodicity
condition is satisfied.

To see (ii) consider two cylinders A = {x :ay, € A1,...,2¢, € A} and B = {x:
Xy, € Bi,..., 2y, € B} and note that (2.3) is satisfied for independent (¢;) with
equality replacing convergence provided n is such that max(wg) — n < min(t;).
The property above extends from cylinders to arbitrary measurable A and B in
a standard way. Thus, strong white noise is mixing and thus ergodic.

(iii) We prove (iii) for mixing case. Let Y; = (...,Y;) and x; = (..., a¢) for
(z;) € R” and consider By, B, € R%. Note that

X HB) ={Xe B} ={(-. ., M Y1), h(Yr),h(Yrs1),...) € Bi} = Y (4),
for ¢ = 1,2, where
A ={x: (.., h(xk-1), h(xx), h(Xks1),--.) € Bi}.

Moreover note that X~1(U~"(B;)) = Y~1(A™), where
A = {x € RZ: (... h(Xp—1), h(xx), h(Xps1),...) €U
{x e RE:U™...,h(xp_1), h(xx), h(Xp41),...) € B} =
{xe R” . (oo h(Xk—1-n), h(Xk—n), h(Xk+1-n),...) € B
{x € RE: (..., h(U"(xk_1)), (U™ (x1)), h(U™(
{y € RZ : U"(y) € Al} = Uﬁn(Az)

Thus using the equality above and the fact that (Y;) is mixing
PX™H(By nU™(By)) = P(X~}(By) N X"H(U™"(By)) = PY ™" (A4; N AJY) =
PY YA NU(Ay)) — PY (A1) PY 1(Ay) = PX H(B)PX 1(By).

Note in particular that if X; = Z;’io a;e4—; is one-sided moving average when
(e¢) is strong white noise, then using (i) and (iii) (X) is mixing and thus ergodic.
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It also follows, what can be also proved directly, that ergodicity and mixing are
preserved for (g(X;)) where g is any measurable transform. Observe that events
of the form {liminf; .. X; € A}, {limsup,_,  X; € A} are invariant with respect
to the right shift and thus if (X;) is ergodic, they have probability 0 or 1.

We will now state ergodic theorem proved by G. Birkhoff in 1932 from which
in particular it follows that for ergodic time series its sample means converge
to expected value of the marginal distribution. To this end note that if T" is a
measure-preserving on ({2, A, P) and X is square-integrable real-valued random
variable on this space it follows that

) )

X;=XoT' t=1,2 ... (2.4)

is a stationary sequence. On the other hand if Y = (Y})sen is stationary time
series it can be proved that there exist probability space and X and T as above
defined on it that Y = X in distribution, where coordinates of X are X; = XoT".
This has very important consequences for studying asymptotic properties of
estimates as convergence results for X can be carried over for Y. Thus, as it is
done in ergodic theorem, it is enough to study asymptotic properties of stationary
sequences given by (2.4). Observe also that if X is random variable defined on
(RZ, B(R%)) given by Xo(x) = zo and we define T = U~! where U is the right
shift, then X; defined in (2.4) is given by X;(x) = X o U~! = z;. This is called
canonical representation of a stationary time series.

We define S; = ¢~1 23:1 X;.

Theorem 2.2.2 (Ergodic theorem) For X; given in (2.4) we have
St
- — E(Xo|J) a.s. (2.5)

and g
E‘Tt ~ EB(Xo|7)| — 0. (2.6)

In particular, for ergodic (X;) E(Xo|J) can be replaced by EXj. As for any
measurable A, I{X; € A} is ergodic when (X;) is ergodic, we have that

n 'Y I{X; € A} - P({X € A}) = PX"!(4) (2.7)
t=1
almost surely, that is frequency of visits to A converges to PX1(A) a.s. regard-
less of w.
In the case of the one-sided linear process X; = Y oo ;Y;—; with (¢;) € ¢! and
ergodic (Y;) we have almost surely

n1 ixt =n! En: iwm,i — EY; iw (2.8)
t=1 =0

k=1 1i=0

Ergodic theorem is frequently informally stated as follows: for ergodic time series
averaging over trajectory and over sample space gives the same result in the sense
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that for large sample sizes the sample mean is close to the expected value of the
marginal distribution.
Ergodic theorem also yields nice equivalent definition of ergodicity.

Corollary 2.2.3 A measure-preserving T on (§2, A, P) is ergodic if and only if
R ,
;ZP(AI ﬂT_lAQ) — P(Al)P(AQ) A17A2 c A.
j=1

Comparing the last convergence with the definition of mixing we immediately
see why mixing is a stronger concept than ergodicity. It is due to simple analytic
fact that Cesaro means of convergent sequences are convergent to the same limit.

2.3 Mixing conditions

In this section we define several mixing conditions and mixing coefficients which
quantify dependence between events which occur at lags at least n. The differ-
ence between them is that they quantify in a slightly different ways the departure
from independence. The basic idea of mixing conditions is to ensure that the dis-
tant past and the distant future become asymptotically independent. One should
realize that since we measure departures from independence, by imposing con-
ditions on mixing coefficients we can only arrive at the same phenomena which
hold for iid sequences. The name 'mixing’ may be confusing as we have already
defined mixing (in the ergodic sense). We will show that the weakest of the
mixings introduced below, a-mixing implies mixing in the ergodic sense. Thus
strong of large numbers holds under mixing. However, central limit theorems
for mixing sequences impose unverifiable conditions on mixing coefficients. Let
us law note that even checking mixing, apart from special cases such as Gaus-
sian sequences or Markov series (for which more specific methods to establish
asymptotic results exist) is practically impossible. We refer to Bradley (2005)
for extensive discussion of topics below and the bibliography.

Let (X¢)tez be a strictly stationary time series and let .7-'J for i < j be a sigma-
algebra generated by variables X;,..., X; , £? (.7:] ) a space of square integrable
rvs measurable with respect to }'f . We deﬁne the following mixing coefficients

a(n) = sup |P(An B) — P(A)P(B)|,
AeF _,BeF

1
Bn) = sup 2
Ay,...,A1,B1,...,By

I J
ZZ (A; N Bj) — P(A;)P(B;)),

where the supremum is taken over all finite partitions Ay,..., Ay and By,..., By
of 2 such that A, € F° _i=1,...,], B;e BEF>X,j=1,...,J.
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d(n) = sup |P(B) — P(B|A)],
AeF® _,BeFe,P(A)>0

p(n) = sup jcor(X, Y)].
XeL2(FO ), YeL?(F)

Coefficient p(n) is called the maximal correlation between F° __ and F°. As .7-'1]
intuitively contains all information about the process between time points 7 and
j the coefficients defined above quantify dependence between events described
in terms of knowledge gathered on the process in intervals (—oo,0] on [n,c0).
Observe that as we assumed strict stationarity of time series the reference point
0 is irrelevant and all it counts is the length of the gap n between those intervals.
Note that all mixing coefficients are monotonically nonincreasing and contained
between 0 and 1. If any of them is equal to 0 this is equivalent to independence
of the respective sigma-algebras.

We say that (X¢)iez is a-mixing if a(n) — 0 when n — oo with the analogous
wording applied to other coefficients. We remark that a-mixing is sometimes
called , which is somewhat misleading, as we shall see, it is the weakest concept
considered among the four introduced. Also, S-mixing sequences are also called
absolutely regular.

We now discuss the interplay between the mixing coefficients. Note that for
AeF° ., B e FX we have

) |[P(ANB) — P(A)P(B)|
APANE) = POPBN S (0501 — Pa)(PB)(1 - PB)]2

= |COI"(IA, IB)

and this proves left hand side of the inequality

a(n) < 1o(n) < 567(n). (2.9)
The right-hand side is proved in Cogburn (1960). From the above inequalities
it follows that ¢-mixing implies p-mixing and p-mixing implies a-mixing in its
turn. Also, absolute regularity implies c-mixing, thus c-mixing is the weakest
property among the four introduced. However, the weakest concept of a-mixing
still implies mixing in ergodic sense defined above which follows in a straightfor-
ward way from the respective definitions. Moreover, ¢-mixing implies S-mixing
in view of the inequality B(n) < ¢(n). It is also known that p-mixing and ab-
solute regularity are incompatible in the sense that neither of them implies the
other. For Gaussian time series p-mixing is equivalent to a-mixing.
There are some conceptual drawbacks of the weakest and the strongest of these
measures. Observe that the reason a(n) is small may be due to the fact that the
difference |P(A N B) — P(A)P(B)| is small which is the effect we would like to
quantify or to more trivial reason that simply one of the probabilities P(A) or
P(B) is small, which we would like to disregard. This was the main reason of
studying the remaining coefficients in particular ¢ mixing coefficient based on
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quantity |P(A N B) — P(A)P(B)|/P(A). However, ¢-mixing is sometimes too
strong a property as for Gaussian sequences it implies independence of X; and
Xy for sufficiently large k. (cf. Ibragimow and Rozanov (1978)). The advantage
of the mixing coefficients is that if we consider transformed time series f(X;), its
mixing coefficients are not larger than those for the original sequence. Moreover,
it is easily that e.g. if (X;)iez is @-mixing then (f(Xy, Xi—1,...,Xi—p))tez for
fixed p also has this property. Somewhat disappointingly AR(1) process with
innovations having Bernoulli distribution and ¢ = 1/2 is not a-mixing (cf. An-
drews (1984)). We consider also some special cases:

(i) if (Xt)tez is strictly stationary Markov sequence than it follows that we
can replace in the definition of mixing coefficients the pair of sigma-algebras
(FO ., F2) by the pair (F§, F") i.e. sigma-algebras generated by a single ran-
dom variables. Moreover, it is known that a-mixing is implied by convergence to
0 of the integral [ |fo.n(z,y) — fo(@)fn(y)| dzdy, where the integrand is the ab-
solute value of the difference between joint density of (Xy, X,,) and the product
of marginal densities. It is also known that for a stationary Markov chain with
a finite state space, mixing in ergodic sense is equivalent to a-mixing and is also
equivalent to the fact that the chain is irreducible and aperiodic. Remarkably,
condition ¢(n) < 1 implies ¢-mixing with exponential rate of decay of the se-
quence (¢(n))nen(we refer to Bradley (2005), p. 119 for the discussion).

(ii) For stationary Gaussian sequences, which are thoroughly treated in Ibragi-
mow and Rozanov (1978), we have already mentioned that ¢-mixing implies inde-
pendence for sufficiently lagged observations. Moreover p(n), the maximal corre-
lation coefficient, reduces in this case to correlation Cor(Xg, X,,). Note that this
in particular implies that a stationary Gaussian time series such that vy(n) — 0
is ergodic (as it is a-mixing and thus mixing). An interesting inequality in the
Gausssian case was proved by Kolmogorov and Rozanov, who have shown that
(Kolmogorov and Rozanov (1960))

p(n) < 2ra(n).

Thus in the stationary Gaussian case a-mixing implies p-mixing.

2.4 Another look at quantification of dependence

In this section we discuss another approach to quantify dependence for important
subclass of strictly stationary processes defined in (2.15).

2.4.1 Method of projections

We discuss first a general method which avails itself of representation of a partial
sum of strictly stationary sequence as an infinite sum of uncorrelated random
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variables, which is called here method of projections. Its variants appear in Han-
nan (1979) and Ho and Hsing (1980) and it is a main tool to study the properties
of predictive and functional measures of dependence introduced below. It can
be also used to study nonparametric estimators of functional parameters such
as marginal density or regression function for dependent data. The framework
is quite general and can be shortly summarized as follows. Consider a strictly
stationary square integrable sequence (V;)iez such that V; is measurable with
respect to o-algebra F;, where (F;)iez is increasing sequence of o-algebras such
that N} Fy is trivial. Then using E(V,|F_;) — E(Vi|Ni__ Fi) = E(V;) we
obtain

1=—00

t
Vi—EVi= Y E(Vi|Fi) — E(Vi|Fi 1) (2.10)
k=—o00
Note that projection of any square integrable U on Fj can be represented as a
sum of a projection on F;_; and a projection on its orthogonal complement
E(U|Fk) = E(U|Fi-1) + E(U|Fk) — E(U|Fy-1) := E(U|Fg-1) + PrU
and thus it follows from (2.10) that

n

> (Vi—EV,) = Z Z PV (2.11)

t=1 t=1 k=—o00

Provided that >, >, ||PxV;|| < 0o we can regroup terms in (2.11) and obtain

i< —EVi) = ZPkZVt Zn:Un,k, (2.12)

t=1 k=—o0 k=—o0

where U, ;, and U, ;s are uncorrelated for k # k’. Using stationarity and orthog-
onality of components we obtain

n

IS0- Wl = 3 ol < 30 (3 1P Vikall) - (218)

t=1 k=—o00 k=—oco t=max{1,k}

In particular, if ||P1V;|| < 6; for t > 1 the bound in (2.13) is not larger than

i (GHH)Q + i (GHH)Q < i (fjem)Q +ne?
k=1 t=1

k=—o0 = k=1
%)

= (Ongr —6r)* = E7, (2.14)
k=1

where ©,, = >°I" | 6;. Note that if (f;) are summable than =2 = O(n) as
Yot (Onr — Or)? = n(, ).
We note that Hannan (1979) used representation (2.11) in the case when
Vi = G(et) and (e;) is stationary ergodic Markov chain. He proved that provided
that o2 = S°0° [|PoVi||? < oo then n=1/23"1" | 'V; converges in distribution to
N(0,0%). We will discuss the genralisation of this result in the next section.
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2.4.2 Predictive and functional measures of dependence

There are many other measures of dependence for time series we mention in
particular weak dependence coefficients introduced in Dedecker et al. (2007)
and projective measures of dependence Gordin (1969). Here we discuss a func-
tional and predictive measure introduced by Wu (2005) which satisfy two natural
criteria: their definition applies to a broad class of time series and they can be
effectively calculated for interesting subclasses of this class. The considered class
consists of strictly stationary processes defined by

Xe=g(....e0-1,e1), tEL, (2.15)

where (€)iez is a strong WN(0,0?) and g is a measurable function. Such pro-
cesses may be called subordinated Bernoulli shifts. Obviously, (X}):cz is strictly
stationary and causal in the sense that X; depends only on innovations 5 up
to the moment ¢. This is a broad class of processes containing one-sided moving
averages and their transforms, Volterra processes and many nonlinear processes
e.g. processes of the form X; = R(X;_1,e;) which admit stationary version.
From the reason which will become apparent shortly right hand side of (2.15) is
sometimes called nonlinear Wold representation.

Let & = (...,€j-1,€;) and for j > 0 consider its coupled version F with &g
replaced by its independent copy € i.e. random variable having the same dis-
tribution as ¢ and independent of (e;). Moreover, define g, (&) = E(Xn|&0) =
E(g(...,en—1,€n)|&0) and consider g,,(&}) = E(g(&:)]...,e-1,£(). For p > 1 and
n > 0 functional measures of dependence are defined as

dp(n) = [lg(&n) — 9(&) ]l

and predictive measures of dependence as

wp(n) = |lgn($0) — Qn(fg)Hp

Intuitively, J,(n) measures the influence of the change of an innovation at time
zero on the value of the series at time n whereas w,(n) measures the impact
of the respective change on the optimal nonlinear prediction of X, based on
innovations up to time 0. Also, introduce the general functional measure of an
impact of the change at positions I C Z, namely 6,(I,n) = |[9(&n) — 9(&n.1)|]p
where &, 1 is a coupled version of §,, with innovations positioned at 7 € I replaced
by their independent copies. Let PpZ = E(Z|&) — E(Z|€k—1) be the projection
operator for Z € £P. The following result holds (Wu (2005))

Theorem 2.4.1 (i) Forn > 0 and p > 1 we have that w,(n) < §p(n).
(i) Forn >0
[PoXanllp < wp(n) < 2[|[PoXanlp.

(i) Let I C Z. We have

03(I,n) <16 63(n —i).

iel
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Note that the last inequality shows that the strength of the change at positions
in I can be bounded in element-wise manner by the strengths of dependence of
X,, on individual ¢; for ¢ € I.

Proof. (i) We have for n > 0 , in the view of & = (§-1,(,€1,---,&n)
Elg(&n) — 9(&3)16-1,20,€0] = Elg(&n)I€-1,€0] — Elg(&5)[€-1, €]
= gn(ﬁO) - gn(fg) (216)

This in view of Jensen’s inequality yields

(gn(€0) — 9n(£5))* < El(9(n) — 9(£5))?16-1, €0, £0)

and integrating with respect to £_1, €o, g yields (i).
(ii) Observe that since E(g(£,)16-1) = E(gn(£0)[§—1) we have E(gn(&0)|{-1) =
E(gn(&})|€0), and thus

PoXnllp = [ Elgn(€0) — 9n(§6)IS0]llp < llgn(€0) = gn(€0)Ilp
< 1gn(€0) = Elgn(€0)1€-1]llp + 1E[gn(€0)1€-1] = 9 (&)l
= 2|[Po Xl (2.17)

which ends the proof of (ii). We refer to Wu (2005) for the proof of (iii).
We say that the process (X;) is p-stable if 2, := Y > jw,(n) is finite.

Example 2.4.2 (7) Consider the one-sided linear process (1.10). Clearly w,(n) =
0p(n) = 2|enllleo —€pllp and thus 2-stability is equivalent to absolute convergence
of > |ti|. Moreover, under mild conditions on K it can be proved (cf. Wu (2005))
that for Yy = K(X¢) we have [PoYe|| = O(lex|) thus 2-stability also hold for lin-
ear subordinated process.

(i) Consider process Xy = R(X:_1,¢et) discussed in (1.3.8). It can be proved
that under (1.16) the process has geometric moment contraction property i.e. for
some p >0 and r € (0,1)

HXn - g(gn,I)Hp =0(r"),

where I = {...,,—1,0}. Note that || Xy, — g(&n.1)|lp is another dependence index
which measures the influence of the past ..., e_1,e9 on X,. As by stationarity

19(&7) — 9(&n.Dllp = 1l9(€n+1) — 9(Ens1.0)llp the moment contraction property
implies that

dp(n) = 119(&z) = Xn)llp < l9(67) = 9(&n.D)llp +119(&n.1) — Xanllp
= 00" ™) + 0™ =0o@™).

Thus in this case the series is p-stable. Conversely, if 6,(n) = O(r™) for some
p > 1 then Theorem 2.4.1 (i) implies that moment contraction property holds.
We provide one representative example of the usefulness of this approach. The
following result holds (cf Wu (2005)).
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Theorem 2.4.3 Assume that {25 < co. Then

{Spnn/v/n,0 <t <1} {0 B(t),0 <t < 1}

when n — oo in D[0,1], where B(:) is the standard Brownian motion and
o = |3 PoXil| < 2. D[0,1] denotes the space of right-continuous func-
tions which have left-hand limits on [0, 1] with Skorochod topology (see Billingsley
(1968)).

2.5 Central Limit Theorems for dependent sequences

We now discuss limit theorems for mixing processes and linear processes. First
note that as mixing in any sense considered by us implies ergodicity it follows
from the ergodic theorem that (X; + ... X,,)/n — EX; almost surely provided
E|X,| is finite i.e. strong law of large numbers holds. In order to state CLT for
mixing sequences we first present some relevant inequalities. Let XY be two
random variables and o(X), o(X) sigma-algebras generated by them. Moreover,
let o = SUp4co(x),Beo(y) [P(AN B) — P(A)P(B)| and analogue fo ¢-mixing
coefficient defined analogously.

Lemma 2.5.1 (i) If | X1]| < Cy and |Y| < Cy we have
|Cov(X,Y)| < 4aC:Cs
(ii) If E(|X|P+|Y|7) < oo for some p,q > 1 andr = (1—1/p—1/q)~ > 0 then

|Cov(X,Y)| < 8" (E(|X|P) /P E(|Y]9)"/1.
(iii) If p,q > 1 are such that 1/p+ 1/q =1 then

|Cov(X,Y)| < 20 /P(E(IX )P E(|Y]9)"/.
Note that in particular it follows from (i) that if (X;):cz is a bounded time series
such that Y (i) is finite then Y>> ~(h) is finite.
We also state an interesting general moment inequality proved in Doukhan and
Louhichi (1999) which yields a bound for ¢th moment of a sum S,, = X1+ - X,,,
where X; are zero mean variables. Let

M, 4 = sup |Cov (X, --- Xy, Xy,

p+1

..th)|’

where the supremum is taken over all ¢,...,%, such that 1 <p < ¢ and 41 —
t, =r.

Theorem 2.5.2 Assume that for some q > 2 M, , = O(r?/?) when r — oc.
Then for some C > 0 we have

|B(S%)| < Cn®/2.
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The inequalities in Lemma 2.5.1 are used to prove a CLT below. The main
device here is modified small-block and large-block argument originally due to
Bernstein which we discuss later in connection with estimation of the mean.

Theorem 2.5.3 Assume that (X;)iez is strictly stationary zero mean process
such that 0® = 3% _~(i) is positive and let S, = X1 +...X,,. Then

Sn/vn 25 N(0,02%)

when n — oo provided any of the three conditions is satisfied:
(i) | X¢| is bounded almost surely and > a(i) is finite;
(ii) E|X¢|° < oo and dis1 ()12 < 0o for some § > 2.

(iii) 3,51 #V/2(j) < ox.

Note that that the Lemma 2.5.1 implies that in all cases (i)-(iii) o2 is finite.
Moreover, note that in view of (2.9) condition in (iii) implies that > -, a(j) is
finite, however stronger condition on a-mixing coefficients is imposed in (ii).
There are many unresolved problems about properties of mixing sequences. The
most known is Ibragimov’s conjecture, now more then fifty years old, stating
that ¢-mixing sequence (X,,)nen with the second moment of the marginal dis-
tribution finite and such that Var(X; + --- + X,,) — oo satisfies a CLT. The
result is true when finiteness of the absolute moment of order 2 4+ § is imposed
(cf. Theorem 18.5.1 in Ibragimow and Linnik (1971)).

A remarkable theorem of Ibragimov and Linnik which avoids imposing any mix-
ing conditions at the expense of assumption that the process is linear will be
discussed in Section 7.

The last result concerns the CLT for sums of martingale differences in a trian-
gular array and is due to Brown (1971). Let (X, ;,t =1,...,k,) be an array of
random variables on (£2, F, P) and let F,,; for 0 < ¢ < ky, be a sequence of sub
o-algebras of F such that X, ; is F, ;-measurable and F,, ;1 C F,, +. Each row
of (Xp4,t=1,...,ky,) consists of martingale differences i.e. E(X,, ¢|Fp—1) = 0.
Let S, = 320 X, 0.

Theorem 2.5.4 Let (X, 4, Fnu,t =1,...,k,) be a martingale difference array
such that

> B(X2,|Fui1) — 1
t=1

in probability and for any e > 0

n

> B(X?,H{|Xin| >e}) — 0.

t=1

Then Sy, i>N(O7 1) when n — oo.
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2.6 Measures of dependence: information theoretic
approach

We give a brief overview of the main concepts of information theory and their
application to measuring dependence of time series, for a more exhaustive treat-
ment and some aspects of an interplay of information theory with statistics we
refer to Dgbowski (2013) and Cover and Thomas (2006). Let X be a random
variable with possible qualitative values in dictionary D = {x1,...,2;} and de-
note P(x) = P(X = z). To fix ideas we treat the case of finite dictionary only,
although most of the properties below are true for countably infinite D. The
approach plays an important role in modelling and quantification of dependence
for time series having qualitative values e.g. in Natural Language Modelling.
Recall the following definitions.

Definition 7 Entropy of random variable X is

k
H(X)=E(-logP(X)) = =Y _ P(x;)log P(;). (2.18)
i=1

The above definition has its analogue for continuous random variables X with
density f for which differential entropy is defined as

H(X)= f/f(ac) log f(x) dx. (2.19)

Entropy (2.18) depends only on the probability mass function of X and fre-
quently is defined for probability distributions without reference to a specific X.
It is, along with the Gini index, the most popular measure of scatter for qualita-
tively distributed variables. In particular it is used in Classification and Regres-
sion Trees methodology for measuring variability of the class index in a node of
a tree. This interpretation is confirmed by its properties as it satisfies H(X) > 0
and is equal 0 only for a single-valued X. Moreover, H(X) < H(U) = logk,
where U is uniformly distributed P(U = z;) = 1/k and thus is the most scat-
tered among D-valued random variables.

The definition above can be extended to entropy H (X7, X3) of the pair of ran-
dom variables having joint mass function P(x1;,x9;) fori=1,...,k,j=1,...,1
and in general to H(X1, Xo, ..., X,).

One of the possible measures of dependence between X and Y is an entropy
of conditional mass function P(X = -|Y = y) averaged with respect to the
distribution of Y called conditional entropy and denoted by H(X|Y"). Note that

HX[Y)= Y P =yHX[]Y =y)
y:P(y)>0
=— > P(Y =y)P(X =z]Y =y)log P(X = 2|V =y)
z,y:P(X=2,Y=y)>0
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= — Z P(X =z,Y =y)log
z,y:P(X=z,Y=y)>0

= H(X,Y) - H(X), (2.20)

which underlines usefulness of H(X|Y) as a measure of dependence: it yields
the incremental increase of entropy if we append X with Y. Equality (2.20) is
generalised to so-called chain rule

H(Xy,...,X,)=H(X,)+ ZH(XZ»|X1, o Xilh). (2.21)

i=2
We also define a mutual information I(X;Y") as

V) — P(X,Y)
I(X;Y) = E(log P(X)P(Y))

and note that it is Kullback-Leibler D(p||q) divergence between bivariate mass
function p = P(z,y) and the product of its marginals ¢ = P(z)P(y). It follows
from the properties of the latter that I(X;Y) > 0 and equals 0 only in the case
when p and ¢ coincide i.e. X and Y are independent. As H(X,Y) + I(X;Y) =
H(X)+ H(Y) and all quantities are non-negative we obtain that H(X|Y) <
H(X).

Moreover, we define conditional mutual information of X and Y given Z

] - P(X,Y|Z)
as an averaged Kullback-Leibler between conditional distribution P(X,Y|Z) and
the product of its marginals. Nonnegativity of I(X;Y|Z) is obvious as well as
the property that it equals 0 only in the case when X and Y are conditionally
independent given Z.
We now turn to defining some dependence measures for qualitatively-valued
stationary time series (Xi)¢ez. Stationarity is meant here in the strict sense, as
a definition of weak stationarity is not applicable to qualitatively-valued random
variables. Denote by X! for k < I a block of observations from time k to I and
define block entropy H(n) := H(Xfi,?), n > 1,k € Z which due to stationarity
depends only on the size of the block. We let also H(0) := 0. Dependence of
(X:) can be e.g. gauged by a differenced block entropy

AH(n) = H(X, | XY = H(X1,..., Xn) — HX1,..., X 1). (2.22)
Other possible measure is a block mutual information defined as
B(n) = I(X°, . X7). (2.23)

We list below two important properties of the above measures.
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Theorem 2.6.1 (i) For a stationary process the following two limits exists and
coincide

im L) i AHm) = 2> 0.

n—oo n n—oo

Limit h is called the entropy rate.
(ii) We also have that

lim E(n) = lim H(n) —nAH(n)= lim H(n) —nh=E.

n— oo n—oo n—00

E is called excess entropy (cf Crutchfield and Feldman (2003)).

Proof. We prove part (i) and we refer to Debowski (2013), Theorem 4.9 for
the proof of (ii). Observe that since conditioning does not increase entropy i.e.
H(X|Y) < H(X) we have

H(X,1X1,.. ., Xn) < HXp11|Xo, .., X)) = HX| Xy, -0, Xnz1)s

where the last equality follows from stationarity. Thus sequence AH (n) is non-
increasing and whence its limit h exists. Since in view of chain rule (2.21)
H(n)/n=H(1)/n+ Y., AH(i)/n and as Cesaro means of (A(n)), converge
to h, (i) follows.

It follows from the proof that we have that h < H(1), moreover, the equality
h = H(1) implies H(X,,) = H(X,|X1,...,X,-1) and thus X,, is independent
of Xi,...,X,_1 for any n what implies that X;s are independent. Moreover, for
the stationary Markov chain we have that h = lim, oo H(X,|X1,...,Xn_1) =
H(X,|Xn-1) = H(X2|X1).

Note that by the chain rule for multivariate mass function p(Xo,...X,-1) =
17y P(X;|X5™") we have that

n—1

1 1 .
—ZlogP(Xg,.... Xpn_1)=—=) 1 X;|xit
n og ( 0, ) 1) TL; ng( | 0 )

and for ergodic sequences it can be proved that the right hand side converges to
lim E(—log(X,| X5 ') = h.
n—oo

This is Shannon-McMillan-Breiman equipartition theorem, which states that
(see e.g. Cover and Thomas (2006))

Theorem 2.6.2 For a finite-valued strictly stationary ergodic sequence (Xp,)nen
we have when n — oo

1
—710gP(X0,...,Xn,1) — h
n

almost surely.
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This means that asymptotically probability mass p(z1,. .., %,) is approximately
equi-distributed over 2" points with probability 2~™" assigned to each of them.
This has profound consequences for coding theory meaning that for sample paths
of ergodic sequence we need on average 2™ bits to code its subsequence of length
n. This also indicates that upper bounds on h are valuable since they give us
some idea on the optimal rate of compression.

2.7 Problems

1. Show that for any square-integrable real X and Y we have
Cov(X,Y) = /R/R(P(X > 5 Y >1t)— P(X > s)P(Y > 1)) ds dt.
Prove it first for nonnegative random variables noting that
XY = /ODO/OOOI{X > sHH{Y > t}dsdt

and integrating both sides with respect to P. For arbitrary X and Y use decom-
position X = X — X, where XT = max(X,0) and X~ = max(—X,0) are
nonnegative random variables together with P(X > —t) =1 — P(X~ > t) for
t>0.

2. Prove that when (V;) is a strong WN(0,02) then in (2.8) we have that
Sp/n — 0 a.s. under the weaker condition that (¢;) € ¢2.

3. Using (2.7) and Lebesgue dominated convergence theorem prove Corollary
2.2.3.

4. Prove that S-mixing coefficient satisfies (i) 8(n) < 1 (ii) S(n) < ¢(n).

5. (i) Using Lemma 2.5.1 prove that Theorem 2.5.2 holds true provided (X;)
is a strictly stationary sequence such that E|X;|° < oo for some § > ¢ and
a(n) = O(n_%). (i) Similarly, prove that the conclusion of (i) holds true
provided X is bounded and a(n) = O(n~9/?)

6. Prove Lemma 2.5.1 (i). Hint. Use the conclusion of problem 1.

7. Show that for a stationary Markov chain with stationary distribution

(g1, ..., px) and transition matrix (p;;) we have that the entropy rate h satisfies

kK
h=-— Z Z:uipij log pij.

i=1 j=1
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Optimal linear prediction

In this chapter we discuss a linear prediction problem, state prediction equations
and introduce two algorithms by which prediction coefficients can be calculated,
namely the Durbin-Levinson and the innovations algorithm. Prediction problem
is frequently referred to as forecasting. Let (X;):ecz be a weakly stationary time
series with the mean m and covariance function ~y(-). We assume that m and
covariance function «(-) are known and moreover the covariance function is such
that T',, = (v(i — j))1<i,j<n is nondegenerate i.e. I';! exists for a given n € N.

3.1 The Yule - Walker equations

We look for the best linear predictor of X, ;5 based on affine combination of
X1,...,X, ie. solution to the problem of finding

arg min  S(ag,a1,...,a,),

ap,;a1,-..,an

where

n n
2
S(ao, a1, ..., an) =|| Xpyn—ao— E ai Xny1-i [I’= E(Xntn—ao— E aiXnip1-i) -
im1 i1

It is known as the problem of h steps ahead (h-step) linear prediction. Before we
develop an equation determining the coefficients of the best linear prediction let
us note two facts. First, the condition we impose that T';;! exists is equivalent
to the fact that 1, X;,..., X, are not linearly dependent in the sense that there
does not exist non-zero vector (bg, b ..., b,) such that by + > 1, b; X; = 0 with
probability 1(Problem 3.1). This is a natural condition here as otherwise we can
choose a proper subset of variables {X;,,...,X;,} which spans the same space
ie sp(l,Xiy,...,Xs,) =sp(1,X1,...,X,) and for which corresponding covari-
ance matrix is non-degenerate. Secondly, it is easy to establish that the optimal
predictor P, X,y is necessarily such that X, — P, X, 45 is perpendicular to
sp(1, Xq,...,X,,) as otherwise denoting by X, the vector having this property
(existence of which we are about to establish) we will have

||Xn+h - Pan-&-th = ||Xn+h - Xl||2 + ||Xl - Pan-&-hH2
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as X,4+n — X1 is perpendicular to X | — P, X,,4+5. This contradicts the fact that
P, X+ is minimizer of S(ag,a1,...,an).

The geometric solution of the problem is shown below. We also note that our
task is equivalent to problem of theoretical linear regression for which X,
is the response, 1, X7,...,X,, are random predictors and criterion function is
given by S(ag,az,...,a,). Note that we want to take into account the fact that
predictors are dependent random variables.

Xn+h Xn+h - Pan+h

Pn Xn+h
Hyperplane

Sp(17X1a e 7X”7«)

Fig. 3.1. P, X,,+, as a perpendicular projection of X,,1p

We already know that X, — P, X,, 1, that is residual of X,, 4 after projecting
it onto hyperplane sp(1, X1,...,X,,) , has to be perpendicular (in £2 space)
to this hyperplane, or, equivalently, has to be perpendicular to its generators
1,X4,...,X,. We thus obtain

Xy — PoXoan L1 (3.1)
and
Xoin—PoXpsn LX;, j=1,...,n. (3.2)
Property (3.1) is equivalent to

n

<1, Xpih = PuXpyn >=E(1(Xnpn — a0 — Y _ aiXpn41-)) = 0. (3.3)
i=1

whereas (3.2) is equivalent to

E(X;(Xntn —a0— Y aiXnt1-3)) =0, j=1,....n. (3.4)
i=1
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We obtain from (3.3) that (m = EXy)

- Z a;) (3.5)
i=1
and substituting it into (3.4) we have
B(X;(Xnin —m =Y ai(Xnp1—i —m))) =0, (3.6)
or equivalently

Cov(Xyqn, X Z(IZCOV ntl—ir Xj)- (3.7)

Changing the index j:=n+1—j, j=1,...,n we see that (3.7) is equivalent
to

yh+j—1)= Zafyzf] ji=1,...,n. (3.8)
Recall that T, = (y(i — ]))” , and moreover define

7n(h’) = (V(h)”}/(h + 1)’ s ’7(]7' +n— 1))/

Note that =,,(h) is vector of covariances of X, with X,,,...,X;. Let a,, =
(a1,az,...,a,)". Then (3.8) written in the vector form is
T.a, =~,(h).

As T, exists, then a,, satisfying this equation is unique and
ap = I‘:Ll’)’n(h) (39)

Equations (3.5) and (3.9) are known as the Yule-Walker equations. Inverting
I',, in (3.9) can be avoided by using Durbin-Levinson or innovations algorithm
discussed below. Note that for n = 1 we have from (3.9) that a; = v(h)/v(0) =
p(h) and thus using (3.5) we obtain

P X11n =a0+ a1 X1 =m+ p(h)(X; —m). (3.10)

We derive now the formula for mean squared error of h—step prediction.

n
UrQL,h = || Xn+n — PaXnin H2:|| Xnth —m— Z ai(Xn+1-; —m) ||2:
i=1

=7(0) - 2a7,7,,(h) + &, Tpa, =7(0) = v, (AT v, (h) (3.11)
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using (3.5) for the second equality and (3.9) for the last one.
Equation (3.11) is a frequently used expression for mean squared error of h—step

prediction. We give one of possible alternative equalities for one step prediction

error below. For h =1 let 02 := 02’1 and 7, == 7,/(1).

Proposition 3.1.1 Assume that T',, is invertible. Then
0721 = |Fn+1| / |Fn|7 (312)

where |T'| = det T.

Proof. Proof of (i) follows from the following property of determinants

det (éﬁ) _|AID—CA™'B| = |D||[A—BD"'C|  (3.13)

and the observation that

From (3.13) we have

ICnia] = (1(0) = ¥,T5 ', T
and since y(0) — v/, T, 1, = 02 equality (3.12) follows.
Remark 3.1.2 (i) Equality (5.5) implies that

P, Xnin =a0+ Z a; Xnt1—; =m + Z ai(Xn+1_i — m) (314)

=1 =1

It easily follows from (3.14) by contradiction that optimal linear predictor for
mean m time series (Xy) is obtained by adding m to optimal linear predictor for
the centred time series (Xz —m).
(i) The Yule-Walker equations imply that for a weakly stationary time series
coefficients of prediction of X,yn based on 1, X,,, X;,_1,..., X1 are the same as
for prediction of Xyyp based on 1, Xy, X¢—1,..., X4—nt1 for anyt € T.
(iii)

op <on_y <o < of = Var(Xog1) = 7(0).

(iv) Assume that (Xy) is mean-zero weakly stationary time series. Then (Problem
5.2)
02 = 0% =||X, — Py, ,X;||> when n — oo.
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3.2 The Durbin—Levinson algorithm

We discuss now the Durbin—Levinson algorithm which finds solution to the Yule-
Walker equations. Another method which also avoids inverting matrix I',, based
on finding its modified Cholesky decomposition is discussed in section 3.3. We
consider the case of h = 1 and assume as before that covariance matrix I',, of
(X1,...,X,) is positive definite. We recall that this means that any nonzero
linear combination of Xi,...,X, is not constant. Then I',, is invertible and
coefficients of a projection of X,,11 on sp(1, X5,...,X,) are uniquely defined.
Traditionally, vector (ai,...,a,)" is denoted by (¢ni,...,¢nn) and we have
(compare (3.14))

P Xpi1=m+ o1 (Xn —m) + on2(Xno1 —m) + -+ + @nn(X1 —m). (3.15)

It is worthwhile to stress that the first index n in ¢,,; corresponds to the number
of observations we base our projection on. We usually have that ¢, ; differs
from ;.

Definition 8 Coefficient @, corresponding to Xy in representation (3.15)
of P, X1 is called partial autocorrelation coefficient (PACF) or the Schur,
Verblunsky coefficient of order n.

Thus partial correlation coefficient of order n corresponds to the observation
X7 which is the furthest away time-wise from predicted observation X, ;. in-
tuitively, we would like to decide whether it is worthwhile to add an additional
predictor X7 to X,,,..., X5 based on absolute value or significance of . Its
equivalent definition will follow from the analysis of Durbin-Levinson algorithm.
When I'), is not invertible, we let ¢,, = 1.

For the rest of this section we assume that m = 0. No generality is lost because
of this in view of (3.14). Note that prediction equations (3.15) for the first n+ 1
observations can be written as

Xn+1 - Xn+1 == @an_i_l, (316)

where X,,11 = (X1,..., Xnt1), Xnﬂ = (Xh coy Xnt1) and @, is (n+ 1) x
(n+ 1) lower triangular matrix defined as

1 0 0 0
— 022 1 ... 0 O
. oo (3.17)

_¢n,n _(bn,nfl o _¢n,1 1

The Durbin-Levinson algorithm Let 02 = 7(0) and assume that T, is
invertible. Coefficients ¢,,; and o2 satisfy the following recursive equations
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n—1
Pnn = {7(”) - Z @n—l,jV(n - ])} 0-1;31 (318)
j=1
Pn,1 Pn—1,1 Prn—1,n-1
Lpn,nfl 90n—1 n—1 Sanl 1
on=(1—wn)ony=-=0 ][~ (3.20)
i=1
Thus having computed ¢y, —11,-..,¢n_1n-1 We compute o=_; (from (3.20)),

then ¢, , from (3.18) and then finally ¢,,;, ¢ =1,...,n — 1 from (3.19). Note
that as ', is invertible it implies that X,, does not belong to sp(1, X1,..., X,_1)
and thus 02_; > 0. Then it follows from (3.20) that 02 > 0 is equivalent to
Prn < L.

Proof. We give a proof of the algorithm based on the orthogonalization of
subspaces sp{Xa,...,X,} and sp(X1). Let K1 = sp{Xs,..., X} and Ky =
sp{X1 — Px, X1} . Thus K5 is univariate linear space such that Ko L Ky and
moreover X, == sp{X1,...,X,} is a direct sum of K; and Ks

Xn =K1 & Ko,

which means that K; and Ky are orthogonal and any element of x € &), can be
uniquely written as x = x1 + 2o, where x; € ; ,i = 1,2. We have

Xns1 =Py, Xpi1 = P, Xni14 P, Xni1 = Pe, Xns1+a(X1— P, X1) (3.21)

a=<Xpi1, X1 — P, X1 > /|| X1 — P, X1 || (3.22)

As we noted that invertibility of I',, implies that o2_; > 0 thus a is well defined.
Note that from weak stationarity of (X;) it follows that

2(X1;~-7Xn) = E(Xnyx'nfl:--wxl) = E(X27--<7Xn+1) = Fn

and pertaining vectors 7, (1) coincide. The crucial step in the proof is now to
note that the Yule-Walker equations yield that projection coefficients of X7 on

Xo,..., X, are the same as projection coefficients of X,, ;1 on X,,,..., X5. Thus
n—1
Pc, X, = Z On-1;Xj11 (3.23)
j=1
n—1
Pe, Xni1= Y en-1Xnt1- (3.24)
j=1

Thus (3.21), (3.23) and (3.24) imply that
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n—1
Xny1=aX1 —aPe, X1+ P, Xpnp1 =aX1 + Z(‘Pnfl,j — aPn—1n—5)Xnt1—j
j=1
(3.25
where for the last equality we substitute j :=n — j in (3.23). Now, using (3.22
and (3.23) we have

)
)

a= = : (3.26)

n—1

n—1
< Xpi1, X1 > = 30 on-15 < Xpga, Xjp1 >
=

where we use the observation that | X1 — P, X1 [|2=| Xn — X, [|2=02_,.
As Xpq = Z;;l ¢njXn+1—; and this decomposition is unique we have from

(3.25):

4= Pnny, Pn,j = Pn-1,7 — CPn—1,n—j,

which in view of (3.26) proves (3.18) and (3.19).
2 _

We have to show 02 = 02 _,(1 — ¢2,,). Indeed,
0'721 - HXn—i-l - PXnX7L+1||2 :” X7L+1 - PIC1X7L+1 - PK2X7L+1 H2
= || Xnt1 = P, X1 |2+ || Py X |12
—-2< Xn+1 — P]C1Xn+17P;C2Xn+1 >
= H Xnt1 — P, Xnq1 H2 + || Pie, X1 ||2
= 2< Xpt1— Px, Xp1 + Py Xna1, P, X1 >
= H Xnt1 — P, Xn H2 + H Pie, X ||2 _2||PIC2Xn+1H2

and the ultimate equality follows from the fact that X,,41 — Py, X, 11 is perpen-
dicular to Ka. As Pic,Xpn+1 = a(X1 — Px, X1) the last expression equals

‘7721—1 + QQUi—l - 2‘120721—1 = 072;—1(1 - ‘12) = 02—1(1 - Sﬁfm)

which ends the proof.

Remark 3.2.1 We note that formula (3.20) is valid even when T, is not in-

vertible (or, equivalently, o%_, > 0 does not hold) as in this case we have that
o2 _, =0 obviously implies o2 = 0.

Corollary 3.2.2 For (X;) WS time series such that 'y, is invertible for some
n € N we have

Onn =< Xnt1, X1 — P, X1 > /| X1 — P, X1 ||* =

=< Xpi1— P, Xnt1, X1 — P, X1 >/ | X1 — P, Xy ||> =
— o(Xni1 — Py X1, X1 — P, X1). (3.27)
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Right hand side of (3.27) is usually denoted by a(n) and is defined provided that
T, is invertible. If we additionally define a(n) = 1 when T, is non-invertible
we obtain equality ¢,, = a(n) which is always true as the same convention has
been adopted for ¢,,,. For WS time series having arbitrary mean m we obtain
equality of ¢,, and a(n) when slightly modifying definition of a(n)

a(n) = p(Xnt1 = Pop1,X0,.... x,) Xnt1, X1 — Pop(1,x,,.... x,)X1)- (3.28)

Graphical representation corresponding to the construction of a(n) is given be-
low.

T T T T
n
1 n+1

Fig. 3.2. Linear influence of X, ..., X, is removed from X; and X, 41

From (3.27) we obtained an equivalent definition of ¢,, as a correlation coeffi-
cient between X7 i X, 41 after removing linear influence of predictors X, ..., X,.
Note that importance of ¢, is clearly seen when we consider prediction of X, 11
based on X,,, ..., Xs and we want to decide whether it is worthwile to include X3
as the predictor. If ¢,, is not negligible, enlarging set of predictors is justified.
We note that a more general construction to construction of a(n) is used in re-
gression analysis when in order to extract an influence of a particular predictor,
say x1, on response ¥y, residuals res, of y and residuals res,, of ; are computed
and then res, is considered as a response and res,, as a predictor in linear
regression ( partial regression plot).

Example 3.2.3 Let X; be a weakly stationary time series defined as
Xt - Zt + 0Zt—17

where Z; - WN(0,02) and 0 € R. It is a moving average of order 1 (MA(1)).
We calculate partial autocorrelation coefficients a(1) i a(2) for this process.

Obviously, a(1) = p(1) = 14%. In order to calculate «(2) we calculate first
Pyp(x5)X3-
0
Psp(Xg)XS = p(l)XQ = WXQ = Psp(Xz)Xla

where the last equality (used also in greater generality in the proof of the Durbin-
Levinson algorithm) holds due to stationarity of the process. Thus

0 0
O[(Q) = p(Xg 7X2,X1 — m

-1 Xo)



3.2 The Durbin-Levinson algorithm 47

262 62 02

_ _ 1+6? + 1+62 _ 1462
Var(Xs — 122 Xs)  Var(Xs — 1752 X2)
We now compute Var(Xs — 1_F%Xg)
0 62 202 1+ 6%+ 64
Var(X3 — ——X5) = 1 + 62 _ —
ar(Xs = g Xe) =140+ o 1+ 62
We thus obtain
—02
N=— "
a(2) 1462+ 64

Formula for a(n) for arbitrary n is given in Problem 8.4.

Let us also note that the following property of partial correlation holds:

If |@nn|=1then ¢yt =1, fori> 1. (3.29)

To see this assume for simplicity that m=0 and note that it is enough to consider
the case when I, is invertible. Then (3.27) holds and it follows from the Schwarz
inequality that there exists a, such that sign(a) = a(n) and

n—1 n—1
a(Xy — ZaiX1+i) = (Xp41 — Z a;i Xnti—i)-
i=1 i=1

Thus X, 41 is a linear combination Xi,...,X,, and I',4; is non-invertible for
i > 1. It follows from the adopted convention that ¢uyinti = a(n +1i) = 1.
Let

S={(sk)5°: lsk] <1Vkandif |sg]| =1 = sp41 =1}.
The following result holds, the second part of which has been already proved.

Theorem 3.2.4 For any (si) € S there exists WS time series such that its
partial autocorrelation function satisfies a(n) = s, and for any WS time series
its partial autocorrelation function belongs to S.

Note that in view of Theorem 3.2.4 partial correlation coefficients provide uncon-
strained parametrization of the second order structure of the weakly stationary
process in contrast to the autocovariance function. In the later case non-negative
definiteness of the 'candidate’ autocovariance has to be checked, whereas any se-
quence (a(n)), such that |a(n)| < 1 is valid sequence of PACFs. Thus PACFs
should have a strong appeal to statisticians. Alas, mostly from computational
reasons, it is not the case. We also remark that it follows e.g. from the Durbin-
Levinson algorithm that if v(-) is positive definite then we have |a(n)| < 1 for
any n.

The interesting question in the study of dependence of time series are conditions
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which imply that a(n) — 0 when n — oo. This is answered by Rakhmanov’s
theorem which asserts that this happens when the density of the absolutely con-
tinuous part of the spectral measure is positive on the set of the full measure
2.

3.2.1 Gaussian sequences

We briefly discuss the connections between autocorrelation and partial autocor-
relation functions with information theoretic measures in the case when station-
ary sequence is Gaussian. Let H (n) denote the entropy of the block X7 in (2.19).
We note that all equalities stated in Section 2.6 Chapter 2 but the inequality
H(X) > 0 valid only for discrete distributions, are also valid in the continuous
case. It is proved in Cover and Thomas (2006), Theorem 4.8.1 that

1
H(n) = glog(27re) + 5 log |T|. (3.30)

From this it follows that

Theorem 3.2.5 For a stationary Gaussian (Xi)icz we have

1(X1; X,) = 3 log[1 — pln — 1]

I(X2: X,/ X5) = —5 log[1 — a(n — 1] (3.31)

Proof. Note first that for a Gaussian pair (X,Y") we have

I(X;Y) = HX)+ H(Y) - H(X,Y)
5(10g(27re) + log Var(X) + — log(2me) + log Var(Y')
21og 27e — log[Var(X)Var(Y) — Cov(X,Y)?])

= —% log[1 — p(X,Y)?]. (3.32)

This proves the first statement. In order to prove the second one note first that
we have H(f(X)|X) =0 and H(X|Y) = H(X) if X and Y are independent.
Thus we have

I(X15 Xo| X5 71) = H(X X5 ™) + H(Xa| X371 — H(Xy, X, | X537
= H(Xl - PSP(X2~,~~~,X7L)X1) + H(Xn - Psp(Xz,...,X")Xn)
- H(Xl - PSP(X27---7Xn)X1aXn - Psp(Xg,...,Xn)Xn)
= I(X1 — Pop(xs,... x) X1, Xn — Pop(xs,.... x,) Xn) (3.33)

and the second statement follows from the first one and the definition of the
partial correlation. Note that the connection between I(X1; X,,| X5~ ') and a(n)
is clearly seen from the last equality in (3.33).
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We also note that Gaussian vector (Y7,...,Y,) has the largest entropy among
all n-dimensional vectors with the same covariance function I',. Indeed, let
(X1,...,X,) be any such vector and denote by fy and fx the respective den-
sities. Then

/fX(xl,...7mn)logfy(x1,...,xn)dx1...d:rn
:/fy(arl,...,xn)logfy(asl,...,xn)dxl...da:”,

both sides are quadratic forms of the same covariance matrix. Since
T1,..., @
/fx(xl, ..y mp) log (M>dm ...dzr, <0
fx (@, an)

as D(fx||fy) = 0, the both inequalities yield H,, (X1, ..., X,) < Hy(Y1,...,Ys).
This is sometimes called maximum entropy principle.

3.3 The innovations algorithm

We show now how to compute coefficients of so called innovations representation
of the projection of X, 11 on sp(Xy,...,X,),

n+1 Zenj n+l—3 — n+1 ] Zgnn j ]+1 Xj+1) (334)
7=0

for n > 1 and Xn+1 = 0 for n = 0. As before we consider zero-mean WS time
series and assume that T',, is invertible. X j+1 denotes the orthogonal projection
of X411 on sp(Xi,...,X;). Xpnt1 can be represented as in (3.34) due to the
fact that linear space sp(Xi,...,X,) equals sp(X; — X1, X, — Xn) This
equality in fact yields representation of sp(Xi,...,X,) as a direct sum of uni-
variate orthogonal subspaces generated by X; — Xi,... s X — X,,. Note that a
corresponding matrix form of (3.34) is

XnJrl - ®n+1(Xn+1 - Xn+1)7 (335)
where ©,,11 is a lower triangular matrix defined as

1 0o ... 0 0

6y 1 ... 0 O

. . (3.36)
0nn 0n,n—1 en—l,l 1

Obviously, in view of (3.16) we have ©,,11®,1 = L. It follows from (3.35) that

Fn+1 = @n+1Dn+1®;L+17 (337)
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where D,, 11 = diag(o3, ...,02). Thus innovation algorith discussed below yields
modified Cholesky decomposition (3.37).

We also note that innovation parameters in (3.34) are uniquely defined provided
I',,11 is invertible. Representation (3.34) has a substantial advantage over usual
representation Xn+1 = 2?21 ¢njXnt1—j, namely the summands of the former
are uncorrelated:

Xng1—j — Xny1—j L Xong1-0 — Xng1-%

for k # j. We assume that I',, is invertible which implies that o? > 0 for

i
1 =1,...,n — 1. As we recall coefficients corresponding to projection onto an
orthogonal set have very simple form

< Xty Xs1—i — Xna1—i >
O = +1 zlzﬂ iy 7 (3.38)

n—j

Thus 6, ; is simply projection coefficient of X,,;1 onto X, 11_; — Xn+1_j.
Coefficients 6,,; may be recursively computed based on previous coefficients 0y
such that either & < n or k = n,l > j and prediction error o? for i < n — 1.
Next, o2 is computed.

Indeed, applying (3.38) for j = n — k and representation (3.34) with k in lieu of
n we obtain

< Xps1, Xpp1 — X1 >

en,nfk = 0']%
y(n —k) — Z?:l Orj < Xng1, Xpy1—j — Xpp1-5 >
. .
_y(n—k) - ijé Ork—j < Xny1, Xjp1 — Xjp1 >
- ) )
O

As it follows from (3.38) that < Xp41, X411 — Xjp1 >= Gn,n,jajg», we obtain

V(= k) = Y50 O kO im0

gn,n—k, = 0_]% y (339)
for k=0,1,...,n — 1. Knowing values of 6, ,,_ we can compute o2:

n—1
on =1 Xnt1 = Xp1 [P = 7(0) = || Xnpal? =7(0) = D 0 i poii (3.40)
k=0

Innovation algorithms is based on equalities (3.39) and (3.40). Order of comput-
ing coefficients is as follows: 03, 011, 0%, 022, 021,03, 033, 032, 031 and so on. As we
shall see later the innovation algorithm is instrumental for estimation of param-
eters of Gaussian ARMA (p, ¢) process.
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We note that stationarity was actually not needed in the development of the al-
gorithm which remains valid for any 0 mean time series when the term ~(n — k)
is replaced by v(n, k). Then equation (3.39) is generalized to

ntLk+1) =S 00k i0pnio?
Bmte = ( ) 22],0 kk—3Un,n—j0; (3.41)
Ok

and equation (3.40) to
o =y(n+1,n+1)— Zﬁm KO- (342)

Moreover, if v(n — j) = 0 for all j < k (or, in general case vy(n+ 1,57 +1) =0
for all j < k) then we have 0,, ,—; = 0 for such j. Indeed, it follows from the
proof that g; 20,, n—j =< Xng1, Xjp1 — Xﬁ_l > and the observation follows from
orthogonahty of X, 41 to X411 and to XJH and the fact that O’ > 0.

We finally note that as X1 = X1 + (Xng1 — Xna1), (3. 34) may be re-
expressed in the form

n+1 § en] n+l—j Xn+17j)7

where 6,0 = 1.

Example 3.3.1 We apply the innovation algorithm to MA(1) process of the
form Xy = €4 4+ ber_1. As v(k) =0 for k > 2 it follows from the remark below
(3.42) and (3.39) that for n > 2, coefficient Opp = O p_1 = ... = Op2 =0 and

01 = 0,,2,00%. Moreover, o3 = (1 +60%)0? and

on =7(0) = 0202 1 = (1+6%—0,2,6°0%)0,

thus letting r, = 02 /o? we can write this as Tn =146%—0%/r,_1. Asro = 1462
we observe that (r;) does not depend on o?. This is a special case of a general
property true for causal ARMA processes proved in Chapter 4 which we will use
later.

Now for h-step ahead prediction we use easily verifiable equalities

n+h—1
Pan+h = PnPnJrhlenth = Pn( Z 9n+h71,j(Xn+h7j - XnJrhfj)) (343)

j=1
and since (X,4p—; — Xn_l,_h_j) is orthogonal to Xy for j < h and k < n and for
j = h it belongs to sp(Xi,...,X,), we obtain

n+h—1

PoXnin= > Onin-1;(Xnynj — Xnin_j)- (3.44)
j=h
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3.4 Problems

1. Show that condition that I'y, = (v(i—j))1<i,j<n i non-degenerate is equivalent
to the following statement: there does not exist non-zero vector a = (ay,...,a,)’
such that Y, a;X; is constant almost everywhere ie. 1, Xy,..., X, are not
linearly dependent. Hint: note that the fact that I',, is degenerate is equivalent
to existence of eigenvector a # 0 corresponding to zero eigenvalue and thus
a'T,a=0.

2. State and prove Durbin-Levinson’s algorithm for h-step prediction.

3. Prove that in general for a WS time series we have

p(2) — p(1)*
1—p(1)?

and check that it is consistent with the calculations of the Example 3.2.3.
4. Prove that partial correlation coefficient «(n) for MA(1) time series equals

a(2) =

(71)n+10n

o) =1 rp e

Hint . Compute I';,, and use the Yule-Walker equations.

5. Autocovariance function of weakly stationary time series equals v(0) = 2 |
~v(£1) = —1 and zero for the remaining lags. Compute «(2) and then a(n).

6. Prove that prediction error 02 = || X; — Py, , X4||* = v(0) [T5oo (1 — &2 (4)).
7. Show that weakly stationary mean-zero time series is PND (i.e. H_o, = 0) if
and only if for any ¢ Py, __X: — 0 when s — oo. Hint. Note that H_., = () H;
implies Py, ,X; — Pg__ X:. On the other hand from Py X; = 0 for any ¢ it
follows that Py__ Y =0forY € H_.

8. Prove that if ¢1,. .., ¢, are prediction coefficients of X, 1 on sp{X,..., Xp}
for mean- zero weakly stationary process, then ¢(z) =1 —¢12—--- — ¢ppz? #0
for z such that |z| < 1. 9. Show that prediction error for h-step prediction in
(3.44) equals

n+h—1

E(Xpih — PoXnyn)® =7(0) — Z O h—1T s h—j—1-
i=h

10. Express (3.9) in terms of autocorrelation matrix A,, = v(0)~'I},, and auto-
correlation vector p,,.
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ARMA(p, q) processes

We define now a basic class of linear processes introduced by Box and Jenkins
(see Box et al. (2008) for a thorough treatment of ARMA processes).

4.1 Definitions and examples

Definition 9 (X;)icz is real-valued mean zero ARMA(p,q) time series if the
following two conditions are satisfied:

(i) (Xt)iez is weakly stationary time series;
(i1) (Xi)tez satisfies a structural equation

Xt — QplXt—l — = (PpXt—p = Zt + 91Zt_1 + 4 qut—q (41)

for certain ¢1,...,¢p,01,...,0, € R, where (Z;)ez is white noise WN(0, o%)
with 02 > 0 and p,q € NU{0}. (X;)tez ARMA(p, q) with the mean p, if X; — p
is zero-mean ARMA(p, ¢). In this case the structural equation is

Xe—m—o1(Xem1—p) = —pp(Xo—p—p) = Ze + 1 Zya++ -+ 0424 g, (4.2)
or equivalently, letting o = p(1+ @1 + ...+ ¢p)
Xe—po—o1Xo1— - —op Xy p=Zy + O Zp1+ -+ 042 (4.3)

Note that we do not know that a time series satisfying (4.1) exists and whether,
if it satisfies (4.1), it is weakly stationary. The existence of ARMA(p, ¢) time
series will be discussed below. We consider two special cases of the definition
above.

1. Autoregressive process of order p. Let ¢ = 0 and consider the equation for
process ARMA (p, 0) denoted by AR(p):

Xi—o1Xp1— - —op Xy p = Z4. (4~4)

Thus X; is a linear combination of X;_i,..., X;_, with added noise. This is a
usual regression equation with p predictors. In order to underline the fact that
the predictors are given by previous values of the process, weakly stationary time
series satisfying (4.4) is called autoregressive process of order p.
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Example 4.1.1 We will show below that AR(1) time series for |¢p1]| < 1 exists.
The plot below shows simulated sample path (n = 500) for AR(1) time series
with ¢1 = 0.7 and related empirical autocorrelation coefficients. Note that for
the smaller lags, say h < 5, for which autocorrelations are outside confidence
band they appear to decay exponentially.
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2. Moving average process of order ¢. Analogously, we let p = 0 and consider
ARMA(0, ¢) time series denoted by MA(q). The structural equation is

Xe=Zi+ 021+ -+ 0,7y (4.5)

In this case we know from equation (4.5) that the MA(q) exists. Indeed, if we
consider time series defined as the right hand side of (4.5) then such time series
is weakly stationary as it is a special case of linear process MA (00).

Example 4.1.2 We also generated sample path (n = 500) for MA(1) time se-
ries with 8 = 0.7 and empirical partial correlation coefficients. Note that the plot
of empirical autocorrelations looks qualitatively different from the analogous plot
for the sample path of AR(1) process.
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Before we discuss existence of ARMA((p, ¢) process we introduce two useful prop-
erties of such time series.

Definition 10 ARMA (p,q) time series (Xi)iez is causal with respect to white
noise (g¢)tez if for a certain (1) € ¢*

Xi =) ey (4.6)
=0

Note that the righthand side of (4.6) is well defined even under weaker assump-
tion that (1) € ¢2. This follows from Example 1.3.3 (ii). However, a little bit
stronger assumption will enable us more convenient statement of Theorem 4.2.2
below. Note that in the case when we assume only that (¢;) € (2, (X;)iez is
one-sided linear process with innovations (e¢)icz. When (4.6) is satisfied, note
that X, is uncorrelated with ¢; for s < ¢, that is

Cov(e;, Xs) =0, t>s.

Moreover, then (X;) belongs to a closure of linear space sp{es, s < t} , thus
H(X) C H(e). Concept of invertibility of (X;) naturally arises when we inter-
change the roles of X; and (¢;). Namely

Definition 11 ARMA(p,q) time series (Xi)iez is invertible with respect to
(et)tez if for a certain (m;)3° € ¢

Et = Z’/TiXt—i (47)
i=0



56 4 ARMA(p, q) processes

We can write (4.7) equivalently as

[eS)
7TOXt =&t — E ’/Tth,j.
Jj=1

which is autoregressive equation of infinite order (AR(o0) representation).

We show in Lemma 4.2.1 that when (m;)§° € ¢! right hand side of (4.7) is well
defined. Note that in this case Hy(e) C H(X). If (X¢) is at the same time causal
and invertible with respect to white noise (e;), then we have Hy(e) C Hy(X)
and Hy(X) C Hy(e) and thus equality Hy(e) = H;(X) holds. As variables
(e¢) are uncorrelated it is easy to write down in such situation projection of
X1 on Hy(X) in terms of (g,) for s < t. Namely X, = oo igr—i, where
Vi =02 < Xy, e >

Example 4.1.3 (i) Assume momentarily that AR(1) with parameter ¢ = ¢
such that |¢| < 1 exists and try to derive its expansion in terms of e;. Namely,
for any k € N

Xi =0Xi 1+e=0(0Xs o+ er1) +& = P* Ko+ o1+ =
k

= P+ " Xy g

=0

Note that as X, is stationary then it follows that ||pFT1 X, 1| < |¢[* ]| X1|| —
0, since || < 1. Thus if AR(1) process with mean 0 and parameter || < 1 exists,
it has the following causal representation with respect to white noise (4)

Xy = Z ¢i5t7i-
i=0

Obviously, coefficients (¢°)2, are absolutely summable. Note that if we define
process (X:) by the right hand side of the above equation it will satisfy the struc-
tural equation of AR(1) time series. Indeed

Xt:Z(biZt i Z¢z+ Et—(i+1) T &t = ¢Z¢5t 1-i + &= ¢Xy 1+ e
i=0

=0 =0

Thus we proved existence of AR(1) process by guessing its causal representation
and checking that this representation indeed yields AR(1) time series. Actually,
this is a general procedure in the case of causal ARMA processes (see proof of
Theorem 4.2.2).

(i) Consider now MA(1) process with |0| < 1. Then we have

— Oy = Xy — 0(Xy—1 — be4—2)
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=X —0X, 1+ (X g — Oz 5) ==Y (10X, ;, (48)
7=0

where the last equality follows from the fact that 'c,_;_y — 0 when i — oo.
Thus we directly established that MA(1) process with |0 < 1 is invertible.

Causality and invertibility defined above for ARMA processes may be defined
in a completely analogous for any weakly stationary time series. More generally
still, we can define these concepts with respect to an arbitrary weakly station-
ary time series Z;. In order to ensure that the right hand sides of analogues of
(4.6) and (4.7) are well defined in both cases we have to assume that coefficients
()22, and (7)22, belong to ¢! (are absolutely summable). This follows from
Lemma 4.2.1 in the next section.

4.2 Causal and invertible ARMA processes

Below we will deal (in reversed order) with the problem of existence of ARMA(p, q)
process, its causality and invertibility.
We define first backward shift operator B. For a given (X;):cz we define

BX; =X, 1, teZ (4.9)
Thus j-times superposition of B is
BiX;=DBo---0BX; = X;_j,

where in particular B°X; = Id(X;) = X;.
We define two complex polynomials related to ARMA structural equation

p(z) =1—p1z— - —ppa”
and
0(z) =14+012+---+ 0,27

Related operators p(B) and 6(B) arise after formally plugging B as argument
©(-) and 6(-) and interpreting B’ as j times superposition of B as above. This
yields

o(B)=1d— 1B~ —p,B”

and analogously
6(B)=I1d+6,B+---+6,B9.

Note that due to sign convention in the structural equation, signs of coefficients
in p(B) and 0(B) differ. Now structural equation (4.1) can be succinctly written
as



58 4 ARMA(p, q) processes
¢(B)X; = 0(B)Z (4.10)
corresponding to
p(B)X; = (B —p1B— - —¢pBY) Xy = Xy — 1 Xym1 — -+ — 0p Xy
and
0(B)Z; = (B + 0B+ -+ 0,BNZy = Z; + 0171+ + 0,74,

Now we address the question of existence and causal/invertible representation
of ARMA time series. The following heuristics is helpful. Divide formally both
sides of (4.10) by ¢(B) and consider process

0(B)
€t
¢(B)
where 6(B)/(B) is interpreted as follows. We consider expansion of rational
function 6(x)/¢(x) into infinite series and plug in shift operator B to obtain
the definition of the process above. Theorems below specify conditions under
which this process is correctly defined (what answers the question of existence
of ARMA process) and is one-sided moving average (what solves the problem
of its causal representation). We start with the later problem, which is simpler.
First we prove a preliminary useful lemma.

Lemma 4.2.1 Let (X;)ier be arbitrary time series such that sup, E|X,| < oo
and (1;);Z%, is such that 3777 | < oo
(i) Then double-sided linear process

Yo = > X
j=—o00
1s well defined almost surely.
(ii) If additionally (X) is weakly stationary, then (Y3)ier belongs to L2, is weakly
stationary and

Yy (h) = Z%‘d)wx(h*jJrk)- (4.11)
jik
We note that we proved in Chapter 1 that when (X;):cr is white noise than (ii)
is satisfied under less stringent condition on (t;), namely that (¢;) € 2.
Proof of (i). As for any random variable W we have that E|W| < oo implies
|W| < oo almost surely, we show that

E( > vl |Xt—j|> < 0.
j=—0o0

Indeed, using the Lebesgue monotone convergence theorem for the first equality
below we have
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o0 n

B( Y [l 1Xel) = Jim B( Y [yl 1Xi-1)

j=—o0 j=-n

n
< limsup K| X i| < oo.
<limsup BIX| 30wyl

j=—n

(ii) Let Sy, = Z|j|<” ¥; X¢—j. We check the Cauchy condition for (St,), in £2.
The Schwarz inequality implies

D UiXe P= Y [l BIX e Xk <
m<|jI<n m<|jl,|k|<n
< E|X P ( Z |1/Jj|)2 — 0, where m,n — oco.

m<|jI<n

Obviously as limit of S ,, in £? which is established above is also limit in prob-
ability, thus it is determined almost everywhere and it coincides with the limit
in (i).

The form of covariance function of (Y;) follows from covariance of S;, =
lelén ¥;X;—; and continuity of scalar product in w L? (Problem 4.6 , see

also Example 1.3.3).

Theorem 4.2.2 Assume that (X;)iez is ARMA(p, q) time series such that poly-
nomials ¢(-) i 0(-) do not have common roots in C. Then (X;) is causal if
and only if p(z) does not have zeros in the closed unit disc i.e. o(z) # 0 for
zeC: |zl < 1.

Proof. We first prove that the condition ¢(z) # 0 for z € C: |z| < 1 is sufficient.
Let £(2) = (2) ! and note that it is analytic in the closed unit disc thus can be
analytically extended to its open neighborhood that is there exists € > 0 such
that

o0
£(z) = ijzj, for |z| <1+ e.
§=0

oo

It is easy to check now that (£;)32 is absolutely summable by taking z = 1+¢/
2 for which £(z) is convergent and noting that |;|(1 + £/2)7 — 0 implies
Z;io |€;] < oo. It is also easy to check that processes ¢(B)X; and 0(B)Z, are
weakly stationary. Thus in view of Lemma 4.2.1 application of £(B) to any of
them yields weakly stationary time series. Applying £(B) to both sides of the
structural equation we obtain

§(B)p(B) X, = £(B)0(B)Z;.
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Moreover note that &£(B)p(B) = Id (= B) that is £(B)¢(B)X; = X;. Thus
the equality above yields causal representation of X; as it is easy to see that
coefficients of £(z)0(z) are absolutely summable and whence square summable.
In order to prove that the assumption ¢(z) # 0 for z € C such that |z| < 1is
necessary, suppose that

ijZf _; for some (1;), Z|1/)J| < 0.

7=0
Let

n(z) = p(2b(z) = S omdd, J2 <1
j=0

Note that ¢(B)X; = 0(B)Z;, the fact that ¢(B)y(B) = ¢¥(B)p(B) and X; =
Y(B)Z; imply

29 Zij = p(B)Xy = p(BY(B)Z, = 3 0%
§=0

Calculating scalar products of both sides with Z;_x,k > 0 we obtain n; =
O, for k = 0,1,...,q and 7, = 0, for ¥ > g¢. This implies that
0(z) = n(z) = p(2)Y(z) and as |[P(z)| < oo for |z| < 1 and 0(-) i ¢(-) do
not have common roots, then ¢(z) # 0 for |z| < 1. Note that to ensure the
property [4(z)] < oo for |2| < 1 we have to assume that (1;) € 1.

It follows from sufficiency proof that ARMA(p, ¢) time series such that ¢(-) does
not have roots in the unit disc is causal without assuming that ¢(z) i 6(z) do
not have common roots. Moreover, it follows from equation ¢(z)1(z) = 1 that
o = 1.

Using analogous reasoning as in the proof of the previous theorem we obtain
equivalent condition for invertibility provided ¢(z) i 6(z) do not have common
roots.

Theorem 4.2.3 Assume that (X)iez is ARMA(p, q) time series such that poly-
nomials ¢(-) 1 0(-) do not have common zeros in C. Then (X;) is invertible if
and only if 0(z) does not have zeros in the closed unit disk i.e. (z) # 0 for
zeC: |z <1

As for the causality we also have that to obtain invertible representation one
does not need to assume that () i 6(-) do not have common zeros in C, i.e.
any ARMA(p, ¢) time series such that 6(-) does not have roots in unit disk is
invertible. Moreover, m(z)6(z) = 1 implies that mo = 1.

Now we address the question of existence of stationary solutions of structural
equation i.e. the problem of existence of ARMA(p,q) process. Note that sta-
tionary solution does not always exist, for example it is easy to check that the
solution of X; — X; 1 = Z;, where (Z;) is WN(0, ¢?) is not be stationary as it
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implies that X; = Xo + 22:1 Z; and Var(X;) is not constant. Indeed, it follows
from the Schwarz inequality that

Var(X;) > Var(Xo) + to? — 2(Var(Xo)to?)/? > Var(X),

where the last inequality holds for large ¢. Note that in this case p(z) = 1 —z has
root zgp = 1 on the unit circle. In the next result we state sufficiency condition
for existence and uniqueness of weakly stationary solution for the structural
equation. We do not assume that the polynomials ¢(-) and 6(-) do not have
common roots.

Theorem 4.2.4 If ¢(z) # 0 for |z| = 1 then p(B)X; = 0(B)Z; has the
unique weakly stationary solution and it has the form

X = Z ViZy_j,

j=—00

where (¢;) are given by the expansion

> v =

j=—c0

0(z)
p(2)
and - 1| < oo.

Proof. We prove first that stationary solution exists. As ¢(z) # 0 for |z| = 1, thus
Y(z) = 0(2)/¢(z) is analytic on the circle {z : |z| = 1} and can be analytically
extended to some its open neighbourhood where it has Laurent expansion. Thus
for a certain § > 0 we have

0(z) _
o(2)

Zl//jzj, 1-d0< |z <144

j=—o00

Reasoning as in the proof of Theorem 4.2.2 we conclude that ;(1 +§/2)7 — 0
when j — 0o and ¢;(1—6/2)? — 0 when j — —oc imply that 3272 [ < oc.
In view of Lemma 4.2.1

Xy = Z Vi
Jj=—00
exists and is weakly stationary. Application of ¢(B) to both sides of above equal-
ity yields
(B)X: = ¢(B)Y(B) X, = 6(B) Xy,

where the last equality follows from the definition of (-). Thus (X;)¢ez is weakly
stationary solution to the structural equation of ARMA(p, ¢) process.

In order to prove uniqueness consider an arbitrary solution (X;)¢cz to the struc-
tural equation. The first part of the proof gives
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1

= 2 1—-6<|z| <146

j=—oc0

£(z) =

Applying £(B) to both sides of the structural equation

X, = £(B)6(B)X, = £(B)O(B) 2.

But £(B)0(B) = ¢ (B) defined in the first part of the proof and the last equality
shows that (X;) has to coincide with the previously obtained solution.

We stress that for the existence of the stationary version proved in the last result
it is important that (X;) starts at minus infinity. It follows e.g. from Example
4.1.3 that AR(1) process starting at 0 is not necessarily stationary even when
o] < 1.

We also note that in Example 6.2.8 we will show that in the case when ¢(-) and
0(-) do not have zeros with |z| = 1 it is possible to find causal and invertible
ARMA process having the same covariance structure as the original process.
We briefly discuss the case when autoregressive and moving average polynomials
have common roots. The uniqueness of the solution depends then on whether
¢ has roots belonging to the unit circle or not. We consider first the case when
¢ does not have roots on the unit circle. In view of Theorem 4.2.4 if p(z) # 0
for |z| = 1 the solution to problem pertaining to (6, ¢) exists and is unique. Let
p=npandh = n0, where 7 is the greatest common divisor of 16, which means
that ¢ i @ do not have common roots. Then it follows from the construction in
the last proof that the solution for the pair (6,¢) coincides with the unique

solution for the pair (6, ®) and has representation

W(B) , _0(B)
13(B) "~ 3(B)

The above equality is due to the fact that n(z) # 0 for |z| = 1. The outcome is
different when the greatest common divisor 77 has a root zg on the unit circle. For
any stationary solution X, consider a process W, = Zz, ¢ where Z is an arbitrary
zero-mean random variable in £2. Note that such process is weakly stationary
due to the fact that |zp] = 1. Note also that we have (B — 20B°)W; = 0 and
since zq is a root of 7 and thus n(z) = (z — 29)t(z) it holds that n(B)W; = 0.
Since 7 is a common divisor of ¢ and 6 we have ¢(B)W; = 0 and 6(B)W; = 0.
It follows that X; + W; is also stationary solution to structural equation and
we do not have uniqueness of the ARMA process satisfying structural equation
corresponding to (¢, 6) in this case.

Zy.

Example 4.2.5 We consider anew AR(1) time series
X=X+ &

where g; is WN(0,0?) in two cases (i) |¢| < 1 and (ii) |p| > 1. Note that for
v = 1 we obtain the random walk. In case (i) we have shown that there exists
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unique solution (X;) which is causal process AR(1). The causal solution can be
also easily obtained from the proof of the Theorem 4.2.3, namely

X =

l—ng ZSDZ“

In case (ii) weakly stationary process AR(1) exists in view of Theorem 4.2.4 but
it is not causal. We find its representation as a linear process. To this end note

k—1
Xiy1 €41 Xtk

_ _ _ Ei4j
Xp= DSl Rk NS

® ® ® = v

As (Xy) is stationary, the first term on the right hand side in the above equality
tends to 0 in £L? and we obtain the representation

oo

X, =y 2

=i

We calculate covariance function of this process. For h > 0 we have

2

oo

_ Eitj Et+h+j o2 __c —h

’y(h)—COV(— g — - g 7) E J+h —~ = 2_1@ (4.12)
i & j=1 1P ¥

and thus p(h) = =", Note that since correlation structure is exactly the
same as for AR(1) process with autoregressive coefficient p~1, the Yule- Walker
equations yield that predzctwn of Xi41 based on Xi,...,X: equals Xy =

X, = —ZZ 1<p ~i=le, ;. We check that indeed 1Xt is perpendicular to
Xt+1 — Xip1 = @ 2641 + P (o (D) — o= =D)ey
. 1 > 1 1
COV(XtJ,_l - Xt+17Xt+1) = *E - Z (W - ﬁ) =0. (413)
i=2

Example 4.2.6 We consider now ARMA(1,1) with mean p
Xi—p=p(Xi—1—n)+e+0e4-1, (4.14)

where || < 1. We know that such process is causal with respect to white noise
et and we compute now its causal representation. Structural equation may be
written as (1 — B)(Xy — p) = (1 + 0B)e. Whence

(1+93) — ipi it
Xi—p= (1_ B) =(1+6B) Zgo Z(pBEt-l-Q;QDB €t

S B 03 B e (0 5B
=1 i=1 i1
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Thus in this case

P(z) =1+ (p+0) Zwlzi- (4.15)

Using causal representation we will compute covariance function of (X;). Causal-
ity implies that E((Xy—;—p)er—r) = 0 for j > 7. Thus for h > 2 terms e, +0e,_1
appearing in structural equation (4.14) of Xy — p are uncorrelated with X;_p, and
we have

y(h) = E(Xt — u)(Xe—p — p) = py(h — 1)

and thus it follows that v(h) = "~ 1~(1).
We compute now v(0) and ~(1).

v(0) = BE(X; — p)* = E(Xy — p)(o(Xp—1 — 1) + €0 + Og—1)

= 90'}/(1> + E(gt + ((P + 9) (,Di_lBiEt)(Et =+ 9515,1)
=1
= oy(1) +0* + (¢ + 0)0c>.

Analogously
(1) = E(p(Xi-1 = p) + &1+ 02-1) (Xs—1 — p1) = ¢7(0) + 60,

where in the last equality we used Xy—1 —p = @(X¢—o—p)+¢e1—1+0e4_2. Solving
two last equations we have

14200+ 67
=——0

(1+¢0)(p + 9)02
1— 2 '

7(0) v(1) = T

Note that v(h) can be directly calculated using (4.15) and derivations in Example
1.3.3(ii). Namely, for h >0

o0

Y(h) =0 tithipn = * (0 + )"+ (0 +0)2* DT

=0 i=1

=" Mo+ 0+ 0 (p+0)°0Y)
1=0

(p +6)?

i (P . ) (4.16)

1 — 2
which coincides with previous calculations.

Covariance function of process ARMA(1,1) for h > 1 has the same power law
decay as AR(1) process but in contrast to it v(1) # ov(0), if 6 # 0.
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4.2.1 Covariance function for a causal ARMA(p, q) time series

We show that, as the previous example suggests, causality of ARMA(p, q) time
series is an useful tool for calculating its covariance function. Namely, suppose
that process (X;) with structural equation ¢(B)X; = 0(B)Z; satisfies assump-
tions of Theorem 4.2.2 and has causal representation X; = Z;ﬁo Vi Zi_j. We
calculate scalar products of both sides of (4.1) with

(oo} oo

Xi k= Z%‘Zt—k—j = Z%—kzt—j
j=0 j=k

and using the above representation of X;_; we have

Y(k) —pry(k—1) ==k —p) =0 D 050

k<j<q

for 0 < k < g and

V() —pr1y(k —1) = —ppy(k —p) =0

for k > q.
It is known that for h > max(p,q + 1) — p solution to the equations above has
the form

I ri—1
y(h) =" Byl
i=1 j=0
where & for i = 1,...,1 are all different roots of ¢(z) = 0, r; their respective

multiplicities and §;; certain constants. As || > 1 (causality!), autocovariance
function tends to 0 with h — oo, and its rate of decay is determined by a root
(or roots) with the smallest distance to the unit circle. We note that from the
last equation it follows that the autocovariance function of causal ARMA(p, q)
process satisfies |y(h)| < a=" for a certain a > 1 when h — oo.

For ARMA(p, q) process with only few non-zero coefficients of ¢(-) i 6(-) covari-
ance function can be often calculated explicitely as in the case of ARMA(1,1).
We consider one more example

Example 4.2.7 Let (X;:) be ARMA(12,1) process defined as X = ©Xt_12 +
Zy+0Z,_1, t € Z, where |p| < 1. From the results of this section it follows that

Xy is causal with respect to Zy. In order to compute its covariance function note
that
Y(0) = < X, Xp >=< Xy, 0Xp12+ Zy + 021 >

oY(12)+ < Xt 10+ Zi +0Zs 1,74 + 071 >= py(12) + 0% + 6702,

as from the causality of Xy it follows that < Xy_19,Zi—; >=0 fori < 11. In an
analogous way we check that v(12) = ¢y(0). Thus
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14067,
T

7(0)
From the equality v(h) =< ©Xi_10 + Zt + 0Z;_1, Xi—p, > we have that

v(1) = ey(11) + 6°

and for 10 > h > 2, v(h) = (12 — h) = ©?>y(h) = 0. Moreover, y(12h + i) =
©y(12(h — 1) 4+ @) for h > 0 and |i| < 12. Consequently

1+ 62
v(12h) = " - o’
0
p(12h + 1) = ol — 52,
( 17 s02

For the remaining values of lag h v(h) equals 0.

Note that for the process Xy = ©Xi—_12 + & with || < 1 correlation function
equals p(12h) = o™ for lags 12h and 0 otherwise. In the above example, due
to occurrence of MA(1) term in the structural equation, nonzero correlations for
lags 12h £ 1 appear.

The following two results provide important characterizations of AR(p) i MA(q)
processes, respectively.

Theorem 4.2.8 (i) If (X;) is causal AR(p) time series then a(n) = 0 for n > p.
(ii) If a(n) = 0 for n > p and (X;) is nondeterministic, that is || Xy — X¢|| > 0,
then (X:) is AR(p).

Proof. As (X;) is causal, g; L Zle ©; X;_; and thus it follows that for n > p
optimal linear predictor Xt’n = Zle i X:—; and whence for n > p a(n) =
©nn = 0. Conversely, )A(t,n - X (cf. Problem 5.2(ii)) and thus it follows that
forn>p )A(t’n = Xt and as ¢; = X; — Xt is a nondegenerate white noise (we
will check it in the proof of Wold’s theorem next section) the conclusion follows.

Theorem 4.2.9 Assume that (X;) is nondeterministic. Then y(h) = 0 for |h| >
q is equivalent to (X;) is MA(q) for a certain white noise (Z;) with nonzero
variance.

Proof. Let Z; := X; — Pp,_, X;. Again, we use the fact that (Z;) is WN(0, 02),
where 02 =|| X; — H;_1X; ||? is positive due to assumptions. As summands in
the decomposition X; = Py, , X + Z; are uncorrelated, we have for any ¢ € N
that

Ht(X) = Htfl(X) D Sp(Zt) == Ht,q(X) (&) Sp(Zt, thla ey Zt7q+1)

and
H 1 (X)=Hi—q1(X)®sp(Zi—1,Zt-1,...,Zs—q).
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Then
Xe=21+ Py,  Xe =2+ Pu, , Xe + Popz,_ 2, 1,...2,_ ) Xt-

As X, is uncorrelated with X;_; for i > ¢, then it follows from

the Yule-Walker equations that PHt,l,th = 0 and the conclusion follows from
Pop(2 1,241y Ze ) Xt = Sod 1 0:Z,_; for certain 6y, ..., 0,.

From the last result we have the following conclusion.

Corollary 4.2.10 X, ¢ Y; are two mean zero weakly stationary time series with
the same covariance function. If X; is ARMA(p, q) , then Y; is ARMA(p, q) (not
necessarily with the same coefficients).

Proof. Let ¢4, . .., ¢, be autoregressive coeflicients of the process X; and consider
the following process

p
Yi=Yi— > ¢iVi
=1

Then as X; := X; — Y X =&+ Z?:I 0;e+—;, covariance function of X,
vanishes for lags h > ¢ and in view of assumptions covariance function of Y; has
the same property. But then from the previous result it follows that Y; is MA(q)
and the conclusion follows.

4.2.2 Prediction for causal ARMA(p, q) time series

We discuss now a useful fact that for causal ARMA(p,q) prediction of X1
for n > max(p, q) requires only ¢ last innovations and p preceding values of the
process instead of all n innovations. As a by-product we establish an important
property which we will later use that predictor X, ;; does not depend on the

variance of errors o2.

Theorem 4.2.11 Let (X;)iez be causal process ARMA(p,q), m = max(p,q),

~

X1 = Prx, x 3 Xnt1- Then
(i)
X1 = Yoy Oni(Xp1—i — Xps1-i)s Jor1<n<m
R (the usual innovation representation) (4.17)
Xnpi=o1 X+ -+ 0pXny1p+
+ 3001 Onj (Xpg1—j — An+1_j), form>m

(i) Xns1 and | Xnt1 — Xoi1 |2 /o? do not depend on o?.

Proof. We consider an auxiliary process W; defined for 1 < t < m as W; =
o 1X,, and for t > m as

Wt = Uil(Xt — 301th1 — e — SDPXt*P)'
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Note that (W;) does not depend on o2. This follows from the observation that
for t > m we have

Z Zy_ Zy—
Wy="2 40,7 40,700,
o o

where (Z;/0)tez does not depend on o whereas for ¢ < m in view of causality we
have X; /o = > .2 i Z;—; /o, where 1);, obtained as coefficients in the expansion
of 6(z)/¢(z), also do not depend on o.
We let 8; = 0 for j > g. W, is not weakly stationary but its autocovariance
function is easily computable. We have

o 2yx (i — 7) for1 <i,j<m
o (xi=4) = 3wl = li—jl))
(i, 5) = lf€0=rI min(z, j) < m < max(4,j) < 2m
zq: 0r0r41i—j| for min(i,j) >m
6=0 otherwise

Note that m > p is used to calculate autocovariance under the second condition
and m > q is used in the case of the fourth condition.
Innovation representation of {W;} is

n
Whi1 = ZGM(WRH,]- —Witi-5), 1<n<m
j=1

q
Wit1 = Ze7zj(wn+1—j - n+1—j)7 nzm.
Jj=1

For n > m we have only ¢ summands in the last equation as we observed while
discussing innovation representation that ~(n,j) = 0forn > m and j: [n—j| > ¢
yields 6,,; = 0.

Moreover, we note that H,, = sp{X1,...,X,} = sp{W1,...,W,}. This is obvi-
ous for n < m and is easily obtained inductively for larger n. Then the projection
of Wyy1 on sp{Wi,...,W,} coincides with its projection on sp{Xj,..., X, }.
Projecting both sides on the last subspace in view of the definition of W; we get
Wy =o0"1X,, t=1,2,....m

Wt:a’l[Xt—golXt_l—---—<prt_p], t>m

and it follows that

Xn+1 - XnJrl = U(Wn+1 - Wn+1)7 n > 0.

This establishes (i). (ii) follows directly from (4.17), as 6,,; do not depend on o2
as the covariance function of (W;) does not depend on it.
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4.3 Problems

1. Let (X;) be ARMA(12,12) time series of the form X; = ¢ X;_ 10+ Z; +0Z;_12
for |¢|, 0] < 1. Compute its covariance function.

2. X; is ARMA(2,1) time series given by X; —0.06X;_1+0.09X; o= Z;+ Z;_;.
Find:

(i) its causal representation;

(ii) linear prediction of X5 based on Hy(Z).

3. Consider ARMA(1,1) time series with mean p

Xe—p=a(Xi1—p)+Z +0Zi 1

with |b| < 1. Find invertible representation of this process.

4. Check that for causal AR(2) time series we have for h > 1 v(h) = p1v(h —
1) + pay(h — 2).

5. Show that invertibility is a stronger property than Z; € Hy(X) ie. it
may happen that Z; = lim, . Z;'L:o ajnX¢—j, however, it is not true that
Zy = Y.72a;X;—; for some square integrable sequence (aj). Hint. Consider
non-invertible MA(2) process Xy = Z; — Z;_1.

6. Prove equality (4.11).

7. Let (X;)ez be a zero-mean AR(2) such that (g, isWN(0,0?))

Xt — 0, 8Xt_1 + 0, 15Xt_2 = &t.

(i) Check that (X3) is causal.

(ii) Using representation of autoregressive polynomial ¢(z) = [[5_,(1 —a; '2) ,
where a; are roots of ¢(z) find the causal representation of (X;). What is the
prediction error of one step prediction of X; based on H;_1 7 Justify your answer.
8. Prove Theorem 4.2.3.
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Representation of nondeterministic processes:
the Wold theorem

The Wold theorem states important representation of weakly stationary deter-
ministic processes (5.3) which is theoretical underpinning of using one sided
moving average as a modelling tool. Unfortunately, for a given WS time series
(X¢) it is usually hard to construct pertaining innovations Z; which are building
blocks of this representation as are based on projections of X; on its past.

5.1 Deterministic and nondeterministic processes

Throughout this chapter (X;):cz will denote a weakly stationary process. Recall
that Hy(X) := 5p(Xs, s < t). We consider projection of X;y; on Hy = Hy(X)

XtJrl = PHtXtJrL

Definition 12 We call (X})iez deterministic process if
Xi11 = X4p1 forany t e Z (5.1)

Obviously, the above equality should hold with probability 1, or equivalently
H:i1(X) C Hy(X).

It follows from weak stationarity that if the condition above is satisfied for some
t then it is satisfied for all ¢. It is almost trivial to note that in view of weak
stationarity (5.1) is equivalent to any of the two conditions below:

(1) For any t we have ||Xt+1 — PHtXt+1||2 = E|Xt+1 — PHtXt+1|2 =0

or

(i) X1 € Hooo(X) = OHt(X)-

When weakly stationary process does not satisfy (5.1) we call it nondeterministic.
Note that if the series (X;) is nondeterministic we have that I, > 0 for n € N
or, putting it differently, for any ¢1,...,t, X4, ..., X, are linearly independent.
Deterministic process are not very interesting objects as far as randomness is
concerned since they describe series for which a future value is wholly represented
by its past. However, it turns out that this type of determinism is sufficient to
describe deterministic part of the process, see (5.3).

Example 5.1.1 If we consider X; = Acoswt+ Bsinwt, where A, B are uncor-
related mean zero random variables with variance o2, w € R is fized frequency,
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then the randommness of X, is due only to randomness of random wvariables A
and B which do not depend on t.

It is easy to check that X417 = 2cosw Xy — Xy—1 for any t € Z thus (X;) is
deterministic since X1 € sp(Xi—1, Xt) C Hy(X).

We first give a less obvious characterization of non-deterministic processes in
terms od their partial autocorrelation. Observe first that equality (3.20) and
remark 3.2.1 below the proof of the Durbin-Levinson algorithm imply that

=

s
Il
-

02 = FY(O) (1 - gpu - H 1 - Oé (52)

Another useful expression for the innovation variance o2 in terms of the loga-
rithm of the spectral density is given by Kolmogorov-Szegd formula (cf Theorem
6.20). It follows from (5.2) that

Theorem 5.1.2 Let (X;) be a weakly stationary process. Then it is nondeter-
ministic if and only if

Proof. We consider two cases. Firstly, we can have that o?(i) = 1 for i > i. Then
process is deterministic (cf proof of (3.29)) and at the same time Y -, (i) is
infinite. In the second case, we have that o?(i) < 1 for all i. Then due to (5.2)
the process is nondeterministic if and only if [[2, (1 — a?(i)) is nonzero. But
this is equivalent to (a(i))ien € €2 as (i) < 1 for all 7 .

5.2 The Wold theorem

Let 02 = E|X;11 — Py, X;4+1|? which is strictly positive for a non-deterministic
process. Note that E|X;y1 — Py, X¢+1]?> does not depend on t as for any ele-
ment Wy = 3, -, @i, Xt11-4, approximating X;y; we have E|X;yy — Wi [> =
E‘XS+1 - Ws|2, where WS = Zik21 aisz+1_l-k.

Theorem 5.2.1 (Wold). Let (X;)iez be a weakly stationary nondeterministic
time series, EXy = 0. Then X; has representation

X =Y iZij+ Vi, (5.3)

Jj=0

where

(i) (Z;) is WN(0,0?);

(i7) Z]Oio %2 < oo, Po=1
(#i1) Zy € Hy(X);
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(iv) E(ZVs)=0 foralltséeZ;

(v) Vi€ H o(X);

(vi) V; is deterministic: Vi € H_oo(V);

(vit)  Representation (5.3) is unique when (Z;) and (Vi) satisfy conditions
(i)-(vi).

Note that (5.3) is an representation of X; as the sum of two terms: one-sided
linear process and a deterministic one. Variables (Z;) are innovations of the
linear part.

Proof of (i) — (vi).

(i) Consider the decomposition X; = Py, , Xi + Xy — Py,_, X; and define Z; as
a term in this decomposition perpendicular to H;_1(X), namely

Zt = Xt - PHt_lXt- (54)

Moreover, let 02 = ||Z;||? and

1[)- L < Xt7Zt7j > . < Xt,thj >
N Ze 12 o? 7

V=X — ijztfj'
§=0

It will follow from (i) and (ii) that V; is well defined. Note that (5.4) implies
that Z; € H; and Z; 1. H;_1 and thus Z; € Htﬁl - Ht{Q C .... In particular
Z; € HE for s <t and thus E(Z;Z,) = 0. We omit the proof that EZ; = 0 and
that weak stationarity implies that 02 = || X;11 — Py, X¢41/|> does not depend
on t. These properties together mean that Z; is weakly stationary white noise
WN(0, 0?).

(ii) Consider the projection of X; on 5p(Zs,s < t) and call it X,. As (Zs)s<t
form an orthogonal base in 5p(Zs, s < t), we have

< X, Z >

& ty Lt—j

Xe = E 7 2 Z_]QZt—j = E ¢j2t—ja
) H t—j H =0

where the form of the coefficients easily follows from the fact that (Z;) are
orthogonal. The fact that wa < oo follows now from properties of projection
and orthogonality of (Z;):

o0
0o > X, 22] Ko 2= 02302,
j=0

Moreover, note that

Yo =< X1, Zs > o =< X4, X — Py, , Xt > Jo® =|| Xy — Py,_, X; |? Jo? = 1.
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Proof of (iii) follows from the definition of Z;. In order to prove (iv) note that
definition of V; implies that V; 1L Z,, s < t as X, = Z;io Y Zy_; is the
projection of X; on $p(Zs,s < t). On the other hand for s > ¢ we have Z, €
Ht, C H* and V; € Hy, whence Z, 1L V;.

Proof of (v). We have that V; € H = Hy—1 @ sp(Z;) but V; L Z; thus V; €
Hy 1 = Hi_o ® sp(Z;—1). Whence V; € H;_5 and proceeding in an analogous
way we obtain that V; € H;_; for any j € N which is equivalent to

Vi€ (| Hi—j = H-oo(X).
§=0

Proof of (vi). It follows from the definition of V; and Z; that
Hy(X) =5p{Z;,j <t} &sp{V;,j <t} (5.5)

We consider any Y € H_,(X) and we show that Y € @sp(V;, j < t). As we
have that Y € H, N Hs_q but Hy = Hs_1 @ sp(Zs) it follows that Y | Z; and
in view of (5.5) it means that ¥ € &3p(V;, j < t). This together with (5.5)
yields 5p(V}, j < t) = H_oo(X). As this holds for any ¢ it implies = H_ (V) =
Vi, j < 1)

We prove now the uniqueness of representation (5.3). Let (Z;) i (V;) be any
processes satisfying (5.3) and conditions (i)-(vi). In this case representation (5.3)
entails H,_1 C 5p{Z;,j7 < t — 1} & 5p{V;,j < t — 1}, and thus conditions (i)
and (iv) imply that Z; is orthogonal to H;_1, as Z; is orthogonal to Z; and
to Vj for j <t — 1. Projecting both sides of (5.3) on H;_1(X) we thus obtain
Py,  Xe =Y 2 ,0iZi—i +V; (as Z; for i <t —1 and V; belong to H;_1(X)),
whence we have Z; = X; — Py, _, X; i.e. (5.4). Form of v; follows from computing
scalar product of both sides of (5.3) with Z; and using (i). Finally, if (5.3) holds
than V; has to be defined as in the proof of the theorem.

Note that it follows from the proof how the projections of X; on H;_1(X) and
on H;_1(Z) are related. Namely we have

[ee]
Py, )Xt =Y ¥iZii+ Vi =Py, )Xe + Vi
=1

Remark 5.2.2 (i) Alternative proof of the Wold representation is obtained by
proving that for nondeterministic process (X¢) it follows from Hy(X) = Hy(X)®
Sp(Zs41,- .., 2Zt) for s <t that (cf. problem 5.1)

Hy(X) = H(Z) ® H_oo (X). (5.6)
Indeed, then (5.6) implies
Xt = Py, (x)(Xt) = P, (z)(Xe) + Pg__ x)(Xe) =2 U + V4.
As (Zs)s<t s an orthogonal base in Hy(Z), we have Uy = ZJO.OZO Vi Zi_; for a

certain sequence (1;) € 2.
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(i) Note that the proof of the Wold theorem yields also Wold decomposition of
the finite order, namely for any n € N we have

X = Z'(/)kzt—k + €t,n,
k=0

where ey p, € Hy_p—1.

Remark 5.2.3 Consider shortly the case when (X3) is stationary, zero mean,
nondeterministic and Gaussian. Then it follows that the projection on the whole
past X, is Gaussian as the variances o2 of (Gaussian) approzimands of X, in
H._1 converge to a certain o® and thus Xt has N(O,az) distribution. Moreover,
(Xt,Xt) is jointly Gaussian. Then it also follows from the proof of the Wold
theorem that (Z;) and (Vi) are Gaussian processes. If (X) is q-dependent for
some q € N we have V; = 0 and the formula for i; implies that ¥; = 0 fori > gq,
thus (X¢) is MA(q) series. On the other hand it is easy to check that if X; and
Xi—k,k > p are independent given Xy_1,...,X—p then (X;) is AR(p) causal
series. namely this implies by conditioning that

E(X: — B(X¢|Xi—1,.. ., X4—p)| Xe—k) =0
for k > 0 and the conclusion follows from gaussianity and Problem 1.9.

We define now another property related to nondeterminism.

Definition 13 Zero mean time series ws (Xi)iez is purely non-deterministic
(PND) or linearly regular if H_o, = {0}. For an arbitrary mean WS time series
(X:) is PND if X, — EX; is PND.

It follows that, as the name suggests, that pure nondeterminism is a stronger
property than nondeterminism, that is any time series which is purely non-
deterministic is nondeterministic. Indeed, if (X;);cz is deterministic this en-
tails Hy(X) C Hy—1(X) for any ¢t and thus H(X) C H_(X). In particular
H_(X) # {0}. We have

Proposition 5.2.4 White noise (¢¢)iez is PND.

Proof. We want to prove that Y € H_,(¢) implies that Y = 0 almost every-
where. We have that Y € H;_1(e) C H¢(e), but for any t € Z e, L H;_1(e) and
thus < Y,e; >= 0. However, as Y € H(e) and (e¢)iez is a maximal orthonormal
subset in H(¢) we have that

Y = Z cses,  (cs) €02

S§=—00

But < Y,e; >= cy02 = 0 implies ¢, = 0 and thus Y = 0 almost everywhere. Note
that (e¢):ez is maximal orthonormal subset in H(g) as for any putative a € H (¢)
such that a is perpendicular to any &; it would imply that a is perpendicular to
sp(et) = H(g), a contradiction.
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In view of the Wold theorem any purely nondeterministic process satisfies
o0
X = Z’Lﬁjé‘t,j, Z ‘wj‘Z < 00, (57)
j=0

In other words, any PND process is causal (or has MA(o0o) representation) with
respect to a certain white noise, where (g;) is WN(0, 02). Conversely, if V; = 0
in the Wold representation then it follows from Proposition 5.2.4 that (X;) is
PND. Indeed, in this case we have H_(X) C H_ () = {0}. Thus we obtain

Proposition 5.2.5 Weakly stationary process (Xi)iez is causal with respect to
a certain white noise if and only if it is PND.

Representation (5.7) is also frequently called MA(co) representation of PND
process (X;) and coefficients (1;)32, its MA parameters.

5.3 Prediction based on infinite past

Corollary 5.3.1 Consider Wold decomposition (5.3) of weakly stationary non-

deterministic process (Xi)iez and let )?l be l-step prediction of X; based on
Xo,Xfl,X,Q, .... Then

oo
X; = Z'(/)jZl_j + V.
=L

and
-1

Var(Xl - )?l) = 0'2 Z’l/)]z
7=0

Proof. Rewriting Wold decomposition of X; we have

-1 00
X = Z%‘Zl—j + Z%‘Zl—j +V
=0 J=1

From the construction of Z; it follows that the first term on the right hand side
is perpendicular to Hy(X) whereas

> WiZi; € Hy(X) and V € H_oo(X) C Ho(X),
j=l
and thus Zj’;l Y;Zi—; + V), is a projection of X; on Hy(X).
Remark 5.3.2 (i) From Corollary 5.3.1 it follows that if (X;) is PND then

£2
Py, Xy — 0, when n — oo,

t
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since

| Prt,, X [1P=00> " Uk Zoi |P= 02 [ibw|* — 0.

k=n k=n
(i) If (X;) is PND then

y(k) =02 Wik, k=1,2,..., dho=1 (5.8)

Jj=0

Note that (5.8) can be written in a matriz form

"}/(0)’)/(1) 1 1[11 1/)2 1 0 ......
’y(l)’y(O) 9 0 1 1/)1 1)/}1 1 ... ...

or, equivalently, T = o?®W®’, where T' = (y(i — j))ij>1 is the infinite covari-
ance matrix and ¥ = WFj)i,j}l; where g = 1 and ¥; = 0 for i < 0. This
s obviously equivalent to Cholesky decomposition of I'. Predictions above are
constructed based on the Wold decomposition of a PND process, in particular in
the development we used the property that Hi(Z) = Hy(X) (cf. (5.6)). This is
not necessarily true for any linear decomposition of the process. In particular,
for the linear process X; of the form

X = Z 1/%'Zt7i7
j=0

for (¥;) € €2, 4hg # 0 it is not necessarily true that Hy(Z) = H,(X) if X, is not
invertible and we know only that Hi(X) C Hy(Z). Then for l-step prognosis we
have
-1
E(X; - X))* = B(X| — Pyyx)X1)? > E(X; — PyyzX1))> =0* Y _v7. (5.9)

i=1

However, in the case of ARMA(p, q) the following statement is valid.

Proposition 5.3.3 Let (X;) be causal and invertible ARMA(p,q) time series
generated by white noise process with non-zero variance. The (X;) is purely non-
deterministic and its Wold decomposition coincides with causal representation of

(Xy).

Proof. Proof of the proposition follows from the observation that Z; = X; —
Py, _, X, where Z; is the white noise appearing in the definition of (X;). Namely,
as causality and invertibility implies that H;_1(X) = H;_1(Z), we obtain by pro-
jecting both sides of causal representation of X; that Py, ,X; = Zf; Ui Ly,
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and since 9 = 1, Xy — Py, , Xy = Z; we see that innovations defined in
the proof of Wold theorem coincide with innovation Z;. Similarly, equality
H, 1(X) = H;_1(Z) and(5.6) imply that H_(X) = {0} and thus (X;) is
PND.

Actually, a more general statement holds true (see e.g. Doob (1953)), namely that
equivalent condition for equality (5.9) to hold (or, equivalently that H(X) =
H(Z)) is that ¢(2) = Y729 27 does not have roots for [2| < 1 provided
(1h;) € 4.

Thus in view of the previous considerations we have

Corollary 5.3.4 Let (X;) be a causal and invertible ARMA (p,q) time series
such that p(B)Xy = 0(B)Z; and Z; is WN(0,02). Then

P, (x)Xnyn = — Z"TjPHn(X)XnJrhfj (5.10)
j=1
P, x)Xnih = Wi Zninj, (5.11)

j=h
where (;) are coefficients of expansion of ¢(z)/0(z) and (v;) are coefficients of
expansion of 0(z)/p(2).
Equality (5.11) implies that
h—1
E(Xpyn — PHn(X)Xn-‘rh)2 =0’ Z 1;[}32
j=0

We have proved that in the case of causal and invertible ARMA time series its
Wold decomposition coincides with its causal representation and this is equiva-
lent to (5.11). Moreover, using invertibility and 7o = 1 we have

Lpth = Zﬂ'an+h,j = Xpqn + ZﬂjX?H*h*j'
3=0 j=1
As Z,yn L Hp(Z) 2 Hp(X) for h > 0 in view of causality this implies

PHn(X)Zn+h =0.
Projecting both sides of the equality above on H, (X) yields (5.10).

The Wiener—Kolmogorov formula. Let ¢(z) = 0(z)/p(z). Then (5.11) can
be stated in the following way, known as the Wiener—Kolmogorov formula.
Namely,

Py Xpan = (¢l(£)>+ ﬁX’“ (5.12)

where
Y(B)

= = B™" 4y B 4, BY 44 B+
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and (-)4 denotes a truncation operator defined as

(> wiB'X)) =Y ¥iB'X,.

i—— oo i>0

Proof of (5.12). Note that

Py, Xpin = Zw]‘z’rrfh*j = (%)Jr Zn.
j=h
At the same time (B) )
4
Zn = 7Xn = T\ ny
0(B) Y(B)

and the conclusion follows.

Example 5.3.5 Let X; be MA(1) time series X; = (1+60B)Z;, |0 <1
The Wiener-Kolmogorov formula implies that

1+6B 1
PXein = (—5 )+ 5
Forh=1
1
( + GB) _9

B +

and 0
P X1 = th =0X, —*°X, 1 + 03X, _o— ...

which also follows directly from (4.8).

We also provide an elegant formula for prediction error of X; when prediction is
based on the infinite past.

Proposition 5.3.6 Assume that T',, is invertible. Then
If 0? = || X} — Py, , X:||> > 0 (non-deterministic process), then o2 > 0 for any
n and

1
0? = exp( lim - log |T'y]). (5.13)

The proof follows from (3.12) by noting that logo? = log(|T';+1]) —log(|T;|) and
32121 log o7 = log(|T'u]) — log (IT))-
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5.4 Predictive and autoregressive representations

We noted already that Xt = Pp,_, X; does not necessarily need to have rep-
resentation as an infinite sum ), ¢; X;_; (cf Problem 4.5). We now consider
conditions under which it has such representation. The following elegant result
can be proved.

Theorem 5.4.1 Let X; be zero mean weakly stationary non-deterministic pro-
cess. Then for any t € N, X; may be uniquely represented as

Xo=> @iXei+ Zin, (5.14)

i=1
where Zy,, € Hy_p_1.

Proof. We will use the useful fact that if Y € $p(€, X), where £ is a closed
subset of £2 and X ¢ &€ then Y = vX + ¢, where 7 is nonzero constant, ¢ € &,
moreover this decomposition is unique (Problem 5.3). As X, € sp(Xi—1, Hi—2)
and X; 1 & Hy_o as (X;) is non-deterministic, then X, = w1 X¢—1 + Zt,1, where
Zy1 € Hy_o. Applying the same reasoning to Z; ; and continuing further in the
same fashion we obtain the conclusion.

Note that it immediately follows from (5.14) that letting e, = X; — X, we have

X = Z ©iXi—i+ e+ Ly
i=1

The above decomposition is called predictive representation of (X3).

It follows from the proof that the intuition concerning ¢; is as follows: ¢y is co-
efficient corresponding to X;_; in decomposition of X, into linear combination
of X;—1 and element of Hy;_5 (equal to Z; ). Further, ¢, is coefficient corre-
sponding to X;_o in decomposition of X, — (1 X¢_1 into linear combination of
X;_o and an element from H;_3 and so on. Note that it is not decomposition
into orthogonal components.

Series > 2, ¢;X;_; does not need to converge. If it does, we say that (X;) has
an autoregressive (ARR) property, since then

Xy = Z @i Xp—i + Wi + &4,

i=1

where W, € H_o(X) and ¢, = X; — X, is white noise. It follows from the fact
that in this case Z; ,, converges and it is easily shown that the limit has to belong
to H_ 4. Obviously, if the process is PND then W; = 0 and we have that

X =Y 0iXi i +e,

i=1
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where the series converges in £2. This is AR(co) representation. Coefficients
(¢q) are called autoregressive coefficients. Note that the decomposition solves the
problem of representing X, by infinite series. It also follows that the equivalent
condition to ARR property is

oo

ZZy(k—l) < o0

k=11=1

(note that the above double sum is nonnegative due to the fact that v(-) in non-
negatively definite) and sufficient condition is that (¢;) are absolutely summable.
AR(o0) representation is also useful because of the following reason. Let

Xim = Popix, o x0) Xt

Frequently in practice prediction of X, 45 based on n observations Xi,..., X,
is replaced by truncated prediction based on the whole past H,(X) = sp{X; :
Jj < n} (truncation consisting of the first n terms of the sum) as the computa-
tion of the latter is frequently easier and, moreover, for n large both predictions
are approximately equal. This is indeed the case as it may be proved that (cf.
Problem 5.2 (ii)) that with no additional assumptions we have X;, — X; when
n — o0o. As, using notation of Chapter 2, we have Xt,n = Z?:l ¥n,iX¢—; the
convergence suggests that ¢,, ; should approximate ¢; when n — oo and X, is
given by X; = Ef; Pi X

It turns out that although convergence of coefficients ¢, ; — ¢; for any ¢ holds
for nondeterministic process (cf. Theorem 7.14 in Pourahmadi (2001)), however,
norm convergence of the vectors (¢n.1,9n.2,--.,¢nn) to (p1,92,...) is equiv-
alent to PND property. Representation of X, = Zfil p; Xt—; may not hold
because of two reasons: series (31 ; ©;X;—;), may not converge or X, is not
equal to it limit. It is interesting to note the connection between autoregressive
and moving average coefficents.

Theorem 5.4.2 Let (X;)icz be nondeterministic stationary process with au-
toregressive and moving average coefficients (v;) and ; respectively. Then

-1
b= brpr k. (5.15)
k=1

Proof. Observe that we proved

Xt - Z rXi—r € Hi_p_1.
k=1

Now, representing Xt as Xt = 2771 Yieg—; + r, where r € H;_, 1 and
-1

Xy k=210 Vi€t—k—i+Tt—kn—1, Where ry_p n_1 € Hy_p,_y, we have by equat-

ing coefficients corresponding to £;_; that
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n n -1
X =Y orXek =Y (0= > tror-r)er-i+ Ry,
k=1 =1 k=1

where R, ; € H;_,,_1. Note that the first term on the right-hand side is orthogo-
nal to H;_,_1 and thus it equals 0, as the left-hand side belongs to H;_,,—1. Due
to orthogonality of ;_; for different ¢ this is only possible when (5.15) holds.
As the last two results we state Baxter’s and Debowski’s inequality.

Theorem 5.4.3 (Baxter (1960)) If (X¢)iez has continuous and positive spectral
density on (—m, 7| then for certain n € N and ¢ > 0 we have that

Z lrn — @r| < Z |exl

k=n-+1
holds when n > N.

Debowski’s inequality is general in that it holds for any weakly stationary pro-
cess.

Theorem 5.4.4 (Debowski (2007)) Let ,; =0 for j > n Then for m > n we

have
m m n
Zl‘pmj_(Pnj|<H1+|a H1+|a
j=1 k=1 k=1

5.5 Problems

1. Let (X) be nondeterministic process and Z; innovations defined in Wold de-
composition.(i) Check that for s <t

Hy(X) = Hy(X)® H(Zoy1, ..., Z4).

(ii) Prove that
Ht(X) = Ht(Zt) S5 H_OO(X).

2. (X;) is weakly stationary zero mean process, X't’n = Pop(x,_1,...X, )Xt and
Xt = PHt 1(X )Xt Prove that

(1) o7 = [|Xs = Xenl[* = 0% = [|X; — Xt||2 when n — oo

(ii) Xt » — X; when n — oo. Hint: 02 —o0? = HXt — )A(t’n||2.

3. Prove that if Y € $p(€, X), where 5 is a closed subset of £2 and X ¢ £ then
Y = ~vX + ¢, where 7 is non-zero constant and € € £ and this decomposition is
unique.

4. Let (X;) is weakly stationary zero mean process. Prove that o2_; > 0 is
equivalent to I, = ((i — j)1<s,j<n) is positive definite.

5. Complete the missing details of the proof of (5.13).
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6. Let Xy = Z; +0Z;_1 be MA(1) process with |¢] < 1 having representa-
tion Xt+1 = Zt+1 — Z;’;l(fﬂ)JZtH_j and Xt+1 = 722:1(79)]2,54_1_]' is ap-
proximation of the projection of X1 on subspace sp(Zi,...,Z;). Prove that
[ Xep1 — Xega||? = (14 62412)02.

7. Prove that ¢, — ¢; when n — oo for weakly stationary nondeterministic
series.

8. Let (X¢)tez be PND series having ARR property. Show that

S A 2251 an Xl ?
Z |90kn - on|2 < k_;l\;l = ’
k=1 min,n

where Apin.n is the minimal eigenvalue of the covariance matrix I';,.
9. Complete the proof of the statement in the Remark 5.2.3 that if (X;) is
zero mean nondeterministic Gaussian series such that X; and X;_,,k > p are
independent given X;_1,..., Xy, then (X;) is causal AR(p) series.






6

Spectral distribution functions and densities

In this chapter we consider weakly stationary time series with values in the
complex domain C. We discuss spectral representation of a covariance function
and the weakly stationary time series. Moreover, we prove the Kolmogorov-Szegd
theorem which relates error of prediction based on the whole past to spectral
density.

6.1 Herglotz’s theorem

Analogously to the proof of Theorem 1.1 (iii) we obtain that autocovariance func-
tion with values in the complex domain y(h) = E(Xiyp —EXpyn) (Xt — EXy)) is
non-negative definite. It turns out that this is characterization of autocovariance
functions.

Theorem 6.1.1 Lety(-) : Z — C . Then the property that y(-) is non-negative
definite i.e. for any ay,...,a, € C and n € N

Z a;a;y(i—j) > 0

ij=1

is equivalent to being an autocovariance function of a certain weakly stationary
process. Note that the above condition implies in particular that the quadratic
form is real-valued.

In this chapter we will use the following characterization of autocovariance due
to Herglotz, also frequently attributed to Wiener or Khintchine.

Theorem 6.1.2 v(-) : Z — C is non-negative definite if and only if there
erists a function F : [—m,m] — R, which is right continuous, non-decreasing,
bounded, F(—m) =0 and such that

y(h) = /W e AF(N). (6.1)

—T

F is uniquely defined for any A € [—m, 7], in particular values of possible jumps
of F' are uniquely specified.

Definition 14 Function F which satisfies conditions of Theorem 6.1.2 and
equality (6.1) is the called spectral distribution function. If
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A
F\) = f(s)ds (6.2)

—T
for a certain integrable f > 0, then f is called the spectral density.

If the spectral density exists then

() = / ¢iPX F(2) dA. (6.3)
If spectral density exists then it is uniquely defined up to a set of Lebesgue
measure 0 (m-almost everywhere). Obviously, spectral density may exist only
in the case when F' is continuous on [—7, 7|. From the uniqueness in Herglotz’s
theorem it follows that, if a nonnegative function satisfies (6.3), then the integral
of this function defined in (6.2) is the spectral distribution function pertaining
to ().

Proof of Theorem 6.1.2. Assume that condition (6.1) is satisfied. Then

Z a,asy(r—s) = /Tr Z a,asexp (IA(r — s))dF ()

r,s=1 T rs=1

/7r | Zar exp (ixr) |2 dF(\) >0

—T

r=1

and thus in a view of Theorem 6.1.1 it is an autocovariance function.
Consider now arbitrary autocovariance function () and define for N € N

WE

) ) 1 .
v () = T — )t = oo DL (N = [mlem ™y (m) >0,

1
2T N
r,s=1 |m|<N

"5

for A\ € (—m, |, where the last inequality follows from the assumptions. The
second equality follows from the fact that for m : |m| < N there are exactly
N — |m| pairs (r,s) such that 1 <r,s < N and r — s = m. Let

A
FN()\) = fN(l/)dl/.

Note that .
/ e A\ = 2n1{h = 0}.

—T

Thus for any h € Z we then have

T 1 |k| T i
ihA _ _ i(h—k)X —
/ e dFN(N) = 5 E ( N)v(k) /_ﬂe d\

T |k|<N
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_ (1 - %)V(h)fﬂh\ <N} (6.4)

In particular for h = 0 it follows that ["_ dFy(\) = ~(0) for all N, which
means that measures pertaining to {Fx}{° are uniformly bounded. Moreover,
they are concentrated on a compact set [—m, 7]. Thus in view of Helly’s theorem,
sequence {F}5° is tight (cf Billingsley (1968), chapter 6) and whence it follows
that there exists sequence { Ny} such that Fl, is weakly convergent to a certain
distribution function F'. This means that for any g such that g(—7) = g(7) we
have - .
[ sovirw— [ gdro.

hA

In particular for g(A) = ¢*** in conjunction with (6.4) it follows that

A = [ YT

—T

which is the needed representation of y(h).

Remark 6.1.3 (i) The above proof suggests that if a spectral density exists it
should satisfy

1 —imA
FO) = 5= e "y (m).
meZ

Below we prove that this is indeed true for v(-) € £*.
(i) In Theorem 6.1.2 it is sometimes assumed that 7y is a Hermitian function i.e.
it satisfies y(h) = v(—h). However, this follows from the assumption that v(-) is
non-negative definite. Indeed, Herglotz’s theorem asserts that solely non-negative
definiteness is required for function v(-) to have a spectral representation (6.1).
It sufffices to note that the right hand side of (6.1) is a Hermitian function.
(i41) Let mp denotes a measure induced by F on [—m,w]. Then it can be decom-
posed as

F F
mp =Mec+my,

where m£< is absolutely continuous with respect to Lebesgue measure m on

[—m, 7] and m¥ is singular with respect to this measure. If the singular part
mf equals 0, then a spectral density exists and equals f = dm£</dm, It also
turns out that we can characterize nondterminism and PND property in terms
of this decomposition. Namely, it turns out that nondeterminism is equivalent to
[log f*(\)dX\ > —oo, where f* is the density of mE_ (Szegd’s theorem), if we
additionally impose the condition that mf = 0 then the process is PND.

(iv) Note that v(0) = [T _dF()) thus Herglotz’s theorem can be also stated for
autocorrelatation function p(h) = ~(h)/v(0)

o) = [ emar,

—T
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where F™(X) = F(X\)/~(0) is now proper cumulative distribution function called
a normalized cumulative spectral distribution function.

Directly from the definition of spectral distribution function F' it follows that if
Fx is spectral distribution function of time series (X;) then spectral distribution
function of the process (aX;+b) equals a® Fx. Moreover, for the simplest possible
time series X; = X, where X is a given random variable, its spectral distribution
takes two values only with jump at 0: F(\) = 02I{\ > 0}. Another example in
the similar vein is given below.

Example 6.1.4 Assume that X; = Acoswt + Bsinwt, where w is given fre-
quency, A, B are uncorrelated random variables and such that their mean is 0
and they have a common variance 0. Then vy(h) = EA?coswtcosw(t + h) +
EB?sinwtsinw(t + h) = o?cos(w(t + h) — wt) = 0% coswh

Thus considering more general time series

k
X = Z (A coswjt + Bjsinw;t)
j=1

where Ay, ..., A, By, ..., By are zero mean and uncorrelated, moreover VarA; =
VarB; = 0]2, we have

k
~v(h) = Z 0]2- coswjh. (6.5)
j=1
Observe also that
F(\) = ; o (H{—wi <A} + Hwi <A
Indeed,
/ M AF(N\) = / (cos hA + isin hA)dF(\) =

(%{Cos(—wjh) +isin(—w;h)} + %{Coswjh + isinw;h}) = y(h)

k 2 2

Jj=1

From the example above it follows that a spectral cumulative distribution does
not cumulate probabilities as in the case of probability distribution function but
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Fig. 6.1. Jumps of j'* summand of the process

variances of the components of the process. In the case when, informally speak-
ing, time series is composed of a certain, possible infinite, number of sinusoidal
waves of random amplitude with certain frequencies, contribution of a specific
frequency to the cumulative distribution is determined by the variance of the
corresponding amplitude. Also the following intuition can be gained from the
example. If a distribution function has a large jump at w or a spectral density
having local maximum at w, then the underlying process has significant periodic
component with frequency w and period T = 27 /w. Moreover, for w such that
|w| & 27 we have that the period T is small and we can expect quick oscillations
of the corresponding component. The opposite is true for small |w|.

6.2 Properties of spectral distributions

If (X}t)tez is real valued process, then spectral distribution function F' satisfies
F(r=)—F(\) = F(=A7) for 0 < A < 7 and the related measure pp determined
by it on (—, ) is symmetric in the sense that for A C [0,7) pr(A) = urp(—A)
and a corresponding spectral density (provided it exists) is symmetric. In such
a case (6.3) reduces to the following equality

~v(h) = 2/07r cos(hA) f(A) dA.

Moreover, note that as v(0) = Var(X;), then we have

10) = Var(x) = [ fo0in

We discuss now several results on existence and recovering of the spectral density
from the related covariance function.

Theorem 6.2.1 Assume that covariance function () is square summable and
define
I o 1 —
f) = o Z e~ Ay (h) = %{7(0) +2 Zcos hA ~(h)}, (6.6)
h=—o00 h=1

where the convergence on the right hand side is meant in L2(—m,w]. Then if f(\)
is mon-negative almost everywhere with respect to Lebesque measure then f(-) is
a spectral density.



90 6 Spectral distribution functions and densities

Proof. Observe that the series on the right hand side of (6.6) is convergent in
L2(—m, 7] as functions e~ are orthogonal (which follows from the equality
J7_e**d\ = 2rI{k = 0}) and the assumption that y(-) € ¢*. Taking scalar
product of both sides of (6.6) with e~*** and using orthogonality again we check
that equation (6.3) is satisfied. As f(-) is non-negative in view of uniqueness prop-
erty in Herglotz’s theorem it is the spectral density and its integral [~ f(w) dw
is its spectral distribution function. Non-negativity of f in the following inver-
sion theorem is guaranteed when a slightly stronger condition is imposed on
covariance function, namely that it is absolutely summable. Namely, we have

Theorem 6.2.2 (Inversion theorem)
If y(-) is the covariance function such that > .o
density f of v(+) exists and is given by (6.6).

|[v(%)] < oo, then the spectral

i=—00

We remark that it follows from the absolute summability of () and continuity
of e that f given by inversion formula (6.6) is continuous.

Proof. The proof is very similar to the previous one. We note that the series on
the right side of (6.6) converges almost everywhere in view of absolute summa-
bility of v(-) We have

! FOER N = {— Z e~y (h) e dA
-7 h=—00
- i % / BNy (h) = y(k), (6.7)
h=—o00

where changing the order of integration is feasible as [ 3", et k=mAy(h)|d) <
0o. Moreover, f(A) > 0, as function fy(-) defined in the proof of Theorem 6.1.2
converges to f a.s. Namely,

1 < , 1 hl.
ng :7N Z_ 72rs . )zs)\:% Z (17%)671}1)\7(}0%]‘1()\)

|h|<N

for A € (—m, 7).
Variant of this result provides alternative condition for a function v(-): Z — C
to be an autocovariance.

Corollary 6.2.3 If y(-): Z — C is absolutely summable and

o0

Z e" My (h) >0

h=—00

1
A)=—
then 7(-) is an autocovariance and f(-) its spectral density.
As in the previous proof we check that (6.3) is satisfied and the property follows
from non-negativity of f and uniqueness in Herglotz’s theorem.
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Example 6.2.4 (i) Consider an autocovariance function of a WN(0,0?) pro-
cess,

y(h) = a2I{h = 0} . Obviously, we have ¥(-) € ¢*. Using Theorem 6.2.2 we have

o0

2
_ QL ’y(k)e—ikk — @ e 0-77 fO’f’ )\ S (—7'('77'('),
s
k

) 2w 2w

thus all frequencies are represented in spectral density in the same degree.
(i) Consider now AR(1) process, where |p| < 1. Then

et

v(h)

and applying Theorem 6.2.2 we have

2 (o ]
FOV 1 g (1 + Z(ph(ew\h + efi/\h))
h=1

" or 1 — 2
0.2 ei)\ e—i)\
= s~ (1+ L4 <~ + L4 —) =
2m(1 — ¢?) 1 — et 1— pe?
B 1 o2 (1_H02_(pei,\_(pe—iA+¢eiA_<p2+@e—i/\_¢2)
S 2m 1—? |1 — pe=ir|?
0'2 0'2

- 27|1 — pe~ |2 - 27(1 — 2pcos A + ¢?)’
It is easily seen that the mazimal value of f is taken at 0.

In the next section we show that the result of the last example can be obtained as
a special case of a general procedure without resorting to the inversion theorem.

6.2.1 Spectral properties of a linear process

Theorem 6.2.5 Let (Y;)iez be a complez-valued mean-zero weakly stationary
process with spectral distribution function Fy (-). Assume that (¢;) € £ and

Xe= Y Y

j=—00

Then spectral distribution function Fx of (Xi) equals

A
P = [ e )dFy (),

where
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Z Yzl for |z < 1. (6.8)

j=—o00

In particular, if Fy has a spectral density fy, then Fx has also a spectral density
and it equals

N = v fr (V)

Proof. We have

= S = S / A=) IRy (1)

J,k=—o00 J,k=—o0

:[ zh)\ Z Pie fw)\ Z wke*ik)‘)dFy()\)

Jj=—00 k=—o00
— / ezhA‘ Z ,(/Jje—ijA‘ dFy()\)
—r Pt
where the third equality follows from absolute summability of (¢;).

Definition 15 Function 1(e~") is called a transfer function, function [)(e=")|?
a power transfer function, and W(B) =Y. _1;B" is a linear filter.

Observe that the above result yields a powerful tool for signal modulation: by
using an appropriate power transfer function we can suppress unwanted frequen-
cies and boost desired ones.

Corollary 6.2.6 Let X, be purely non-deterministic process such that () € £
and X; = Z;io V; Zy—j its Wold decomposition. Then

e Po” = D y(k)e (6.9)
k=—oc0
in L2[—m,|. Moreover,
a’ [T —iA\(2 ik
v(k) =5 | (em)[Te™ dA (6.10)
and
[e%) 4 T

Y hwr=g [ wetan (6.11)
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The second equality follows from the Parseval theorem after noting that (6.10)
implies that (y(-))x are Fourier coefficients of the function o?[1)(e=%)|* with
respect to the orthogonal basis (e*");.

Example 6.2.7 Consider ARMA(p,q) process o(B)X; = 6(B)Z;, where Z; ~
WN(0,0?) and such that p(z) #0 for |z| = 1. Then we proved that

oo
Xi= > ¥ Ziy, (6.12)
Jj=—00

where (¢;) are absolutely summable coefficients in the expansion of ¥ (z) =
0(z)/¢(z) for |z| = 1. But this means that (6.8) holds and it follows that

o 0(e=™)?

A) = —— 6.13
B =5 Tt (619
In a special case of AR(p) process we obtain that
o’ —ipA —i2) —ipA|2
FxN) = oo L= =™ —pae™™ = — e (6.14)

In particular (6.18) implies the form of a spectral density for AR(1) time series
we computed before. For MA(1) process we obtain that spectral density equals
(02/27)(1 + 26 cos A + 6?).

Example 6.2.8 Consider the usual structural equation ¢(B)X, = 0(B)Z; for a
given white noise (Z;). We will show now that in the case of ARMA (p,q) time
series if polynomial p(z) does not have zeros on the unit circle |z| = 1 then
there exists polynomial ¢ such that the solution X, of the structural equation
@(B)X, = 0(B)Z; with a certain white noise (Zy) is causal and X, has the same
covariance structure as the solution to the original structural equation. We will
use spectral domain approach which in this example clearly shows advantages of

employing it. We represent p(2) as p(2) = [[*_,(1 — a; '2), where a; are roots
of ©(-) and the representation uses the fact that the constant term in ¢(-) is one.
Without loss of generality we can assume that aq,...,as are roots lying outside
the unit circle and as41, . .., ap inside it. Note that no roots lie on the unit circle
itself. Let
s p
o) =[[0-a7"2) J] 1 -a)
i=1 i=s+1

and consider a stationary solution (W) to the structural equation $(B)W; =

0(B)Z;. The roots of ¢(z) are al,...as,d;ﬁl,...,dijl. Note that as a;' =

(ai/lai])|ai| =" and thus |a;*| > 1 for i = s +1,...,p, then we have that all
roots of p(z) lie outside the unit circle and the causal solution to the last struc-
tural equation exists. Moreover as

e = e = | = e — gyl = layl1 - oy e

|17&j J
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in view of (6.13) we have that

P

fx0 = (T lasl?) fw ),

j=s+1

where fy (X) denotes the spectral density of (W). Thus changing white noise Z;
which is WN(0,02) to white noise WN (0, 0? H] —ot11a;[?) and denoting it by
Z; we have that causal solution to structural equation $(B)X; = 0(B)Z; has the
same spectral density and whence autocovariance function as (Xt).
Analogously, if we assume that both autoregressive and moving average polyno-
mials ¢(-) and 0(-) do not have zeros for |z| = 1 reasoning analogously we can
find causal and invertible ARMA process having the same covariance structure
as the original time series.

We consider now the problem of optimal linear prediction in frequency domain.
We note that the problem of 1-step prediction for mean-zero stationary real-
valued process

n
argming,, o cxl|Xni1 — > aiXnp1il]?
i=1

can be rephrased in the following way. Criterion function equals

<Xn+1 Zaz n+l—1, n+1 Zal n+l—ze
Z agary(k—1)—2 Z ary(k

1<k, I<n 1<k<n
— / 1= e*ragPdF (V). (6.15)
- k=1

Thus in frequency domain optimal prediction is equivalent to analytic problem
of finding a minimum of the above integral which is a squared distance between
1 and trigonometric polynomial in L?([—, 7], dF).

6.3 The Kolmogorov—Szeg6 theorem

In this section we state and prove in the partial case a deep result known as
the Kolmogorov—Szeg6 theorem which shows how the prediction error relates to
the spectral density. Actually, Szegd proved that [log f(\)dA > —oo implies
that the process is nondeterministic, which is a corollary to celebrated formula
(6.19) proved by Kolmogorov. We will discuss the case when the spectral den-
sity is continuous and strictly positive. Before that we prove results on AR and
MA approximations which are interesting in their own light and they are also
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used in the proof of the main result of this section. We will prove that a con-
tinuous spectral density can be approximated by a spectral density of a causal
autoregressive process and a spectral density of invertible moving average pro-
cess. Unfortunately, the result does not specify orders of these processes which
ensure desired accuracy of approximation.

The following results holds true, with || - ||oc denoting sup norm on [—m, 7.

Theorem 6.3.1 Let f be a spectral density of a weakly stationary process and
assume that it is continuous. For any € > 0 there exist p,q € N and a causal
autoregressive process (U;) of order p and invertible moving average process (V;)
of order q such that their pertaining spectral densities fy and fyv satisfy

max(||f = fullso: If = fvlleo) <€

We will first prove the crucial lemma.

Lemma 6.3.2 Let Let f be a continuous spectral density. For any € > 0 there
exists polynomial a(z) = Y 0_a;2", a; € R, ag = 1 with roots outside the unit
circle such that ‘

|\A|a(€")|2 —fO)lle <, (6.16)

where A = (2r(30_ga2)™t [T f(A

Proof of the Lemma 6.3.2 (outline). We first note that if C(z) = Zizip cp2” is
such that ¢, = c_g, ¢o =1, ¢, € R and that C(z) # 0 for |z| = 1 then

C(z) = Ka(z)a(z™1), (6.17)

where a(z) satisfies assumptions of the Lemma and K is some constant. In
particular C(e”*) = Kla(e™*)|?. Indeed, ¢, = c_j implies that cp(z71)F =
c_xz~* and it follows that 2 is the root of C(z) only if z;* is also a root. Thus
polynomial zPC(z) of order 2p can be represented as K H;’:l(l —z/n;)(1—2zn;),

where 7;, 17;1 are its roots and |n;| > 1. Obvious manipulations yield

P p
z 1 z 1
Cz)=K[[0 =) —n) =K [[m(1 - )1 - —)
=1 i=1 ’ %
= Ka(2)a(z1),
where
P 3 P
H 1—— Zal and K:(—l)pKHnj.
j=1 1 i=1
Note that if Im(7n;) # 0 for some 1 < j < p then the conjugate root 7); satisfies
7; = mi for some 1 < k < p as 0bv10usly 7] = |n;| > 1. Since P, (z) =
(1 —wz)(1 — wz) for any w € C has real coefficients it readily follows that
coefficients a1, ..., a, of a(-) are real.

In order to prove (6.16) note first that by truncating f := max(f,d) for any
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0 > we may assume that f > 6. Moreover as f is continuous on [—m, 7] and
f(=m) = f(m), Ces‘aro means of it Fourier expansion converge uniformly to f,
namely

n—1
™Y Sif = flle =0, (6.18)
i=0
where Sk f(\) = ngk fie"* and f; = f fe“* dX. Note that the ap-

proximand of f in (6.18) can be ertten as

n~! Z > fk exp(—ikA).

7=0[k|<j

For n > no(0) such that ||W,, — f||oc < § we easily check that W,, satisfies (6.17)
(note that f > ¢ is used to ensure that W, (z) # 0 for [z| = 1). Thus equating
constants on both sides of W,,(z) = Ka(z)a(z~!) we have

1

K(l+a?2+- - +a2 —
(I+af+-+ay)= o

p

f()

From this and (6.18) the lemma readily follows as in view of a; € R we have
ale"?)a(e™) = |a(e™)[%.

To prove the theorem for autoregressive approximation apply the Lemma above
to f-1, where f. = max(f,e/2). Note that f-! is a bounded continuous spec-
tral density. Then it readily follows by elementary manipulations that f is uni-
formly approximated by K ~!la(e™*)|=2, where a(z) # 0 for |z| < 1, which is
a spectral density of a causal AR(p) process pertaining to polynomial a(-) and
WN(0,27/K) in view of (6.13).

A deep result expressing error of prediction based on the whole past in terms
of spectral density is given by the Kolmogorov—Szegd’s theorem . The assump-
tion on continuity strict positivity of the spectral density is unnecessary and is
imposed only to make proof more accessible, for the general case see Grenander
and Szegd (1958). In general f in Kolmogorov’s formula below is replaced by the
density f¢ of the absolutely continuous part of the spectral measure.

Theorem 6.3.3 Let (X;)iez be a weakly stationary process with continuous
spectral density f(-) bounded away from 0. Then

1
o? =|| X; — Pu,_, X: ||*= 27Texp{2—/ log f(A)dA} (6.19)
Y

We will check first that the result holds for causal AR(p) process. In view of
(6.13) we have

/ log f(\)dA = 2 log e Z/ log |1 — aje”*2d\, (6.20)
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where a; are reciprocals of the roots of ¢(-) and since the process is causal we
have |a;| < 1. Using expansion log(1 — z) = — 7%, 27/j valid for |2| < 1 we
have further for the summands in the above expression

/ log |1 — aje™*2d\ = (log(1 — aje""*) +log(1 — aje"*))dA

0 alc ik s 7keilc)\

:_/ﬂ (X5 +;ajk;

T k=1

)dA:o

as the change of summation and integration is valid in view of absolute summa-
bility of (a¥/k)x. Thus only the first term in is nonzero and the theorem holds
in this case.

Consider now the general case when f is continuous spectral density such that
infye[—r,x f(A) = & > 0. Using the previous result to approximate spectral den-
sities f +¢/2 and f — e/2 with accuracy /2 we construct two spectral densities
g1, and g2 . of causal autoregressive processes such that

fO) —e<g1:(\) < f(A) <g2:(N) < f(N) +¢

for A € [—m, «]. It follows from (6.15) that the corresponding prediction error
satisfy

oa(gre) < oal(f) < ol(g2.)

and the bounds converge to prediction errors based on the whole past 02(g; c)
and 02(gs ), respectively, which are given by

1 ™
02(%’8) = 2mexp {ﬂ / log gi,g()\)d)\},

-7

for ¢ = 1,2. As spectral densities g; . converge uniformly to f when ¢ — 0 and as
they are bounded away from 0 it also easily follows that 02(g2c) — 0%(g1,c) — 0
which proves the result.

Corollary 6.3.4 Under conditions of Theorem 6.53.3 we have for n — oo

—T

1 — - 1 [7
7210g)\i*>f/ log f(\) dA,
n = 2T

where N, i =1,...,n are eigenvalues of matriz T, /27.

Proof. The corollary follows from (5.13) which can be restated as

1 — -
— Z log \; — log(c?/2m).
n

i=1
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Corollary 6.3.5 Assume that Xy is a stationary Gaussian sequence with a spec-
tral density satisfying assumptions of Theorem 6.3.3. Then

P H1 LX)

n— o0 n

1
=3 log(2me) + log o. (6.21)

Proof. Proof readily follows from Theorems 6.3.3 and 2.6.2 together with equality
(3.30).

We refer to Gray (2006) for a review of results in this vein. Theorem 6.3.3 also
yields a useful sufficient condition for checking that the process is deterministic.

Corollary 6.3.6 If
/ log f(A)d\ = — (6.22)

—T
then the process (X:) is deterministic.

Proof. We note that if a set {\ € (—m, ), f(A) = 0} has positive Lebesgue
measure, or, equivalently measure of the support of f is less then 27 then (6.22)
holds. Indeed, as log f(A) < f(A) we have

/ log f(A)dA < / FOVAA = 7(0) < oo (6.23)
{A:f(N)>0} {A:f(N)>0}

thus

/log FN)dX = / log f(A)dA +/ log f(A)dA = —o0,
{x: F(N)>0} {A: f(A)=0}

since the first integral is bounded from above and the second is equal to —ooc.
Thus if a set {w € (—m,7) : f(w) = 0} has positive Lebesgue measure then it
follows from Kolmogorov—Szeg6’s theorem that a process having spectral density
f(+) is deterministic.

6.4 Spectral representation of a weakly stationary time
series

We briefly discuss an important analogue of Herglotz’s representation for a
weakly stationary time series itself, namely the equality

X; = / "™ dzZ(N), tez, (6.24)
(_ﬂ'vﬂ']

where Z(\) for A € [—m, 7] is a zero-mean process with orthogonal (uncorrelated)
increments i.e. such that

< Z(>\4) — Z()\g), Z(>\2) — Z()\l) >=0, where A\ < Ay < A3 < \y

and which moreover is right-continuous i.e. Z(A+4d) — Z(\) in £2 when § — 0F.
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Definition 16 FEquality (6.24) is called the spectral representation of a weakly
stationary process (Xi)iez.

First we make it clear what is meant by the right hand side of (6.24). For a given
process (Z(A))ae[—r,x Which is right-continuous with orthogonal increments we
define

FO) =112\ = Z(-)|]”

and check that F' satisfies properties of a spectral distribution function listed
in Herglotz’s theorem, namely that it is bounded, non-decreasing and right-
continuous function on [—m, 7] such that F(—m) = 0. Note that e.g. for the
Brownian motion B starting at —m such that VarB(A\) = (\ + m)o? we have
F(\) = (A + m)o?. Thus F defines a measure on [—m, 7] for which F is a cu-
mulative distribution. Moreover, it turns out that for g € L2([-m, 7|, F) we
can define an integral I(g) = f(_mﬂ] g(A)dZ(\) by a continuous extension of a
natural definition of the integral for simple functions, namely

I(g) = Zai(z()\i+1) —Z(X\i)), where g()\) = Zajf(/\j,/\j+1]()\)'
j=1 j=1

One then proves that I(h) is a linear transformation of £2([—m, 7], F) onto the
closed subspace of £2 such that

T

< 1(g),I(h) >=Cov(I(g),I(h)) =< g,h >p:= / gMR(N)dF(N).  (6.25)

—T

Now in order to prove (6.24) we need to associate with any weakly stationary pro-
cess (X¢)iez a specific process (Z(\))ae[—r,~ With orthogonal increments such
that its pertaining distribution function F' coincides with the spectral distribu-
tion function Fype. of the considered time series. To this end we define so called
Kolmogorov isomorfism, which transforms time domain onto frequency domain.
It is a transform T defined on ‘H = 5p(X;) onto the space L2([—7, 7], Fspec) de-
fined by a continuous extension of its definition for linear combinations of values
of time series at given time points

p p
T(O) giXe,) =Y gje™s.
i=1 i=1

Then defining
Z(A\) =T I—r ()

it is shown that (Z(\))xe[—r,n] IS @ zero-mean process with orthogonal increments
such that T71(g) = I(g). Then from the definition of I we obtain

I(ei*) = / ¢itr dZ(N)
(—7\',71']
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and on the other hand obviously we have that T-1(e') = X;. As I(e*) =
T~1(e') we obtain (6.24). From (6.25) and uniqueness property in Herglotz’s
representation it also follows that F' = Fpec.

It can be also shown that as a spectral distribution function is uniquely de-
termined, process (Z(\)) appearing in (6.24) is unique in the sense that for
any two processes (Z1(-)) and (Z»(+)) giving rise to representation (6.24) ran-
dom variables (Z1(A)) and (Z2())) should coincide with probability one for any
A€ [—m, 7).

Intuitively, representation (6.24) yields decomposition of X; into a sum of sinu-
soids e'**dZ(\) where dZ(\)s are random amplitudes which are uncorrelated for
different values of .

Spectral representation (6.24) can be applied to study properties of sample char-
acteristics of the process. We give one representative example.

Example 6.4.1 If (X;) is weakly stationary zero-mean process then

n
Xo=n"") "X, — Z(0)
t=1

in L2, where Z(X) xe[—x,x) s a process defined in (6.24). Since || Z(0)||* = F(0)—
F(07) it follows that when F is continuous at 0 the sample mean converges to
the mean of marginal distribution. We will return to this subject in the next
chapter. In order to prove the convergence note that the spectral representation
yields

R LINC it Sl
ny X = /n > etrdz(\) = /n ey dZ ().
t=1

=1

The integrand is bounded by 1 and converges pointwise to I{\ = 0}. Thus the
result follows from the Lebesque dominated convergence theorem.

6.5 Problems

1. Check that for uncorrelated time series X; i Y; we have Fx.y = Fx + Fy,
where F'x denotes spectral distribution function of (X;).
2. Find autocorrelation function for a time series with a spectral density

=" <m

3. Prove Wiener’s theorem:

Jim =S RPE = SO — FOD)2,

Ai
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where (\;) denote jumps of spectral distribution function F'.
In particular it follows from this problem that if F' does not have jumps then
ST ) = o(n).
4. Let X; 1 Y; have spectral densities fx i fy and autocovariance matrices I3, x
and I, y, respectively. Prove that if fx()\) > fy(\) for A € [—n, 7] then:
(1) Fn,X ~InY > 07
(ii) Var(t’ X) > Var(b'Y), where X = (X3,...,X,) and b = (by,...,b,)".
5. Let X; = Acos(nt/3) + Bsin(nt/3), where A, B are uncorrelated zero mean
random variables with the common variance o2. Prove that X; does not have a
spectral density.
6. Let (X;) be time series with autocovariance y(h) = 2sinh/h for h # 0 and
7(0) =2.
Find its spectral density.
7. Find a spectral density of moving average of order 3 of X; that is of the pro-
cess Y; = (X;—1 + Xi + Xi41)/3 in terms of a spectral density of X;. In the case
when (X;) is WN(0, 02) find minima and maxima of the spectral density of (V3).
8. Dirichlet kernel is defined as D,,(A) = >_)__ e®**. Check the following equal-
ity

1 —enthA 1 pmind DA sin(n + 1/2)A

Dn(X) = 1—eir + 1—eix 1= sin(\/2) (6.26)

for A # 0 and D,,(0) = 2n + 1.
9. Fejér kernel F,,(A) is defined as an arithmetic mean of first n Dirichlet kernels
devided by 27. Check that

Do(A) + Di(A) 4+ ...+ Dy 1(N)  11—cosnA _ 1sin®n)/2
n " n1—-cosA\ _nsinQ)\/Q

2nE,(N) = (

for A # 0 and 27 F,(0) = n.

10. Prove using the inversion formula that if v(-) is absolutely summable then
the pertaining spectral density is continuous.

11. Prove that for MA(g) process with pertaining polynomial 6(z) = Y7 6;2",
where 0y = 0 its spectral density equals

2912 + zq: Xq:@'ﬂi_k COSs k)\)

q
i=0 k=11i=k

‘ Q

2
) = —(

Do
3

12. Prove that if F' is the spectral cumulative distribution of the process with
~v(0) =1 and ¢ is a random variable on [—7, 7| distributed according to F' then
F is the spectral function of the process X; = e**¢. Note that this indicates
that definition of deterministic process does not cover many processes which
intuitively should be treated as such.
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Estimation of the mean and the correlation
function

In this chapter we discuss estimation of the first and the second order character-
istics of a weakly stationary process. Asymptotic distributions for a sample mean
and correlation function will be proved under assumption that the underlying
time series is a linear process with independent innovations.

7.1 Estimation of the mean

Assume that (X;)ien is a weakly stationary time series and that a block consist-
ing of the first n observations Xi,..., X, is observable. Let X,, =n~1 31" | X;
be a sample mean. Our aim is to investigate the properties of X, as the estimator
of the mean p of marginal distribution. The crucial property here is stationar-
ity, in particular the fact that all observable random variables X1, ..., X,, have
mean p and thus EX,, = p1. Recall also that due to ergodic theorem X,, — p a.s.
provided (X;):e n is ergodic. However, the inference, in particular construction
of confidence interval for y, is complicated by the dependence between variables
which may lead to a large, and not easily estimable variance of X,,. Recall that

for an iid sequence provided that EX? < oo, we have
V(X — p) 25 N(0, VarX,)

which makes it possible to construct confidence interval for p and test hypotheses
= po. We will check under what conditions the result above, with possibly
different asymptotic variance, can be extended to stationary time series.
Observe that since the block of indices {1,2,...,n} for 1 < h < n contains
exactly n — h pairs (4, ) such that j — ¢ = h, we have (see figure below)

n

VarX, = n*QVar(ZXi) = n*Q(ZVarXi + 2 Z Cov(X;, Xj)) =

i=1 i=1 1<i<j<n
n—1 -
2
0)+23 A(h)(n—h) ==~ + Z : (7.1)
h=1 =1
h h
T T T T T 1
1 2 1+h n—h n
2+h
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Fig. 7.1. There are (n — h) pairs (j,4) such that j >iand j —i=h

Thus

n—1

nVar(X,) =7(0)+23 (1 - %)w(h) (7.2)
h=1

Thus the natural question is under what conditions we have

n—1 oo
h
2y (1 - 5)fy(h) ~ 23 A(h).
h=1 h=1
This is answered by the following proposition

Proposition 7.1.1 If

> (k)| < oo (7.3)
h=1

then -
nVar(X, ) — v(0) 4 2 Z ~(h).
h=1
The limit equals 27 f(0), where f(A) = (2m)~1 372 ~y(k)e ™ is a spectral
density.

Proof. From (7.2) it follows that it is enough to prove that (7.3) implies

n—1
h
h=1
For any € > 0
n—1 h [ne] h S [ne] 00
2. ()< > ) |+ Yo hi<ed Wi+ > b
h=1 h=1 h=[ne]+1 h=1 h=[ne]+1

(7.4)
For n > 0 we let ¢ = /25,2, |7(h)], and note the first sum is not larger than
n/2. For such ¢ we choose ng(e) such that the second sum is less than 7/2 for
n > ng(g). Then the left hand side of (7.4) is less than 7.

Remark 7.1.2 For a linear process
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oo oo
Xe=m+ > ¥iZj, (Ziher— WNO,0%), > |t < oo

j=—00 j=—o00
we have (i)
ooty = Y )’ (7.5)
h=—o00 j=—00
Moreover,
> )] < oo
h=—o00
Namely,
v(h) = o*( Z Vitiyn)
and thus
Z v(h) = o*( Z Z Vithirn) = 0 ( Z %’)2
h=—0oc0 h=—00 t=—00 Jj=—00

which validates (i). Inequality in (ii) is justified analogously.

7.2 Asymptotic distribution of X,, for the linear process
We first state Ibragimov-Linnik theorem from which asymptotic distribution of

the mean for the linear process follows easily.

Theorem 7.2.1 (Ibragimow and Linnik (1971))
Assume that Xy = Y oo ajee—j, where (aj) € €% and (g;) is the strong white
noise with the finite second moment. Assume that o2 = Var(S,,) — oo. Then

Sp/on —N(0,1)

when n — oo.

Note that o2 is not assumed to be of order n and because of this the last result
is a useful tool for studying long-range dependent sequences.
Proof. Note that S, = >7_) X; =322 (X)) aj&)ex, and thus

o2 =Var(S,) = Z (Zaj,k)z.

k=—oc0 j=1

Let wg, = 2?21 aj_r. We will first prove that
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2 430 g2 1
w Zk_fook(l_’_ )

—n < 7.6
On 20, ( )

o
Then it will follow in view of assumptions that maxy w?, /o2 — 0 when n — oo.
In order to prove (7.6) note that as wr_in = Wk—1—1,n — Gn—(k—i—1) + G1—(k—1)
we have

2 2 2 2
W_in Qg T Opqg1—g 4 2(@141—k = Qptit1—k)Wk—1—1,n n Wi _1-1,n
o on o on

Analogously,
2 2 2 2
W41 Of_p T Opyg g, + 2(a—k — Gpt1—k)Wk—1,n n Wi_1n
o on o o’

2 2 2 2
W 0t g n 2(a1—k — Gn+1—k)Wk—1,n . Wi_q p
o2 o2 o2 '

2
Un
Using the above inequalities sequentially from the last to the first and applying
to the middle term inequalities (z + y)? < 2(2? + y?) and |wy_;|/0, < 1 we
obtain ) - ) - ) )
W n < 2 e oo O i 4 e oo O " wk—l—l,n.

On o2

As the term w} _ I—1m /o2 can be made arbitrarily small by choice of sufficiently
large | = I(k) (possibly depending on k), (7.6) is proved.
Let agn = Wgn /0. Thus we have

o S = (X4 X)) = ) agncn,

k=—o00

where Y, af,, = 1 and maxy af,, — 0 when n — oo. It is now easy to see that
Lindeberg’s condition is satisfied. Indeed, we write

2N+2

—1
Opn Sn = E gnia
=1

where &, = Z|k|>N apner and for 2 < ¢ < 2N 4+ 2, & = ai—N—_2nEi—N—2,
where N = N(n) is chosen such that Z‘kb]\, ai, < ny, and 7, is some sequence

tending to 0. Now observe that with ¢ denoting the upper bound in (7.6) we
have

2N+2 2N +2
> EEil{énl =71 < Y @i E(I{|e1] > v/ea}ed) +mp = o(1)
k=2

i=1

in view of £; € £? and ), a?,, = 1. Thus Lindeberg’s condition is satisfied.
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Theorem 7.2.2 Assume that (X;) is a linear process

X, = n+ Z szkgtflm
k=—o
where (g;) is a strong WN(0,0?) and moreover

o0

> vkl < oo, > U #0.

k=—o00 k=—o00

Then -
n12(X, — p) 2> N(0,0),
where -
2
v = 02( Z 1/%‘) .
i=—00

The proof of the result follows from the Ibragimov-Linnik theorem and Propo-
sition 7.1.1. The assumption > 2ty # 0 implies that v > 0, if it is not

satisfied we have nl/Q(Xn — ) Lo Moreover, due to Proposition 7.1.1 and
(7.5) asymptotic variance v equals to the limit of nVar(X,,).

Below we give the second derivation of the asymptotic distribution of the mean
which is based on small block-large block method devised by Bernstein, which
will be also used to derive Bartlett’s formula below.

Proof (outline). We will use the following lemma (cf. Billingsley (1968), Theorem
4.2)

Lemma 7.2.3 Let X,un, (Xin) @ (V) be sequences of random wvariables such

D D
that X,n — X, when n — oo, X,,, — X when m — oo and moreover

lim limsup P(| Xpmn — Yo > €) =0.

m—0o0 5 _,s0

Then

Y, 2 X.
The result can be depicted in the following diagram.
Xmn — X,
lD m—oo

Yy, — X
(Yy close to Xpn) N7
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Proof of theorem. We consider truncated linear process (m € N).

X" =m+ Z Vi€ j

j=—m

Obviously X/" is not observable and it is used only in this proof. Observe that
(X™M)ten is (2m)—dependent, which means that X;", X" are independent for
|s — t| > 2m, which follows from the fact that

{erjyj=—m,....m}n{esiyi=—-m,....,m} =0

and (&) is the strong white noise.
We use the lemma for X,,,, :=n'/2(n=1 37| X/™ — u). We prove that

Xon = = N(0,6°( Y 45)?) =5 N(00). (7.7)

j=—m

The first convergence in (7.7) is implied by the Central Limit Theorem for (2m)—
dependent variables, stating that

2m
n'2(Xy - @) NO, Y (). (78)

j=—2m

This is proved in the following way by Bernstein’s large block-small block
method: consider k& >> 2m and divide the observations into blocks: k& — 2m
observations of the first block, then the gap consisting of 2m observations, then
the second block consisting of k—2m observations and so on. Note that | = [n/k]
is the index of the last block. Let X; denote the sum of the observations of ith
block.

24 2 2
T T T T T T 1
k—2m '\ n

gap of 2m
of elements

—

Fig. 7.2. Division of Xi,..., X, into blocks and gaps

Note that X, ..., X} are iid variables having the same distribution and we use
the CLT for iid observations applied to (X; +- - -+X})/n. Note that when n — oo
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2m

(k — 2m)Var(k flem) — Z () (7.9)

Jj=—2m

nVar

i+ + 5N\ (k-2m)l
( n ) a n

in view of Proposition 7.1.1. Moreover it can be proved that the average of
observations outside the blocks becomes negligible. Namely, there are [n/k] inner
gaps consisting of 2m observations each and a (possible) final ’leftover’ consisting
of n — k[n/k] observations. Observe that that the normalized variance of the
average of observations from inner gaps equals

[n/k] Zm<2m(2m = 17D ()

n

—0

when k£ — oo. Thus indeed under this condition the average pertaining to the
inner blocks becomes negligible in view of the Chebyshev inequality. Similarly we
show that the analogous average of elements from the final leftover part becomes
negligible. This proves the first convergence in (7.7).

For the second convergence in (7.7) it is enough to note that (Z;ﬂ:_m ;)2
converges to v.

We check the conditions of the lemma for Y,, := n1/2()_(n — ). Observe that

n

Var(Y,, — Xpn) = nVar(f Z Z szt_j) 2 ( Z z/}j)202.

1
n
t=1 j:|j|>m J:lil>m
Thus
lim limsup Var(Y,, — X,u,) = 0.
m—o0 n—oo

Now the last condition of the lemma follows from the Chebyshev inequality, since

< Var(Y,, — Xomn)

P(|Y, — Xpmn| > €) =

Remark 7.2.4 We derive now asymptotic distribution of X, for the process
AR(1)

Xy —m= (X1 — p) + ey,
where (g4) is a strong WN(0,c?).
As y(h) = ¢Ma? /(1 — ¢?) we have

2¢ o? o?

v = N 702 = = .
1+ N = )i ~aop

Confidence interval for p is thus

> Rl—a/2 O > Rl—a/2 O
Xn—m—~—F—, Xnt+—7—F—
( (1=e)vn (1—<p)\/ﬁ)
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Note that the length of the interval equal 2z, _o /2 0 /(1—@)\/n is increasing func-
tion of p, thus the larger value the longer the confidence interval. We compare the
length of this interval for AR(1) process with the length of an analogous interval
for a strong white noise (iid sequence). To be fair we consider the strong white
noise having the same marginal variance as the autoregressive process, namely
a2 /(1 — ¢?). In this case, length of the confidence interval equals

(X __Fl-a/2 0 X _Al-a/2 0 )

SV NN e

It is easy to see that since 1 + ¢ < 1 — ¢ for ¢ < 0, for such ¢ confidence
interval for independent case is actually longer than for AR(1), thus in this case
dependence helps in more precise estimation of the mean. This is obviously due
to the fact the asymptotic variance of the mean in this case is smaller than for

white noise and is related to oscillations of AR(1) for ¢ < 0 which are averaged
out when the mean is calculated.

7.3 Estimation of the covariance and correlation function

We deal now with estimation of the covariance function y(h) for a weakly sta-
tionary process

W(h) = B((X: — M)(Xt+\h| - H))
In order to estimate v(h_) we replace the expected value in the above expression
by an average of (X; — X,,)(Xy4n — X,) for all possible pairs (X, X;1|5|) such
that 1 <t <n, 1<t+ |k <n.

(X1, X14n)) (X—in)» Xn)
N —~—~

7 N / N

T T T 1

1 1+h n—nh n

Fig. 7.3. Pairs (Xi, Xipn),i=1,...,n — |h|

As the number of such pairs is n — |h| the usual estimator of y(h) is

n—|h|
?( = n—|h| Z Xt+\h| )( Xﬂ)
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However, we show below that in order to obtain an estimator which is non-

negative definite we have to change the norming factor to n~!, namely
1 n—|h| B B
y(h) =~ Z (Xeq ) — Xn)(Xe — X5) (7.10)

n
t=1

Definition 17 Estimator Y(h) defined in (7.10) will be called empirical covari-

ance for lag h.

Recall that T';, = (y(i — j)>1<i,j<n
that the same property holds for its estimator. Indeed such property holds for
r,=A6- j))1<i i<n but not necessarily for T'), = (Y(i — . In order

is non-negative definite, and it is desirable

J ))1<i,j<n
to see why TI',, is non-negative definite observe that we put ¥; = X; — X and
define

———
0 ...... OYiYs ... Y, 1Y,
T o 0 0Y, Yy Y3 Y, O
nx2n—1 —
n—2
Yi.V,1 Y, 0 0 0

then we have R
T,=n"'TT >0.

Remark 7.3.1 One may prove that f‘n s strictly positive definite and thus
invertible provided that 5(0) is positive. This always happens if not all obser-
vations are equal. This follows from the fact that if v(-) is such that v(0) > 0
and limy,_ y(h) = 0, then for any n covariance matriz T, is strictly positive

definite.

Note also that as the number n — || of pairs (X, X;1 ) gets smaller for large
h, it is unwise to use 7(h) for large h. Rules of thumb similar to the following
ones: estimate 7(h) only for h :< n/4 or n > 50, h < /n are frequently used
without much theoretical justification. Also note that it follows from the defini-
tion that 4(h) and 7(j) are dependent random variables. The same is also true
for empirical autocorrelation function defined by

Definition 18 Estimator

s(n) = 10
p(h) = o8 (7.11)

=2)

is called empirical correlation for lag h.

7.4 Bartlett’s theorem

Define vector of h first autocorrelations beginning from the autocorrelation at
lag 1 as follows
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p(h) = (p(1),...,p(h))’

and the corresponding vector of empirical autocorrelations (compare (7.11)) as

p(h) = (p(1),...,p(h))’

We state now Bartlett’s theorem which states the asymptotic distribution of
centred and normalized vector p(h).

Theorem 7.4.1 Let (X;) be the linear process

Xi=m+ Z 'I/J]Etfj

j=—o0

such that (Z;) is a strong white noise WN (0, 0?), Z;’;_Oo 4| < 00 and EZ} <
00.
Then »

n'2(B(h) = p(h) = N (0, W),

where W = ()i j<h,

oo
wij = E AkiAkj -
k=1

and

Aei = plk +1) + plk — i) — 20(k)p (i) (7.12)

Proof (outline). We assume that EX; = 0 and we first prove the result with §(h)
replaced by vo(h) =n~' 37 | X; X¢yn. Let k = Ee}/(Ee?) denote the kurtosis
of £;. We note that

kot if [{s,t,u,v}| =1

E(eseteney) = ot if [{s,t,u,v}| =2 (7.13)
0 otherwise
Moreover
E(XiXtypXipnspXivhipra) = O CithispVrintpClinspral(Et—ict_jerrr).
i,4,k,1
(7.14)

Observe that the subsum of the (7.14) corresponding to i = j = k = [ equals
Kot YithiipVisnipPithipre = koA,
i

corresponding to i = j # k = [ equals
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o’ Z ViYifp Ukt pth Wk prhtq = v(p)y(q) — 0414,
ik

corresponding to ¢ = k # j = [ equals

oY bithitpintisptispUitpinig = 10+ h)y(g +h) — o' A
i#]

and corresponding to i =1 # j = k equals

o' Y Vitbitpintaliipiprn =10 + b+ q)y(h) — o' A.
i#J

Thus (7.14) equals

(k=3)0" > " hithispWitnipWitnipraty() V(@) +7(p+R)Y(g+h)+ (p+h+q)y(R)

and we have

E(vo(p)10(@) =n"2Y Y B(Xi Xty pXoXetq) =
Y Y @) +ls— (s —t—p+a) +y(s —t+a)v(s —t —p)+

s=1t=1

+ (& —3)o* Z ViYitpWits—tWVits—t—q-

As the right hand side of the above expression depends on s and ¢ only through
s—t we let k = s —t and obtain after subtracting E(yo(p))E(70(q)) = v(p)y(q),

n—1

nCov(yo(P)(@) = Y (1—I[k/n)Tk,
k=—n+1

where

T = v(k)y(k —p+q) + vk + )7k — p) + (k — 3)o* Z ViYitp Vi kWit ktq-

It is easy to show that (7)™, are summable and thus

lim nCov(yo(p)v0(q)) = Z Tk

n—oo
k=—o00
00

= (k=3)v@(@) + > vE)V(E—p+q) +v(k+q)y(k—p).

k=—oc

Using Bernstein’s block method as in the proof of asymptotic normality of the
mean we show that
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12 (70(0) = 7(0), .., 70(0) — 7(0)) = N(0,V),

where V' = (vp4) is (R + 1) x (h + 1) covariance matrix such that v,, is given
by ZZO:—OO Ty, above. The next step is to show that for each 0 < p < h,
n'2(4(p) — ) = op(1). The last step is to use the delta method with the
function f : RPT! — RP equal f(zo,21,...,2p) = (21/20,...,2p/20) and to
note that f(5(0),...,5(h)) = (p(1),...,p(h)). It follows that the resulting lim-
iting covariance is of the form W = DV D’ and D = ~(0)~[—p(h), I;}]. Some
algebra shows that w;; coincide with w;; given in the statement of the theorem.
This ends the proof.

Corollary 7.4.2 Assume that (Z;)iez is a strong white noise WN(0,02) such
that EZ} < co. Then

n2(B(h) — p(h)) = n'/?p(h) 2> N(0,1) (7.15)

Proof of the corollary. Note first that white noise satisfies the assumptions of the
theorem with ¢; = I{j = 0}. Moreover, p(k) = I{k = 0}. Thus it follows from
the definition of A\; that it is non-zero for & > 1 only in the case when k£ =i as
then A\g; = p(k — @) = 1. Thus it follows that AgiAg; # 0 only in the case when
k =i = j and w;; = I{i = j}. The conclusion of the corollary then obviously
follows.

Asymptotic convergence in (7.15) is used to construct heuristic test of the hy-
pothesis

Hy: (Xi)iez is strong WN(0,0?)

by means of test statistic

h
T=#{i: i=1,....,h |p@@)]> zl,a/gnfl/Q} = Z.L-
i=1

with rejection region C = {T > ah}. Value a = 0.05 is usually used. Note that
under null hypothesis Hy indicators J; are binary random variables equal 1 with
probability approximately «, thus ET =~ ha. Frequently, a quick and dirty test
is performed which rejects the hypothesis when number T of correlations falling
outside the respective confidence interval exceeds its expected value. Obviously
this is not, even approximately, the test on the level «. Such tests can be con-
structed using the observation that the distribution of Z?Zl I{/n|p@E)| > ¢}
converges in distribution to random variable W, = Z?:l I{|Z;] > ¢}, where Z;
are independent standard normal random variables. This follows by continuous
mapping theorem by noting that the transform is discontinuous only on the set
of measure zero for limiting distribution. Then for each k& < h we determine
threshold ¢, as ¢, = inf.{W, > k} < a. The problem here is that the distribu-
tion of W, is discrete and it is not evident how to choose an appropriate value
of k.

Let us also note that individual test statistic J; with rejection region {J; = 1}
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does have approximately level « for testing p(i) = 0 against the alter-
native p(i) # 0, however test statistic max;=1 .5 J; with rejection region
{max;=1,. 5 J; = 1} does not have level o even approximately. It is obviously
related to multiple testing problem, as this test is equivalent to testing h indi-
vidual hypotheses and rejecting Hy when at least one of them is rejected when
the critical level for each test was calculated for the single hypothesis case.

Consider now M A(1) with innovations being strong white noise and calculate
asymptotic variances w;;. By an easy calculation we have

wir = (1= 20°(1))(1 = 2p*(1)) + p*(1) = 1 = 3p%(1) + 40" (1),
when the first summand corresponds to k = 1 in (7.12) and the second to k = 2.
Analogously for ¢ > 2

wii = 14 p*(1) + p*(1)
when the first summand corresponds to k = ¢ in (7.12) and the second and the
thirdtok=4—1and k =4+ 1.
Thus for i > 2, p(i) belongs to confidence interval £1.96n~1/2(1 + 2p%(1))/2
with probablhty approximately 0.95. Analogously, for MA(q) series

wi =1+ 2(p*(1) + -+ p*(q)), fori>gq (7.16)
as for k =i —gq,...,i+ q we get non-zero summands p(k — ¢) in (7.12) equal
p(=a); -, p(0),...p(q).

Remark 7.4.3 Frequently instead of testmg the hypothesis Hy that the proces
(Xt) is white noise we test the hypothesis Hy : (X;) is MA(q — 1). Thus when
HO is satisfied, in view of 7.16, squared standard error of p(q) can be defined as.

1+2(02(1) +---+7%(g—1
gz 12+ +p(g 1))
o(q) n

(7.17)

7.5 Problems

1. Using Bartlett’s theorem justify that for AR(1) time series it holds

2k 2
Tim nVar((k)) — & (‘Pl_)f;;“ﬂ )

- 2i<p2k

2. (i) Using problem 1 and delta method calculate the asymptotic variances of the
estimators of autoregressive coefficient ¢ defined as ¢ = p(1) and ¢ = (p(3))/5.
(ii) Check that when ¢ — 1 ratio of the asymptotic variances of the estimators
¢ and ¢ tends to infinity.

3. Check that Y7 4(h) = 0, where F(h) = 1 30" (Xysp, — Xo) (X — Xp).

4. Prove that for the weakly stationary time series we have
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(i) E(X2) < (0); )
(ii) If the autocorrelation function is nonnegative then lim, nFE(X?2) exists (but
is possibly infinite);

(iii) Construct an example of the process that lim,, . nE(X2) = 0.

5. Show that if v(h) — 0 when h — oo then Var(X,) — 0 when n — oc.

6. Fill in the missing details in the proof of CLT of 2m-dependent variables, in
particular justify (7.9).
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Parameter estimation for ARMA (p, q) time
series

We discuss parameter estimation of ARMA (p, ¢) time series assuming that orders
p and ¢ are known, or, in the the case of AR(p) process that the upper bound
of p can be given. We start with a discussion of the latter.

8.1 Estimation for AR(p) time series

We will describe two basic methods of estimation of autoregressive parameters
and variance of innovations: the Yule-Walker and Burg’s estimators.

8.1.1 The Yule-Walker estimators

We consider again zero-mean ARMA(p, q) time series (X;)ez described by p +
q + 1 unknown parameters: (¢1,...,9p), (01,...,0,) and 0. We now describe
basic methods of estimation of these parameters. We start with a particular
situation when ¢ = 0 and the process reduces to autoregressive time series AR(p).
We assume additionally that (X;):ez is causal and, without loss of generality
that the mean is zero. The simplest method of estimation of its parameters is
based on the Yule-Walker equations. They are obtained when covariances of
X¢—4,i=0,1,...,p with both sides of structural equation

P
X — Z 0iXi_ i =&

=1

are calculated and equalled. Then we obtain using causality

{7(0) —e17(1) = = ppy(p) = 03
Vi) = en(i—j§)=0 i=12,..,p.

Remark 8.1.1 We note that the above equations coincide with the Yule- Walker
equations for the optimal linear predictor considered in Chapter 2. The sole dif-
ference is that in the above equations coefficients of polynomial p(2) appear in-
stead of the coefficients of the best linear predictor. This is because those two
sets of coefficients coincide in the case of causal AR(p) time series. Namely,
it follows that (pp1,...,0pp) = (¢1,---,9p) and in general for m > p vector
(@m1y---sOmp) equals (¢1,...,9p,0,...,0), where the number of appended ze-
70S 1S M — P.

(8.1)
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We can write (8.1) in the matrix form

Iy =1,

0% =7(0) — ¢"v,

Tp = (7(1)7 7(2)’ s 77(1)))/

where, as usual, T'y, = (y(i — j))1<ij<p and @, = (¥p15- - Ppp)'
If '), is invertible then

p=T,"y, o =7(0)—~,T, ", (8.2)

The Yule-Walker estimators are plug-in estimators, obtained when in the above
equations v(i), ¢ = 0,1, ..., p are replaced by (7). Thus having observed a part
X1,...,X, of a sample path we calculate empirical covariances (i) and then

we construct cpp (,01(7”) In this way we obtain

¢ =115,  62=5(0)-4,L,'5,. (8:3)

Definition 19 Estimators (8.3) are called the Yule-Walker estimators of AR(p)
parameters.

In problem 8.1 we will show that the polynomial ¢(z) =1 — @12 — -+ — 2P #
0 for |z| < 1 thus AR(p) process W, satistying @(B)W; = Z, Where (Zy) is
WN(0,52), is causal. It follows from causality that its autocovariance vy ()
satisfies

yw (k) = @iyw (h — i) = 0> I{h = 0}
1+1

for h=0,1,...,p. Consider the p 4+ 1 equations

Zgol —i) = o?I{h =0}

i+1

with v(0), ... ~(p) unknown. It follows from the above considerations that the so-
lution are empirical autocovariances 4(0),...,5(p). As the solution is unique we
obtain that vy (h) = 4(h) for h =0, ..., p, thus we have constructed AR(p) with
theoretical autocovariances (0),...v(p) coinciding with empirical autocovari-
ances §(0),...%(p). Note that the above reasoning yield that for any nondegen-
erate I'41 we can construct AR(p) process having autocovariances v(0), . .. y(p).
In problem 8.3 to this chapter we will check that if 4(0) > 0 and v(h) — 0 when
h — oo then T, is positive definite for any n € N. From this it follows that
f‘; ! exists under the only condition that empirical variance 4(0) is positive
which happens always when there are at least two different observations among
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X1,...,Xp. Indeed, note that if we additionally define 4(h) = 0 for |h| > n
then 4(-) is non-negative definite. Thus it follows exactly as in the proof that
I, is non-negative definite by defining Y; = 0 for ¢ > n, there and noting that
the proof holds for any k € N replacing n. As 4(-) is non-negative definite there
exists stationary sequence (X;) such that its covariance coincides with 4(-) and
we apply aforementioned result to this sequence. As 4(h) = 0 for |h| > n both
assumptions of the result are satisfied. Thus T';;' exists and in particular f‘; !
exists for p < n.

It is sometimes more convenient to express the Yule-Walker estimators in terms
of sample correlations instead of sample covariances. Remembering that matrix
of empirical correlations R, = I';,/4(0) and correlation vector p, = 4,/%(0), by
dividing both sides of (8.3) by 4(0) we obtain

~ -1~
‘PP_RP Pp

72 =7(0)(1 - AR, 'Pp)-

Theorem 8.1.2 (Asymptotic distribution of Y-W estimators for AR(p)) Let be
(X¢)tez be causal AR(p) with innovations (g¢)iez being strong WN(0,02). Then
when n — co

~ D -
nl/Q(CP;n) _ ‘Pp) N N(O,UQI‘p 1)’

(n) _ (A(n) ~(n)

where @, Pp1 - Ppp ) are Y-W estimators.

Proof (outline). Assume that (X;) is a mean-zero process. Let p = (X'X)71X'Y,
where Y = (X1,...,X,,), X; =0 for i« <0 and

Xo ... X1,
X=| X3 ... Xo,
Xpo1.o Xn_p

is the matrix of predictors’ values (X;_1,...,X;—,)". Note that ¢ differs from @
in that f“p is replaced by X'X and 4, by X'Y". The first step is to show that the
difference between @ and @ is op(n~/?) meaning that n'/?(@—@) = op(1). This
is essentially due to the form of ¢ and the observation that under the assumptions
of the theorem we have X'X/n — T';, and X'Y/n — =, in probability. Thus it
is enough to prove the result for . However,

(@ — ) = n'2(X'X) ' X'(Xg +¢) — ¢)
=n'?(X'X)"'X'e = (X'X/n)"'n'?X'e.

Moreover, observe that with X, = (Xy,..., X;—,11)" we have
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n
nl/QX'e = ’I’L_l/2 Z EtXt—l L 2\7(07 0'2].-‘1,).
t=1

This follows by truncation technique and using CLT for m-dependent random
variables after noting that due to causality ¢; and X;_; are uncorrelated. Thus
the covariance matrix of £;X;_1 equals oT',. The last step is to note that
X'X/n — T and use Slutzky’s lemma.

The main problem with using this result in practice is that p is almost always
unknown. What happens if AR(m) process is fitted when m > p ? As AR(p)
time series is also AR(m) this should lead to a reasonable procedure. It turns
out that

Theorem 8.1.3 If (Xi)iez is causal AR(p) with innovations (et)icz being
strong white noise WN(0,0?) and @fjj) = ((ﬁg,:?, . .,@&%)’ =R 'p,,., m>p,
then

n'2(@W) — @) =5 N(0,0°T;})

m

when n — .
In particular for m > p

n2g 2. N(0,1)

Proof. Only the last part of the theorem needs proving. Recall that we proved
that prediction error o = |T;41|/|Til, and whence |T.,| = o30%---02,_,1. In
particular, for AR(p) and m > p it follows that |T',,| = |Ty|0?™ ) and thus
(T, )mm = 072, The last equality is valid in view of the fact that (L) mm is
equal to the ratio of minor M,,,, obtained when mth row and mth column is

removed from T, and determinant |Ty,|. However, Mym = |Tm—1| and thus
(T ) mm = Tt |/ D] = 072,

We note that fitting AR(m) does not create any new difficulties. Namely, needed
coeflicients ¢,,, are coefficients of the best prediction for the process with covari-
ance matrix f‘m and covriance vector 7,,. As IA“mH is positive definite, such
process exists, moreover, it is causal (see problem 8.1). Thus, in particular, the
vector ¢,, may be determined from the Durbin-Levinson equations.

Moreover, from the theorem above it follows the form of confidence region for
vector of coefficients. Namely, recalling that o2 = JZ for AR(p) time series and

plugging in 62 instead of o2 and f‘p instead of I', we obtain that the confidence
region with approximate level of confidence 1 — v equals

{o: n(p — SD)/FP(@F —¢) < a'gxi,lfoz}a

where X?),lfa is quantile of order 1 — o of x? distribution with p degrees of free-
dom.
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Moreover, the last result is used to justify the following heuristic method of
choosing the order of autoregressive process.
Namely, we fit AR(m) with large m

e e A (O P (o
If m > p then in view of Theorem 8.1.3 @5,’;2” ~ N(0,1/n) approximately
for large n, where {0\5,2% = a,, sample partial correlation coefficient. Thus as the

order of the model we may choose the largest p € N such that |q,| > 21_q/2/v/7.

8.1.2 Burg’s estimators

We know that estimation of autoregressive coefficients of AR(p) process is equiv-
alent to estimation of coefficients ¢ = (¢p1, . .., @pp)’ of the best linear predictor
of X; based on X;_1,..., Xy_,. We first derive relation between prediction based
on the past and the future observations which is essentially restatement of the
relation used in the Durbin-Levinson algorithm.

Consider (backward) predictor X%, ., , of X,414i-4,t > i based on i past
observations and the corresponding residuals w;(t):

-~

ui(t) = Xog1vioe — Xz—&-l-&-i—tv t=14+1,...,n.

Prediction based on ¢ past observations
on this time interval

1 1+1 n

Fig. 8.1. Prediction based on the past observations

Now consider also (forward) predictor X/ t14it Of Xny1-¢, t > i based on i
future observations and its residuals v;(t):

vl(t) :X’I'L+17t _X’;]:+17t7 t:i'i_l,...,n.

Prediction based on ¢ future observations
on this time interval

1 n+1—1 n
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Fig. 8.2. Prediction based on future observations

In particular we thus have ug(t) = X, 11—+ and vo(t) = Xp41-¢. The following
equalities relating u;(t) and v;(t) hold

wi(t) = ui—1(t) — puvi—1(t)

0;(t) = vi1(t) — piiui—1(t). (8.4)

Indeed, using definitions of the residuals we rewrite the first equality in (8.4) as

i
Xn+1+i—t* E %‘an+1+¢—1§—1¢

k=1
i—1 i—1

= Xntiti—t — E Oi 1,k Xnti—t—k — Pii(Xnt1-t — E Oi 1,k Xnt1—t+k)-
k=1 k=1

We check directly that the coefficients corresponding to X,, 41—+ for k& = ¢ co-
incide, whereas for K = 1,...,7 — 1 comparison of coefficients corresponding to
Xn+ti14i—t—k on both sides yields i = @i—1,5 — Piipi—1,i—k, what follows from
the Durbin-Levinson algorithm (3.19). The second equlity is checked analogously.
Burg estimators @11, ..., @pp are calculated sequentially. First we define

@11 = argmino? (p11),

where

o} = Z{Ul +vi ()}

Note that from (8.4) o depends only on 17 and the known values vg(t) i ug(t).
Then using (8.4) we calculate 91 (t) i @1(¢). Analogously

$oo = argmin o3,

where
n
2 _ N 2
o E U
2 = (n— a 2( ()}

and so on. We obtain @11, ..., @pp as the result. Estimators ¢,; for 1 < j <p-1
are obtained from the Durbin—Levinson algorithm after plugging in @k for Okk-
Variance o2 is estimated from the formula for 012, with ¢, replaced by its esti-
mator Qpp.

We have the following result on asymptotic distribution of Burg’s estimators. As
in Theorem 8.1.2 we assume that p is known.

Theorem 8.1.4 Assume that the assumptions of the previous theorem hold and
Tet ga(") @ ~(n) ~(n)y/

Pp1' s Ppp ) be Burg’s estimator based on n observations. Then



8.2 Preliminary estimation of parameters for ARMA (p, ¢) time series 123
nl/Q((’g(n) — ) D, Np(0,021-\;1).

We note that the asymptotic distribution coincides with that for Y-W estimator.

8.2 Preliminary estimation of parameters for ARMA (p, q)
time series

We describe now two methods which can be used for estimation of ARMA(p, q)
time series. Usually, they are used only to determine a starting point for the ML
estimator which is calculated iteratively via innovation algorithm.

8.2.1 Yule-Walker estimators for ARMA (p, q) time series

We write the Yule-Walker equations in more general situation when the order of
the moving average part is larger than 0. If the process is causal with represen-
tation X; = >~ ¥;er—; we have, letting with 6y = 1

q 00 q
Cov(Xy—k, Y bier—i) = Cov(Y et ki, »_bicr i)
i=0 i=0

i=0
00 q q
= Cov(> thi—ker-i, » bicr—i) =0y _ 0ty
i=k i=0 i=k

Calculating the covariance of X;_ with both sides of structural equation we

thus obtain .

q
Y(k) = vk —i) =0 00 .
i=1 j=k

We need p+ q+ 1 equations and thus usually the equations above are considered
for 0 < k < p+ q. Then we have p + ¢ + 1 equations for p + g + 1 parameters
V1, g,01,...,04,0% The Yule-Walker estimators are obtained as a solution
to these equations when (i) are replaced by their sample counterparts. The
problem is that the solution may be not unique or may not even exist. Moreover,
such estimators are usually much more variable than ML estimators described
later on. For example, if we write down the equations for MA(1) time series. As
in this case we obviously have 1y =11 11 = 01, we get

7(0) = 0%(1 + 619p1) = o2(1 + 63)
’)/(1) = 0‘2091,

which leads to the equations 4(0) = 62(1 4 62), 4(1) = 26,. It is easy to check
that solution to these equations exists only when p(1) = 4(1)/4(0) < 0.5.
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8.2.2 Preliminary estimation using the Durbin-Levinson algorithm

In order to obtain preliminary estimators of parameters for ARMA(p,q) we
can use an alternative solution. Namely, we recall from Chapter 4 that when
ARMA (p, ) process is causal and has representation X; = Y oo t;e—; then ¢
and 0 satisfy equalities 19 = 1 and

1/)]:9]—1— thiwjfi j:1727"'7

0<i<y

where 6; = 0 for j > ¢ i¢; =0 for j > p. In order to obtain p + ¢ equations to
solve for ¢ and 6 we consider the above equations for j = 1,...,p+¢q and replace
v; for j = 1,...,p 4 g by their estimators. How to obtain estimators of 1; ?
Note that for large m X; ~ Z;lo Yi€i_i, and thus estimators émJ, e ém,p+q
of coefficients of MA(m) model fitted by means of innovation algorithm may
serve as estimators of ;. It is known that when m — oo when k is fixed and
under appropriate conditions on causal and invertible process (ém,l, ceey émk)
is consistent estimator of (¢1,...,%y) (Brockwell and Davis (1991)). Thus the
discussed procedure should lead to reasonable approximation of unknown pa-
rameters. Estimators of ¢;, §; are obtained from the equations

min(j,p)

émyjzej-i- Z (,Oiém,jfi i7=12,...,p+q,
i=1

obtained when innovation estimators émd' are plugged in the previous equation
in the place of 9;. Then considering first p last equations for which ; = 0
and calculating estimators of ¢1,..., ¢, and then plugging them into the first ¢
equations and calculating estimators of 61, ...,60, we obtain desired estimators.
As an estimator of 02 we consider its approximation from innovation algorithm.

8.2.3 The Hannan—Rissanen method

The starting point of the Hannan-Rissanen method is noting that structural
equation of AR(p) process
Xe=o1Xp a4+ opXep + 24 (8:5)

is nothing else than linear regression with vector of predictors equal X =
(X¢-1,...,X4—p)" and response X;. In the case of ARMA(p,q) time series the
situation is analogous:

Xe=o1 Xp 1+ Xy p+ 00241+ + 042+ Zy.
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The only difference is that vector of regressors (X;_1,..., Xi—p, Zi—1,..., Zi—q)
is not wholly observable. The idea is to replace Z;_1, ..., Z;_, with residuals
from an appropriate autoregression model. The algorithm consists of the follow-
ing steps. First, take m > max(p, ¢q) and fit autoregressive model AR(m) with

resulting estimators of coeflicients equal @y 1, - . ., Pm,m- Calculate residuals
Zt:Xt_@m,lthl_"'_(ﬁm,thfnu t=m+1,...,n
Secondly, estimate 3 = (¢1,...,¢p,01,...,0;) in the regression model with re-

sponse X; and predictors X;_1,...,X¢—p,Zt—1,...,Z¢—¢. The main problem
here is to understand why residuals Z,h...,z,q may serve as proxies for
Zi_1,...,Zi_q. To justify, note that if (X;) is invertible then Z; = Z?io i Xt—i
and thus for large m Z, =~ > " n;X;—; or, in other words, (n9 = 1) X; ~
Zy — Yt miX¢—;. Thus approximating X; with process AR(m) we obtain
@m,i = —n; and it follows that Zt is heuristically sound approximation of Z;.
Finally, we let 52 = S(B)/(n —m).

8.3 The Maximum likelihood estimators for Gaussian
ARMA(p, q) time series

Innovation algorithm is crucial in writing down the likelihood function for Gaus-
sian ARMA(p, ¢) time series. We recall that the innovations representation is
representation of X, 11 = Py,(x, ..., x,} Xn+1 in the form

XnJrl = Zenj(XnJrlfj - XnJrlfj)
j=1

where )A(t = Pyp(x,,...x,_,} X+ denotes the best linear predictor based on all
available observations up to time ¢ — 1. Recall also that the summands in the
above decomposition are orthogonal: sp(X;,l < k) o Xy — X L X, — X, for
s > k. Moreover, decomposition

consists of two orthogonal components. The two last equalities can be written
in the matrix form as follows ( cf 3.35)

X1 1 0 0 Xl - )zl
X2 911 0 O XQ - X2

- . (8.6)
Xn en—l,n—l 971—1,1 1 Xn —Xn

(OFY
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and using orthogonality of innovations we have that

D, =%, & = diag(vo, - -, Vn—1)-
In view of (8.6)

where ©,, is lower triangular matrix with unit diagonal defined above. Thus
determinant |®,| = 1 and we have that |T',,| = vg - - v,—1. Moreover, we have

1-
;! = ©0.'D;'e;!. Define X, = (X1,...,X,) and X,, = (X1,...,X,).
Then in view of X,, = 0,(X,, — X,,)
X, T, X, = (X, = X)) DN (X, = X)) =) (X — X0)? fvica. (8.7)
i=1
Assume now that (X;) is a zero-mean causal ARMA (p, q) process with Gaussian
innovations. From the causal representation then it follows that (X;) is Gaussian

and thus Xi,..., X, is zero-mean Gaussian vector. Whence it distribution is
N(0,T,,) and the likelihood in view of (8.7) is

1
L(SO, 07 0-27 X17 s aX’ﬂ) = (27‘1’)_1/2(det1—‘n)_1/2 eXp{_QX{nFT_len}(88)

1 1 5.9
T 2m)2 (v o) /2 exp ( Y (X: — X3) /'Uz'—l) (8.9)
=1
1 1 <& -
— —— (X;—X,;)?*/ri_1), 8.10
(2mo2)/2(rg -+ - rpq)1/? exp ( 202 722;( ) /ri1) (8.10)
where 7; = v;/0%, i = 0,...,n — 1. We recall from Section 4.2.2 that for

ARMA(p, q) time series X, ir; do not depend on o2.

Definition 20 FEstimators satisfying

(o, 0, 5% = argmax,, o ,2 L(¢, 0, 0%, X1,...,X,)
are called mazimum likelihood estimators of ARMA (p,q) parameters.

Let L(,0,0?%) = log L(p,0,0?%) and note that differentiating £ with respect to

02 we obtain that 2 satisfies

n 1 - (Xz — )?i)Z
— = O
2&2 + 2(6’2)2 z:zl Ti—1

and thus
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2(p,0) = %ZM (8.11)

S(,0)

Let L(p,0) = L(p,0,56%) be a reduced log-likelihood and define (¢, 0) =
—2log L(,0)/n. Then

I(p,0) =21 +14+1log(n 1S(p,0)) +n? Zlogrj_l (8.12)
j=1

Note that the maximum likelihood estimator of ¢, @ is a stationary point of
l(p,0) . Solution is found by iterative methods starting from some preliminary
estimates of ¢, @ estimating o using (8.11) and then using iterative search to
find minimum of (¢, ). Note that predictors X, and r; depend only on ¢, 6
and can be found using the innovation algorithm. It is important to ensure
that the initial estimates correspond to causal time series as otherwise iterative
process may not converge. Usually, for the AR(p) process Yule-Walker or Burg’s
estimators are considered as initial estimators, for the general ARMA(p,q) we
use the Hannan-Rissanen or estimators described in Section 8.2.2.

8.3.1 Weighted least squares estimators

Note that after omitting constant term and Ry, := n~' "7  logr;_; in (8.12)
we are left with increasing function of

zn: (i = X)? (8.13)

S(¢,0)
which is weighted least squares criterion, a standard criterion used in linear
regression analysis which accounts for heteroscedasticity of errors. Estimators of
¢ and 0 obtained by minimization of (8.13) are called the weighted least squares
estimators. Corresponding estimator of o2 is defined as

~2 _ S(‘)Aoaa)
owrs = m

Justification of the method follows from the fact that for invertible process
n-! Z?zl logr;_1 tend to 0 in probability since v; — o?. Recall namely that for

02 = Var(g;) we have
o =[| X¢ — Pu, , X¢ ||” -

Indeed, for an invertible representation of &;

oo
&t = E T Xp—1
i=0
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it follows by comparing coefficients corresponding to constants in 7(z) = p(2)/
0(z) that mg = 1. Thus

oo
Xt =¢4— Zﬂ'iXt—l
i=1
and Py, ,X; =) .o, mX;_1. Thus for invertible ARMA(p, ¢) time series inno-
vation variance coincides with the error of prediction based on the whole past.
Since v; — o it follows that (vovy - - - vp—1)/™ — 02 and thus

n
n~! Zlog rj_1 — 0.
j=1

Intuitively, if process is invertible weighted least squares estimators should be-
have similarly to maximum likelihood estimators.

8.3.2 Likelihood function in the spectral domain

The considerations of the previous section lead to the simple approximation of
the log-likelihood function in the spectral domain. Namely, consider zero mean
one-sided invertible linear process X; = Z?io a;ei_;. We have

o? o?

A) = S|A(e™™)? = ==h(A
Fx() = Z A = Zh()
and then (—2/n)L(x) with x = (1,...,2,) equals, up to the constant term,

2rl 4
——xT . (8.14
+ o2 nx n.h % ( )

€

1 1 1
—log|Ty, ¢| + fx’I‘T_Llfx =logo? + —log |T.
n ’ n ’ n

As previously, we show that n=!log|T,, | — 0 for invertible linear process and
thus (8.14) can be approximated by

2 1

2 -1

1OgUe + Ufgﬁxll"mhx. (815)
Note that usually, as in the case of ARMA processes, h = h(0) is parametrized by
parameter  which does not depend on o2. Approximation (8.15) will be further
simplified in Chapter 12 using so-called Whittle’s approximation to construct
estimator of parameter of long-range dependence.

8.3.3 Asymptotic distribution of estimatiors of parameters for
ARMA (p, q) time series

In order to state asymptotic distribution of ARMA(p, ¢) time series we assume

~

that its innovations (Z;) are strong WN(0, o2). Let f&’ = (1, -, @,,51, e, §q)’
be a vector of ML estimators of 8 = (¢1,...,9p,01,...,6,)".
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Theorem 8.3.1 Consider causal and invertible (X;)iez proces ARMA(p,q)
such that o(-) i 0(-) do not have common roots. Then

n'2(B-p) = N(0,V(8))
where
V(IB) = 02 E(I};*VDI

and
Ut = (UtvUt—la'-')Ut—p)la Vt = (W)‘/t—]d"'a‘/t—q)/

satisfy autoregressive structural equations

o(B)U, = Z, O(B)V; = Z.
Note that for ¢ = 0 asymptotic covariance V(3) = o? Eﬁfl =o’T,!
with asymptotic covariance of Y-W estimators. In particular, asymptotic vari-
ances of Y-W and ML estimators are the same. This is remarkable, as usually
variances of moment estimators are substantially larger than for ML estimators.
Examples. For p = 1 we obtain that ¢ is AN(¢,n (1 — ¢?)). For p =2

~ p1 —1 1—¢3  —p1(1+2)
AN
L ([W] " [-@1(14‘%02) 1— 3 )

coincides

For MA(q) process asymptotic covariance of ML estimators is V(0) = 02(1"2)_1
where T'; is covariance matrix of (V;) satisfying

‘/t+01‘/;§—1+"'+9q‘/;§—q:Zt

which is AR(g) time series with ¢p = —80. In particular, for ¢ = 2 asymptotic
covariance is

L 1-02 6:(1—06,)
"o\e(1—6,) 1-62

8.4 Problems

1. For any weakly stationary time series (X;) let covariance matrix I';, be strictly
positive definite and ¢, = I') 1’7p be a vector of projection coefficients. Let
p(z) =1 — @1z — ... — ppzP be an associated autoregressive polynomial and
denote by w reciprocal of any root of it i.e. p(z) = (1 — wz)p1(2).

(i) Prove that w = cor(Y;, Yi41) = p, where Y; = 1(B)(X;) by noting that for
¢(2) = (1= pz)¢1(2) we have [|3(B) X1 []* < |lp(B)Xi4a |-

(ii) Prove that all roots of ¢(z) lie outside the unit circle. Thus AR(p) process
with ¢ given by Y-W estimator yields causal series.

2. Using innovation algorithm devise a method of simulating n observations from
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Gaussian vector X1, ..., X, with mean 0 and covariance matric I',, having at
your disposal iid N (0, 1) sequence of length n.

3. State the algorithm for solving Problem 3 using the Cholesky decomposition
and indicate a main difference between the two.

4. Show that if covariance function v(+) is such that v(0) > 0 and y(h) — 0 when
— o0 then T',, is invertible for any n. Hint: reasoning by contradiction note that
any X,, with n > s will be linear combination of the first s observations when s
is the last index such that I', is invertible.

5. Consider the sample path Xi,...,X,, of causal AR(p) series with Gaussian
innovations and n > p. Show that (8.8) implies that the likelihood for X;,..., X,
equals

L(p,0%) = (2ma”) "2 W, |71/

1 B n
X exp{ -5 2 [X;Wp 'X, + Z (Xi —o1 Xy — - — Lprt_p)z} },
t=p+1

where X, = (X1,...,X,) and W, = 02T,
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Modelling using time series

In this chapter we consider various aspects of modelling and diagnostics for time
series including model selection for ARMA(p, ¢) processes, diagnostics of fit for
such time series and white noise tests as well as basic models of nonstationary
time series and their fitting.

9.1 Model selection of ARMA (p, q) time series

We discussed before two simple heuristic tools which may be used to select order
of autoregressive or moving average process. They are based on two properties.
The first proved in Theorem 4.2.8 states that:

If (X}t)tez is weakly stationary nondeterministic process such that a(i) = 0 for
i > p then (X;) is AR(p). Analogous property related to covariance function is
(cf Theorem 4.2.9):

If v(i) = 0 for i > ¢ then (X;) is MA(q).

Moreover, the following results hold:

(i) n'/2a(i) 2, N(0,1) for ¢ > pif @(7) is the Yule-Walker estimator of a(i) = 0
for AR(p) process with iid innovations based on a sample path Xi,..., X,,.
and

(i) n'/2p(i) 2, N(0,1) for an estimator p(i) of p(i) = 0 for strong white noise
based on a sample path Xq,..., X,.

Property (i) is used in heuristic identification of the order of AR(p) series: we
look for the first k& such that for all i > &, |a(i)| < 21_q/2/v/n and then p = k is
considered as possible order of AR process. Similarly, the analogous procedure is
used to identify white noise, and sometimes this procedure is extended to identify
order of MA process. However, property (ii) holds for white noise only and does
not hold for MA processes. As we mentioned in the discussion of Bartlett’s
theorem for MA processes we can use the test of hypothesis that the underlying
process is MA(q) by testing p(g+1) = 0 using the test statistic p(¢+1)/SE;(g+1)
, where SEj;,11) is the standard error defined in (7.17).

In the case of AR(p) processes another possibility would be to base determination
of its order on testing the sequence of hypotheses Hy; : ¢; = 0 using as a test
statistic Tj = @jym/Gm; obtained from the fitting of AR(m) model. Here, 67, ; is
the j** diagonal element of the estimated limiting covariance matrix in Theorem
8.1.3. The problems arising here are that on the one hand we need to take large
m to ensure that it is larger than unknown p on the other hand we need to
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account for multiple testing problem arising in such a case.

We turn now to discussing theoretically justified methods of choosing the order of
ARMA(p, q) time series which are based on criteria approach to model selection.
Suppose that we would like to fit the model ARMA(p, q) to our data and we have
to decide what p and ¢ to choose. We focus on the most frequently applied case
of Gaussian ARMA(p, q) model. If we proceed naively by looking at (p,q) =
arg min{— log L(&,, §q7 o)} this will invariably lead to choice of maximal p and
q considered. This is due to overfitting as the data have been already used to
estimate the parameters and now we would like to use it again to estimate
the dimension of the model. Note also that for large p and ¢ we can always
approximate a given sample path by sample path of ARMA(p, q) or even AR(p)
process. Recall that we have proved in section 8.1.1 that for any nondegenerate
covariance matrix I', = (v(¢ — j))1<i,j<p+1 there exists AR(p) process with such
covariances. The natural way to avoid this effect is to incorporate the complexity
penalty into the criterion function i.e. the cost of fitting a model containing many
parameters. Let us discuss shortly the most popular penalties:

(i) Akaike criterion AIC (Akaike (1970))

AIC = —2log L(¢,,0,.5) +2(p+q+1), (9.1)

where vector ¢,, éq, o is the vector of ML estimators. Note that p+ ¢+ 1 is the
number of parameters of the potential candidate ARMA (p, q).
(ii) Corrected AIC criterion AICC (cf. Hurvich and Tsai (1989)):

~ A o~ 2p+g+1)n
AICC = —211’1.[/(801770(1,0') + m (92)
(iii) Bayesian Information Criterion BIC (Schwarz (1978))
BIC = —2log L((®,, éq,ﬁ)) +(p+q+1)logn. (9.3)

Akaike Information criterion is an estimator of Kullback-Leibler divergence bete-
ween the fitted model and the true one and AICC is based on bias correction
of this estimate. Namely, it is shown in Akaike (1970) that the number of pa-
rameters of the model divided by the sample size is approximately the bias
of n™' 377 log f(Xj, @, 6,,5) as an estimator of E, log f(X, ®,,04,0), where
g is the true model density. Note that -E, log f(X, ¢,,8,,0) is the part of of
Kullback-Leibler divergence D(g||f) depending on f. Thus

1 & pt+q+1
_Eglogf(XaQOpvomo')_'_ﬁzlogf(xjvsa;mgq’a)% n .
j=1

Whence the dimension of the model is added to loglikelihood in order to account
for the bias. Optimum model which is chosen by AIC criterion is a trade-off
between two terms in (9.1).

In contrast BIC criterion (9.3) approximates aposteriori probability of a model
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under consideration given the data. Note that for n such that logn > 2 i.e.
n > 8 BIC penalty is larger than AIC penalty and thus size of the model chosen
by BIC is not larger than size of the model selected by AIC. It is known (cf
Hannan (1997)) that when pp;c and ¢grc are the orders chosen by BIC and
the data is sampled from ARMA(p,q) time series with n — oo, then BIC is
consistent in the sense that P(pprc =p,dsrc =q) — 1.

The method discussed below is used to choose the order of AR(p) process.
FPE (Final Prediction Error) In order to derive the form of the criterion sup-
pose that we have two independent trajectories Xi,...,X, and Yi,...,Y, of
causal AR(p) process and we will forecast the observations of the second sample
path using parameter estimates based on the first sample path X;,..., X,. FPE
criterion is an approximation of the mean squared error of the forecast.

We have that

E(Yn+1 - alyn - @pYTH»lfp) ~o (1 + ) (94)

where @1, ..., P, are the Yule-Walker or ML estimators of parameters based on
X1,...,X,. In order to justify this approximate equality note that as (Y3) is
causal then in the representation Y,,+1 = €41+ Zle ©iYn+1-, variable €,,41 is
uncorrelated with Y; for ¢ < n. Thus

p
E((Yo1 = Y @i¥nr1-)*1 X150, Xn)

2 1

E(eny1 — Z ©i)Yni1-4) |X1,~-Xn):U2+(95_<P)Tp(%5_90)

and since n'/?(¢ — ) — (0,02I, ') then using continuous mapping theorem
we have that n(¢ — ¢)'Tp(@ — ¢) is approximately distributed as o023, where
ij stands for chi square distribution with p degrees of freedom. Calculating
expectations of both sides of the above equation and recalling that the expected
value of x? with p degrees of freedom is p we obtain justification of (9.4). Final
Prediction Error is an estimator of the right hand side of the above equality
when we use 6% = (n/(n — p))d3,, as an approximation of o2. After plugging
62 in (9.4) in we obtain

n+p

FPE = 52—F —52,, 0P

7p7

where 53;; is ML estimator of 0. The order p of autoregressive model which
minimizes FPE defined above is chosen. It can be shown that in the case of AR(p)
process FPE criterion is close to AIC. The reason for this is an approximate
equality holding for small values of 2p/(n — p)

2p

. 2p
log(FPE) =1 2 log(1 4+ —") ~1 i
og( ) =log(oy,) +log(1 + o —p) 0g(a31) + n—p’
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as the first term corresponds to twice loglikelihood divided by n.
There are several other criteria, we mention e.g. CAT criterion introduced by
Parzen and Hannanan-Quinn’s criterion. AIC and BIC are the most used ones.

9.1.1 Diagnostics of ARMA (p, g) model fit

Let us note that even for fit of AR(p) process using unstandardised residuals
is far-fetched as they are heteroscedastic. As a usual tool of checking whether
ARMA time series is well fitted empirical counterparts of standardized innova-
tions are used. Usually we consider

& = (X, — Xu(3,0))/{ri—1(5,0)}1/2,

where ry = v, /0% X,(P, 5) denotes prediction of X; for ARMA time series with

~

parameters (@, 8). Obviously, (€;) are only approximation of white noise

er = (Xe — Xi(0,0))/{re—1(p, 0)}V/2.

More specifically, (é;) would have been white noise, provided X; were generated
from ARMA(C&,@) process. Plot of é; against time is the basic diagnostic tool
for ARMA processes.

For empirical covariances we can use the following result due to Box and Pierce
(1970) which takes the dependence between empirical autocorrelations into ac-
count.

Assume that ARMA series is causal and invertible. Consider the product of ¢(z)
and 6(z) and let
P(2) = p(2)0(2) =1 = @12 — -+ — Gpyg2.

Moreover, define expansion of reciprocal of @(z) into power series
oo
a(z) = (=) =D a2,
j=0

Let (Y;) be AR(p+ ¢) time series pertaining to polynomial $(-) with 0% = 1 and
I, 4 covariance matrix of (Y1,...,Y,1q).
Note that

p+q

o0
Ppiqg= [E :akakﬂi—jll o
i,j=1
k=0

since a(z) defined above yields causal representation of (Y;). For h > p+q denote
by p;, = (p(1),...,p(h)) a vector of empirical autocorrelations of €; and
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Th = [ai_]‘] 1<i<h .
1<ji<p+a

Box-Pierce correction is based on the fact that
n'2p, 2 N(0,1-Q),

where Q = Thf‘;iqT;L = [q”]f j=1 - Whence asymptotic variance of p; (i) equals
n~ Y1 — qi)), where qi;; = qii(g,0). For construction of confidence intervals
qii(p, é) are used.
For AR(1) it is easily checked that Ty = (1 — ¢2) ™ and ¢ = qu(p) =
()02(1'71)(1 _ 902)-
In diagnostics portmanteau tests discussed below for hypothesis that h first
correlations are zero are used. It turns out that to account for the fact that we
deal with residuals from the fitted model we change the number of degrees of
freedom of asymptotic distribution of npj},p;, changes from h to h —p — q. For
details we refer to Box and Pierce (1970).
Sometimes the following simple approach is useful. Suppose that we fit ARMA
process

#(B)X, = 0(B)Z,

to the data and the residuals r; indicate that the model does not fit. However the
analysis of residuals suggests that Z; might satisfy ARMA structural equation

©2(B)Zs = 02(B)Wr,
where W; is a white noise. Then the two above equations imply that
2(B)p(B) Xy = ¢2(B)0(B)Zy = 6(B)p2(B) Zy = 0(B)02(B)W, = 02(B)6(B) W,
and then we can again fit ARMA process to the original data with polynomials

2 and 656.

9.1.2 Testing white noise hypothesis using empirical correlations

We recall from the previous section that when (g;);ez is a strong white noise
WN(0,02) then p(h) = (p(1),...,p(h))" has approximately N(0,n~! I) distri-
bution as /np(h) 2, N(0,I). Using the continuous mapping theorem with
T(x1,...,25) = Yo, 22 we have

T(Vnp(h)) 2 T(N(0,1))
or, equivalently,
Q=n|ph) |* 2 3 (9.5)

The left hand side of (9.5) is a frequently used test statistic for testing the
hypothesis : Hy : (g;);ez is white noise.
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We fix h € N and use (9.5) as a test statistic with critical region {Q > x7_,, ,}-
This is so called portmanteau test (or ’trunk’ test, as it ’contains’ all tests p(i) =
0 for i =1,...,h). Ljung-Box test is modification of the above procedure.

Ljung—Box test

h
Qrz = n(n+2) Z p°(j) / (n—j) (9.6)

The motivation of this modification is based on the fact that distribution Qg
is more adequately approximated by x7 distribution than Q.

McLeod-Li test This is Ljung-Box test applied to X?7,..., X2. The idea is
that sometimes nonlinear dependence between random variables is revealed when
some (nonlinear) transformation is applied to them.

Example 9.1.1 We calculate empirical correlations and perform Ljung-Box test
with h = 10 for residuals of uspop.dat when the quadratic curve is fitted (compare
Lecture 1).

acf (USres)
Box.test(USres, lag = 10, type="Ljung"
Box-Ljung test

data: USres
X-squared = 18.5999, df = 10, p-value = 0.04565

Although at the level 0.05 we reject the null hypothesis that all correlations
p(i),i = 1,...,10 but it is a close call as p-value approximately equals 0.05.
Moreover, judging on the autocorrelations alone we do not see obvious reasons
why we should reject the null hypothesis: all autocorrelations but one for 1 <
h < 10 are contained in confidence intervals for white noise (note that time unit
here is 10 years and that is why autocorrelations are computed for multiplies of
10).
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Series USres

1.0

05
I

ACF

0.0

-05
I

9.1.3 Various white noise tests

There is a legion of tests for whiteness. We consider only few of them:
(i) Change of tendency (or turning points) test. The starting point of this test is
the observation that for 6 different arrangements of the triple of distinct values
only two are monotone and the remaining four contain change of tendency (turn-
ing point). Thus, if we denote by T be the number of triples (X;, X;11, Xit2),
1 <i < n—2,such that X;;1 is a turning point, then for a strong white noise
(X:) we have
ET =2(n—2)/3.

Moreover, one obtains

o2 = (16n — 29)/90.

Using the property above and asymptotic normality of (I — ET)/or it is easy
to derive a form of rejection region of white noise test using 1" as a test statistic.
(ii) Sign of differences test. Let

S:#{ZngTLXZ>XZ_1}
For a strong white noise (X)
ES=(n-1)/2 o= (n+1)/12

which as before, as S is asymptotically normal, leads to construction of a rejec-
tion region for test statistic S. Note, however, that when the time series has a
cyclic component then S may be close to n/2 and in such a case null hypothesis
will not be rejected.
(iii) The rank test

P=#{n>j>i>1:X;>X;}.

For a strong white noise we have
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EP=n(n-1)/4 o%=n(n—-1)(2n+5)/72.

(iv) R/S test. We consider also a test which is based on the rescaled range of
partial sums (cf Mandelbrot (1991)), frequently used in the case of financial
returns. We define the rescaled range of the cumulative sums of X; as

% 4

My = [ xoax H(Xt - X)) - [1211_13”2_:(& - X))
R/S statistic is
M,
R/S = \/577 (9.7)

where ¢ is standard deviation of X;. Application of this test to detect long-range
dependence will be discussed in Chapter 12.

It is necessary to remember that if we use several of these tests then level of
significance of a resulting joint test increases and we have to account for that
applying e.g. Bonferroni correction.

9.2 Modelling nonstationary time series

In this section we will discuss the main modelling techniques, parametric as well
as nonparametric, which are used to model time series which are nonstationary.
We will first focus on a case of time series which after removal of deterministic
part becomes weakly stationary. Most commonly used model of such process is
as follows

Xt :mt—|—st—|—Yt, tEZ, (98)

where Y; is a weakly stationary zero-mean time series, m; is a deterministic trend
component and s; is a is a deterministic seasonal component , which means that
there exists d € N such that for all ¢ € Z we have s;14 = ;.

Modelling of such time series usually consists in removing of a trend and a
seasonal component and then fitting a model of stationary time series to the
remaining part. Removal of both components is usually based on their prelimi-
nary estimation or appropriate differencing of time series. Alternatively, we can
at once try to fit SARIMA process described below to the original time series
but it is always worthwile to see how the trajectory of differenced process (with
a lag 1 or equal to a suspected period of a process) looks like and whether it
resembles a stationary one. Features of such process should include no obvious
traits of periodicity or a trend and quickly decaying correlations. Trajectories of
weakly stationary time series usually have these features but one should keep in
mind that there are stationary processes, such as long memory processes, which
trajectories resemble trajectories of nonstationary processes: they exhibit local
trends and slowly decaying correlations.

We first start with parametric models (9.8) for which sesasonal component s; = 0
and then generalize them to include periodic pattern.
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9.2.1 ARIMA and SARIMA processes

We first define ARIMA (p, d, q) process where additional parameter d € N.

Definition 21 (X;)scz is called ARIMA(p,d, q) process if its d™ difference (1 —
B)¥X, is causal ARMA(p,q) process, or equivalently

¢(B)(1 - B)'X; = 0(B)Z, (9.9)
where (Zy)iez is WN(0,0?%) and p(2) # 0 for |z] < 1.

Note that for d > 0 the process (X;)icz satisfying structural equation (9.9) is
nonstationary as 1 is a root of order d of ¢*(z) = (1 — 2)%p(z). Moreover note
that for such (X¢)¢ez , series (X¢)rez +W (¢), where W; is a polynomial of order
less than d, is also ARIMA(p,d,q). It is important feature of ARIMA(p,d,q)
time series as it allows to model processes with a trend using them. However it
also creates problems when making predictions for such processes, and without
additional assumptions this is frequently impossible (see Problem 9.1). Putting
it differently, for ARIMA(p, d, q) process we can determine covariance structure
of ¢(B)(1— B)?X, but not that of (X;). Note that the estimation of parameters
of ¢(+) and 6(-) in such setting is a delicate problem as it may happen that e.g.
process ARIMA(1,1,0), which after differencing is AR(1), may be identified as
stationary AR(2) with one of the roots of polynomial ¢(-) lying close to the unit
circle. Usual practical procedure of fitting such processes consists in differencing
of the original process several (usually no more than two or three times) and
checking for traits of nonstationaritity for differenced series and then, if the pro-
cess resembles stationary one, fitting ARMA time series to it.

ARIMA stands for Integrated AutoRegressive Moving Average process. Adjec-
tive 'integrated’ is explained by the following example.

Example 9.2.1 (i) ARIMA(1,1,0) process or equivalently IAR(1,1). The pro-
cess satisfies

(1-¢B)1-B)X; =2
which implies that with Yy = X; — X1 we have

t
X=X =Y,,  Xe=Xo+) Y
j=1

As a cummulative sum above is a discrete equivalent of integral this explains the
name of the process.
(i1) ARIMA(0,1,1) or IMA(1,1) process.
(1-B)X; =W, —0W,_1 = (1 —-60B)W,,
where 0] < 1 and Wy is WN(0,02). Thus
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(1-B)

a—om "

(1) S B~ X+ 0K = Y0 X -
=0 i=1 i=1

and equivalently
oo

X = (1=0)0""X,_; + Wi,
i=1
Note that if Wy L Hy_y then the term > .o (1—0)0""' X;_; in the decomposition
above is an optimal predictor of X;. Moreover in such a case

1-0)X,+6X, =(1-0)X,+> (1-0)0'X,_;

i=1

=1=0X,+> (1—=00 X1 =Xpp1. (9.10)
1=2

This is a recursive equation of exponential smoothing which we will encounter
later on in connection with the Holt-Winters estimators.

9.2.2 SARIMA processes

Now we generalize ARIMA process to a broader concept of SARIMA series which
incorporates non-zero seasonal component. To this end we introduce an operator
of seasonal differencing with period s

(1-B)X, =X, — X,_s.

Parameter s € N and is equal to assumed or observed period of seasonal compo-
nent in the data. Thus s = 7 corresponds to weekly period when ¢ corresponds
to days, s = 4 corresponds to yearly period when ¢ corresponds to consecutive
quarters of the year and so on. Note that operator (1— B#) used above is different
from (1 — B)*® which corresponds to s-fold differencing. First we introduce a no-
tion of ARMA(P, @), which is ARMA process for the time points {ks + so}kez,
where 0 < sg < s or, equivalently, it satisfies structural equation

P(B*) X = O(B*)ey, (9.11)

where (g;) is WN(0, 02). Consider the following example.

Example 9.2.2 Assume that data is collected for r years every month, which
gives 12r data points, and is arranged in the form of a table
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Month
1 2 12
1 X1 Xo - X120
Rok 2 X13 X14 e X24
T X1+12(7‘—1) X2+12(7‘—1) X12+12(r—1)

We assume that each column is generated by ARMA(P, Q) series:

KXjvi2e = 1 Xjp1o¢-1) + -+ opXjr12¢-p) + €512t + O165401000-1) + - +
9Q5j+12(t—Q)» j:].,...7].2, t:].,...,?“

For each 0 < 7 < 12 €412¢ 45 assumed to be white noise WN(O, 02). Thus we im-
pose independence of noise columnwise but not necessarily between columns. If we
additionally assume that (g¢) is white noise WN(0,0?) we obtain ARMA(P, Q)12
process. In particular, if P = 1 and Q = 0 ACF of the process satisfies
p(12i) = Il

Definition 22 The process which satisfies structural equality (9.11) with (&)

fulfilling
QD(B)Et = G(B)Zt,

where (Z;) is WN(0,0?) is called multiplicative ARMA(p, q) x (P,Q)s .

As operators p(B?®) and ¢(B) commute, we get

p(B%)p(B) X, = ¢(B)p(B*) X, = ¢(B)O(B*)e,
= O(B%)p(B)e; = O(B°)0(B) Z;.

A form of a structural equation explains the name of the process. Note that
©(2)p(2°) is a polynomial of order p+ sP being a product of two polynomials of
order p and sP for which some coefficients are zero and analogous observation
is valid for 0(2)O(z%).

9.2.3 Nonparametric methods

We now briefly describe estimation of a trend and a seasonal component without
assuming additional structure of these terms. As before, assume initially that
s¢ = 0 and note that m; may be estimated by any of many nonparametric
regression estimators, such as kernel estimators or polynomial smoothers. In
order to see why it works consider a simple estimator, a running mean

oo

- 1
my = 2q+ 1 Z thj = Z ant,j, (912)

l71<q Jj=—o0

where

1 .
s — 4 21 for [j] < ¢
! 0, otherwise,
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and we enlarge the sample path by letting X; = X for ¢t < 1, X; = X, for
t > n. Thus running mean is a special linear filter of the observed data. Note
that when (9.8) holds

- 1 1
mt:2q+1 thfj“f‘mzyifj

l71<q lil<q

and if ¢ = ¢, is not too large the first term in the decomposition above is a
reasonable approximation to m; provided m; does not change rapidly. On the
other hand, if g, is not to small the second term will be close to 0, if process (Y3)
is ergodic in view of ergodic theorem. It follows that for moderate ¢ m; should
be a reasonable estimator of m;.

Consider now the case that seasonal component is present and assume that

d
St+d = St and g 55 =0.

Jj=1

Note that the second assumption is not restrictive as we can always center (s;) by
the mean value of the period 5 and augment m; by this value. We describe now
the stepwise procedure of estimating s; and m;. Throughout d is assumed known.

1) The first step is preliminary estimation of m by the running median with
number of terms equal to d. More specifically, for d = 2¢ + 1 we consider the
ordinary running mean (9.12) with parameter ¢, whereas for d = 2¢ we define

ﬁi . O.5Xt_q + Xt—q+1 + -+ Xt+q—l + O.5Xt+q
t — )
d

gst<n-—gq.

2) In the second step we estimate seasonal component si for k < d (Sgrq = Sk)
as follows. Let
Sktjd = Xktjd — Mt jds Jig<k+jd<n-—gq,

Let wy, be the mean of {544} and finally

Sk = wyp — W.

3) The third step is simply deseasonalisation of X,

dt :Xt —:S\t.

4) In the fourth step m; is estimated parametrically or nonparametrically by m;.
5) In the last step we fit a stationary process to Y; = d; — my,
We recall that for s, = 0, polynomial trend carllC be eliminated by d-fold differen-
tiation by taking into account that if m; = ijo ¥;t) then

VX = vrY; + Eley.
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Thus d = k+1 is sufficient to remove polynomial trend of order k. However, the
problem is that we eliminate and not estimate trend,the form of which is usually
of interest.

9.2.4 The Holt—Winters method

We discusss now the most popular method of estimation of a trend and seasonal
components. It is quite ingenious albeit simple. We describe the method first for
the case s; = 0. Instead of estimating only trend m; we aim at simultaneous
estimation of

(mt, bt)»
where b; denotes the change of the trend in the moment ¢. This is done recur-
sively. Let 0 < «a, 8 < 1 denote parameters of the method. Define

(9.13)

Mins1 = (Mg 4+ bp)(1 — @) + aXpp1, 0<a<l,
anrl = (anrl - a\/n)ﬁ + (1 - ﬁ)b'ru 0< 6 < 17

and we let Mo = Xg,gg = (X3 — X1), Thus the trend at moment n + 1 is
estimated by the convex combination of the observation X,,;; at this moment
and the estimator of the trend at this moment, namely m,, + b,h for h = 1. The
equations (9.13) are recursively solved for i = 3,...,n.
Note that recurrence is performed timewise: values of a trend and its change
approximated at t are used to estimate these parameters at the later time points.
Consider now the general case given by (9.8). Now the aim is to estimate

(mta bta 5t)7
where s; has period d. The Holt-Winter equations are as follows

Pt = (i + b)) (1 — @) + a(Xps1 — Sg1-a), 0<a <1,

~

bn+1 = (fhn+1 - mn)ﬁ"‘ (1 - ﬁ)bnv 0 < ﬁ < 1a
Cny1 = (1 =7)8nt1-a +7(Xnt1 — Mpt1), 0<y <1,

For the first equation we used the fact that seasonal component s,+; at time
n + 1, the estimator of which is not available at this stage, can be replaced by
Sna1_q. We let:

Mat1 = Xat,

ba+1 = (Xap1 — X1)/d,

gi :Y; - (Yl +bd+1(i7 1))7 i = 1727"'7d'

Usual method of choosing o and 3 is

n
(v, fo) := arg min Z (X; — X2
By g

Note that the Holt-Winters estimators yield assumptions-free predictors of
Xop+h, namely

-~

Xn+h = an + bnh + zir,—&—h—d-
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Observe that in the simplest case when we let 3 = = 0 and use only « above
we obtain:

ﬁ"Ln+1 = f)\ln(]. — a) -+ O[Xn+1.
This is so called exponential smoothing method. Explicit solution to thee above
equation is

t—1
mt+1 = Z Oé(l - a)th+1_j + (1 - Oé)tXl.
=0
Note that for estimation of m;1 the influence of X;4,1_; is exponentially decay-
ing in 7, whence the name.

9.2.5 Problems

1. Let X; dla ¢t > 0 is defined as X; = Xg + 22:1 Y;, where Y; ARMA(p,q)
series. X; is thus ARIMA(p, 1,q). Let Hy = sp(Xo, X1,...,X;). Prove that

Py, X1 =Xy + P, Yia

and if Xo and Y; for ¢ > 0 are uncorrelated then Py, Yii1 = Py, v,)Yes1-
2. Justify the following statement: if for a certain data AIC and BIC for
ARMA(p, q) process have unique minima and models corresponding to the min-
ima have the same number of parameters than those models coincide.
3. Construct an example of a weak white noise (;);ez such that (e2) are corre-
lated, generate trajectories of length n = 100, 500, 100 and check how Ljung-Box
and McLeod Li test works for them.
4. Prove that if X; = Y; + m;, where m; = E?:o ¥;t? then

kat = vk}/; + k'Ck
5. Suppose that we fit AR(k) model with 02 = 1 to the data where 1 < k < p
and k denotes the number of lags considered X;_;,,..., X;—;, . BIC approach
assumes uniform distribution on the family M of all possible 2P models and
let U be a random variable having this distribution i.e. P(U = m) = 1/2P for
any m € M. Show that the number of elements |U| has binomial distribution
Bin(p,1/2) and thus E|U| = p/2. This indicates that when the number of true
legs is much smaller than p = p,, BIC criterion may have, similarly to AIC, the
tendency to select too large a model.
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Estimation of the spectral density

The chapter is devoted to discussion of properties of two basic estimators of a
spectral density, namely a periodogram and a smoothed periodogram.

Before we consider nonparametric estimators of the spectral density note that in
parametric case, in particular for ARMA processes we can use the form of their
spectral densities derived in Chapter 5 for more general case of linear processes.
In particular, in view of (6.14) a plug-in estimator of the spectral density of
AR(p) is

A2
g P PO
f()\):%ﬂfgole )‘f...fgope p’\|2, (10.1)

where ¢1,--+,$, and 62 are the Yule-Walker estimators. This estimator has
an interesting property: it maximises entropy among spectral density estimators
for which pertaining variances are equal 4(0),...4(p) (cf. Brockwell and Davis
(1991), Section 10.6). Estimator (10.1) can be extended in an obvious way to
estimate a spectral density of ARMA process in view of (6.14) using e.g. ML
estimators.

10.1 Periodogram

Assume that the underlying process (X;)ien is real valued weakly stationary
having mean p and such that its covariance function is absolutely summable :

2 he—oo [Y(M)] < 0.
We recall that inversion theorem (cf Theorem 6.2.2) states that in this case

f()\):% > e ™, Ae[-m,7l. (10.2)

=—00

We show now that the definition of the simplest estimator of the spectral density,
namely a periodogram, is directly based on (10.2). Suppose that we want to
estimate f(A) after having observed Xy, ..., X,,.

Definition 23 An estimator of f(-) based on X1,..., X, and defined as

= — | ZXezt)\ | 27m( ZXt cost))? ZXt sint\) ) (10.3)
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for X\ € [—m,x], is called periodogram.

Note that as X; is real valued we have I,,(\) = I,(—A) i.e. periodogram is an
even function. Moreover, for A = 0, I,,(0) = n(X,)?/2n, thus I,(0) can be
calculated once the empirical mean is evaluated.

Justification of (10.3) rests on the following fact. Consider first the situation
when p = 0 and modify the definition of an empirical covariance to

1 n
¥(h) = ——— X X
3(h) n—|h|; tNt4|h|

Note that the centring by X,, in the definition of empirical covariance is omitted
as the mean is zero and is assumed known. Using the definition of 7(h) we can
write the definition of the periodogram as

1 i(t—s 1 = —1
L) =5— Y XXl = > > Ah)e (10.4)
1<t,s<n h:|h|<n
which bears a close resemblance to (10.2).

Definition 24 Fourier frequencies are defined as \; = 2mj/n, where j € F,
and

n—1, n—2

Fu = (=[5 L5 G

with [y] denoting the integer part of y.

Note that the set {\;}jer, consists of n frequencies contained in (—m,].
For odd n = 2k + 1, F, is symmetric with respect to 0 and corresponding
frequencies are —2rk/n,...,2wk/n, whereas for n = 2k the frequencies are
—2m(k — 1)/n,...,2wk/n. The largest frequency for even n does not have its
mirror image in F,. We remark that periodogram calculated at a Fourier fre-
quency is the squared modulus of Discrete Fourier Transform of (X;)} ; which
can be efficiently calculated using Fast Fourier Transform.

Observe that for an arbitrary mean g and using the usual definition of an em-
pirical covariance

n—|h]|

Y (X = X) (X — X) (10.5)

S|

the representation (10.4) is valid for Fourier frequencies A; # 0. Namely, taking
advantage of

in\;

S iAjt z)\ iXjt 6 A ¢ .
J —_— Y = ]. .
E e E e o 0, j#0, (10.6)

we have
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In(\) = 5— | ZX et

1 2 =~ —th\;
=2m|ZX S0 = g 2L AW,

where 7(h) is defined in (10.5).

Remark 10.1.1 We can also interpret the periodogram differently. To this end,
define

Cc" > Sej=n 1/2( j €2>\, “76271)\3-)/

Note that (e;) e, form an orthonormal basis in C".
Thus for X = (X1, Xa,...,X,)" we have for certain a1, ..., ay,

X = Z ajej, (107)

JEF,

and
R :
e} =< X, €; >= % E Xk@ilk}\j.

The sequence {ay} is called a discrete Fourier transform of X. Series (X;) is
decomposed into a linear combination of periodic waves e; with frequencies A;
and, moreover, a large coefficient o; corresponds to a large contribution of the
pertaining component. This can be clearly seen by the following development.
Note that I,(—\;) is related to squared scalar product of X = (X1, Xa,..., X,,)
and e;. Specifically,

L(=\;) = 1 |< X,e; >|?= 1 | i:X e~ 2= |aj[?
" / 2 Y 2m = ! 2
Since (e;)jer, s orthonormal basis we have
[n/2]
IXP= Y =21 > I(N). (10.8)
k=—[(n—1)/2] JEF,

The above equality shows the decomposition of || X ||?, which is the total vari-
ability of X, into components related to different Fourier frequencies.
Note also that as series Xy is real-valued (10.7) can be written as

_ itA;
X = g e =

JEF,
L2
IRV

where the last term above is defined as 0 for an odd n.

1
(a1 cos(Ajt) + aje sin(Ajt)) + (— 1)"/2%0%/2,
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Sometimes a different definition of periodogram is used which defines it as a
piecewise constant function with heights of steps equal to I5,(Xo), ..., In(Apm/2)-
Namely, for k =0,...,[n/2] define

L(w) = I,(Ag), M—7/n<A< A +7/n, 0< A<,
" (=), A e [—m,0),

Here throughout we will consider (10.3) as the definition of the periodogram.

10.2 Basic properties of periodogram

Theorem 10.2.1 Let (X¢)ien be a weakly stationary process with mean p and
y(-) € £*. Then for A\ =0

EI,(0) — nu?/2m — f(0) (10.9)
and for A € [—m, 7]\ {0} we have
EL(\) — f(\) (10.10)

Proof. In order to prove (10.9) note that EI,(0) = nE(X?)/2w, and thus left-
hand side of (10.9) equals

1 <2 oy _ 1 2

o= (nE(X?) —n?) = o nVar(X) — f(0),
where the last convergence follows as v(-) € 1. We prove (10.10) for p = 0. In
this case

1 n — |h| —ihA
EL() = 5= Y ———v(h)e ™ — f(V),
|h|<n
For general 1+ we prove that for any sequence of Fourier frequencies Ay, — A we
have EI,(Agn) — f(A) by using (10.6) and then the proof is accomplished by
taking into account continuity of E'T,(-).
Thus for a zero mean process with summable covariances I, () is an asymptot-
ically unbiased estimator of f(A) and it is also easy to see that in this case the
convergence of EI,(\) to f(A) is uniform in A € [—m, 7).
However, it turns out that the variability of the periodogram does not tend to
0 with the growing sample size, namely Varl,(A) — C' # 0, when n — oo and
thus I, () is not consistent estimator of f(A). This in particular follows from the
theorem below asserting that the asymptotic distribution of the periodogram is
exponential. Before we state the result we give an intuition why it holds.

Example 10.2.2 Distribution of periodogram for Gaussian white noise.
Vectors
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C; =< COS\;j,CO82A;,...,cosnh; >’ (2/n)"/2,
s; =< sin \;,sin2);,...,sinn\; > (2/n)/2, ji=1,...,[(n—1)/2]
are orthonormal and from the previous remark it follows that

1 (<X,c; >2+<X,s; >?
In(A\j) = 5= { %> % }

2T 2
Thus if (X¢) is a Gaussian white noise N(0,02) then < X, ¢; > and < X,s; >
are distributed as N(0,02) and they are independent. Indeed, in particular

2 — 202 &
BE(< X, c; >2 :E<f X2 2kx):— 2N = o2
( ,Cj >7) n; io cos” kA ~ ;COS =0

Thus < X, c; >? 4 < X,s; >2 has x3 distribution which coincides with the
ezponential distribution £((20%)71) with parameter A\ = (20%)~1 and expected
value 20°. Thus it follows that I,(\;) ~ E(2n /%) = E(f(\;)™") and has ex-
pected value f(A;).

Note that in view of this intuition set F, in (10.8) may be replaced by the set
Xi, i =1,...,[(n —1)/2] with added values A\g = 0 and A,/ = 7 (the last value
only for even n). Contribution of the last values to the decomposition of ||X||?
equals I(Xog) i I(A,/2) respectively, whereas the contribution of the remaining
frequencies should be counted twice and equals 2I(\;).

We first state the proposition asserting that the variance of the periodogram
converges to the constant value. However, periodograms at different points be-
come asymptotically uncorrelated. In order to see this in the special case let
(¢t)tez be a strong WN(0, 0?) with fourth cumulant 4. Reasoning similarly to
the proof of Theorem 7.4.1,we have for \; # Ay

( (/\1) (/\2 [471_2 Zzzzg E1EuED ez{(s YA+ (u— v)AQ}}
4772 |: {TL +Zzez(s t)(A1+>\2 +ZZ€2(S t)(A1— )\2)}+n/€4:|

_ ol 04 {(sln n(/\1—|-/\2)) (blnén(/\—1)\2)) }(10.11)

Am2n " 4n? " 4n2?n2 \\gin (A1 + A2) sin (A1 — Ag)

Performing similar calculations for Ay = Ao we thus obtain

Proposition 10.2.3 Let (X;)ien be strong white noise WN(0,0?) and k4 =
CUm(Xt,Xt,Xt,Xt).

For0< A< .
o (o KR4 1
Varl,(\) = e +47r2n+0(n)
and for A\=0,7
ol K4 1
Varl,,(\) = — =),
arly(3) 272 +47r2n+0(n)
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whereas for \1 # Ay

K 1
CouIn(A), In(h2)) = 5~ +o().

Thus it follows that if k4 # 0 Cov(I(A1),I()2)) is of order O(n~!) whereas for
k4 = 0 is O(n™2). Moreover, variance of I,,()\) is aproximately twice as large as
for I,(X) for A # 0.

The main result stated below confirms the intuition that periodogram is asymp-
totically exponential. Moreover, for distinct frequencies periodograms become
asymptotically independent.

Theorem 10.2.4 (i) Let X; = Z;’;_OO ViZi—j, (Zi) be a strong WN(0,0?),
Y oo il < 00 and wy, i = 1,...,m such that f(\) > 0 for X € [-m,7],
O<w <wy < " <wpy <7. Then

Tn(@1)s -, Tn(wm)) 2 (1, €m),

where €; are independent exponentially distributed E(f(w;)™1).

(i) If moreover EZ} < oo and 3 |§|Y/2v;] < oo then Cov(I,(Mk), In(A;)) =
O(n™Y), where \j = 2mj/n, \, = 27k/n are two different Fourier frequencies
for fized j, k € N.

The result shows a momentous advantage of moving from state domain to fre-
quency domain. By doing so we change a complicated dependence structure of
a weakly stationary process to asymptotically independent periodogram values
from which the original dependence structure can be recovered.

In particular it follows that the variables U, (w) = (I, (w) — f(w))/f(w) are ap-
proximately £(1) distributed and U, (w) i U, (w’) are asymptotically independent
for w # w'. Also from the last property together with the fact that asymptotic
variance is approximately the same for close points it follows that the averaging
of periodogram over close frequencies should diminish the variance of the esti-
mate. Moreover, if the frequencies over which averaging is done are sufficiently
close, we should not loose asymptotic unbiasedness of the periodogram. These
observations will be used below in construction of smoothed periodogram.

10.2.1 Prewhitening

The idea is parallel to the tranformation method in density estimation and is
based on the observation that the original spectral density might be difficult to
estimate because e.g. of sharp peaks and it is much easier to estimate regular
spectral density without much variation. Thus we transform appropriately the
original data, estimate the spectral density of transformed sample and then
transform it back. The transformation is usually the linear filter as the resulting
spectral density is easily derived. If Y; = Z;’;O X is the chosen filter and

fy spectral density estimator for the filtered data then prewhitened estimator is
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Fx() =122 iy (N,

where W(e~* is a transfer function of the filter. The crucial question is how to
choose a filter. Note that the most natural proposal would be to transform (X;)
to a white noise but this obviously requires knowledge of spectral density fx.
Frequently, coefficients of AR(p) approximation are chosen as coefficients of the
filter, when the approximation is obtained e.g. by considering the least squares
fit of lagged observations X;_1,..., X:—, to X;.

10.3 White noise tests using periodograms

10.3.1 Test of cumulative periodogram

As we have shown above that for Gaussian white noise periodograms at Fourier
frequencies I,,(\;) have exponential distribution £(0?/27) and are independent,
the following proposition can be used to construct test statistic of whiteness of
Gaussian sequence.

Proposition 10.3.1 Assume that Z1, ..., Z, are independent random variables
with exponential E(N) distribution, then

Yi:(iZk)/(ZZk), i=1,....q-1
k=1

k=1

have the same joint distribution as order statistics Uy.q—1,...,Uq—1:.q—1 Of uni-
form iid random variables Uy, ..., Us—1

(Yh B qul) ~ (Ulzqflv ey Uq71:q71)~

Note in particular that if F,_; denotes cumulative distribution function of
Y;,i = 1,...,q — 1 defined in the proposition, then its distribution coincides
with that of cumulative distribution of a random sample consisting of ¢ — 1 inde-
pendent uniform random variables. Thus Kolmogorov—Smirnov statistic can be
used to construct test whether the underlying sample is a Gaussian iid sample.
We whence define with ¢ = [(n — 1)/2]

Tks= sup \/g—1 [ Fy1(s)—s].
s€[0,1]
Critical region of the test is built using the corollary of Donsker’s theorem

Tis — sup | B(s)|,
s€0,1]

under Hy, where BY is the Brownian bridge on [0,1]. Thus F,_; should lie in a
strip y = @ £w;_q2(q—1)71/2, where wi_, is the quantile of order 1 —a of the
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distribution of the sup | B%(s) |. In order to apply this test ¢ = [(n — 1)/2]
s€[0,1]

should be at least 30.

Note that similar test for the hypothesis H:f = fo, where fj is a fixed spectral

density may be constructed by replacing I(A\x) above by I(Ag)/fo(Ax), which

under Hj have approximately £(1) distribution.

10.3.2 Fisher’s test

The last proposition can be used to construct many test statistics for the whitness
of Gaussian sequence having the form T = f(Y1,...,Y,_1) provided that the
distribution of 7" when Yi,...,Y,_; is the uniform random sample is known.
Fisher’s test considers the maximal spacing

I(\i)

M, = max (Y; - Y1) = max —
> (M)
k=1

. Yo=0,Y,=1
1<i<q 1<i<q

Its distribution is

a
PO, <) =317 (1) 4 - jat
j=1

(cf. Feller (1971), p. 29) and is used to determine threshold of the critical region.
Note that ¢M, can be used to test for hidden periodicities as M, is the maximal
value of the periodogram among Fourier frequencies relative to their average.
Thus M, is well suited to detect the situation when (X;) is Gaussian white noise
with added periodic component.

10.4 Smoothed periodograms

We discuss now smoothed periodograms which in contrast to original peri-
odogram are consistent estimators of the spectral density. This method stems
from a recognition that partial sums (27)~* 22713 v(k)e~** might not be a
good approximation to a spectral density and the convergence is improved by
introducing weight factors into the latter yielding

% i (1- m)v(k)e‘““.

k=—p p

This idea is now generalized and applied to periodogram. To this end consider
a kernel w defined as a function such that w(z) = 0 for x € [—1,1]¢, which is
symmetric, bounded by 1 and satisfies w(0) = 1. It is also sometimes called data
window or a taper. Consider also integer r = r(n) such that r» < n. Value w(h/r)
for h < r will play the role of the weight for 4(h).
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Definition 25 We define smoothed periodogram as

T == S wih/r) A(h) e, (10.12)

|hl<r

Note that for a typical weight function w(-) such that w(-) is decreasing on
[0,1], w(h/r) down-weighs F(h) for larger h and the maximal downweighing
correspond to h such that h ~ r. Estimator f()\) is sometimes called the lag
window spectral density estimator and w is called the lag window. We show now
that f(\) is smooothed version of the periodogram in the sense that is obtained
as convolution of the periodogram with so called spectral window. Namely, we
define for A € [—m, 7]

T 1 = —thw
Lw)=5 32 Atk .
|h|<n

:fn() is an approximation to the periodogram which we considered justifying its
definition. We have that I,,(\;) = I,,();), moreover

() = / " e T () d.

—T

Thus smoothed periodogram (10.12) equals

Fo =5 3wy / " 0 () du =

\h\<7- -

|h|<r
— [ W —w) T (w) de = / W(w) To(w+ A) dw,
— —T—A
where 1
— —ihw
Wy (w) = by Z w(h/r) e )

[h|<r

is so called spectral window. Thus with * denoting the convolution we have
FO) =W, I,(N)

It is seen that f is approximately equal to (27/n) > liI<n/2] Wr()\j)fn()\ + )
thus can be regarded as a weighted average of values I, (A + \;). We also note
that

s us

W, (A) dA = w(0) dA\ = w(0) = 1.

2
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Although W,.(-) integrates to 1 it can have negative values and thus does not
have to be a density.
We discuss now basic asymptotic properties of smoothed periodogram.

~

Proposition 10.4.1 (i) If r = r(n) — oo then lim, . Ef(\) = f(\),
(i) When r(n)/n — 0 then

n R 212(\) j w?(s)ds, € {0,7},
m Varf(\) — 1*1
20 [w?(s)ds, 0<A<m.

Examples Consider w being the uniform kernel on (-1, 1).

L Jal <L,
w() =
0, |e >0,

1 Cihw L osin((r+1/2)w)
WT(UJ) = };’r@ ho — % —Sin (w/2) .

Spectral window obtained in this case is called Dirichlet kernel. It follows from
Proposition 10.4.1 that

Varf(\) ~ %T 20, 0<A<m

We consider now triangular, or the Bartlett window

{1—|x|, 1z < 1,

0, w otherwise,

w(r) =
Some algebraic manipulations yield

1 sin®(rA/2)
W,(\) = — = VA2 10.13
) 2rr sin? (\/2) ( )
Spectral window is thus the Féjer kernel (cf Problem 6.8) in this case. From the
Proposition 10.4.1 we have

2r

= PO,

Varf(\) ~ % £2(\) / w?(s)ds =

Thus we obtain smaller asymptotic variance for triangular window than for rect-
angular one.
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10.5 Problems

1. Consider the process X; = pu+ A cos Apt+ B sin A\t+Z;, where Z; is a Gaussian
white noise, where A i B are constants and Fourier frequency A\, = 27k/n € (0, )
is known. We observe values X; for t = 1,2, ..., n for which a linear model with
explanatory variables c; and s defined in Section 10.2 is fitted. We want to test
whether a periodic component is significant i.e. we want to test Hy: A = B = 0.
Express statistics F' = (SSR/2)/(SSE/(n — 3)) in terms of periodogram and
using the results of this chapter show that under Hy it has F' Snedecor distribu-
tion with parameters (2,n — 3).

Hint. Note that SSR = || Pyy(c, s)X|[* = 2I(Ag) ~ 0°x*(2), and SSE = ||X —
Py, s X2, where 1, = n=V2(1,--- 1), equals ||X]|[> — I(0) — 2I(Ag) ~
o?x?(n — 3).

2. Check validity of (10.13).

3. In connection with derivation in Section 10.2 check that for independent stan-
dard normal variables Z; and Z», W = (Z} + Z3)/2 has exponential distribution
with parameter 1.

4. Consider Blackman-Tuckey weight function wg(z) = (1 —2a+2a cos z)I{|z| <
1} where a > 0. Find the corresponding spectral window.

5. Let (g¢) be a white noise (0, 0?) and,r4 stand for fourth cumulant. Prove that
for A € {0, 7}

04 R4

1
LA =—+—— —).
Varla(3) 272 + 472n +O(n)






11

Nonlinear processes ARCH and GARCH

We introduce and discuss here two important classes of conditionally het-
eroscedastic nonlinear time series: ARCH and GARCH processes. First, how-
ever, we review some properties of finacial indices which were motivation of
introducing such classes.

11.1 Returns of financial indices and stylized facts about
them

In this section we define returns of financial indices and discuss some stylized
facts about them which provide motivation for defining important classes of
nonlinear processes ARCH and GARCH. Exhaustive treatment of GARCH mod-
elling is given in Francq and Zakoian (2010), we also refer to Taylor (2005) and
Ruppert (2011).

11.1.1 Financial returns

Let Y; denote value of some financial index recorded at time ¢.
Definition 26 A simple return of Y at the moment t is defined as
- Y, =Y
R, = 2t t—1
Yi1

Thus the simple return is a change of Y;, AY; = Y; — Y;_; relative to Y;_;.
Much more frequently used return is a logarithmic return (for the unit time
interval)

Definition 27 The logarithmic return of Y; at the moment t is defined as

Y, - Vi 5

R, =1log(V:/Yi—1) = (1 — B)logV; = AlogY; = log(1 + 7 ) ~ Ry,
t—1

where the last approzimate equality holds when Ry is small.

Analogously, we define a logarithmic return for time interval h as Ry ;, = log(Y;/
Y;_1). There are several useful properties of logarithmic returns which explain
why they are preferred to simple returns. First, if we sum up the logarithmic
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returns for the consecutive unit time intervals we obtain the logarithmic return
for the time interval h. Indeed,

Rt s Rt7h+1 = IOg(K/th)

Moreover, logarithmic returns are symmetric in the sense that occurrence of
consecutive positive and negative returns of the same absolute value means that
the index returned to its former value. For example, if

Yy
R, =1 =0,5
t Og(}/t—l) ’
Y
Ryq1 = log( ;rl) =-0,5
t

then Y41 = exp(—0,5)Y; = exp(—0,5) exp(0,5)Y;—1 = Y;_1.
However, this is not true for simple returns as if

~ Y, —-Y,_
- X —Yi)

= =0.5
' Yi1
~ Yii1 - Y,
frpy = Jer Y 5 - s,
t

then Yi41 =0.5Y; =0,5 x 1,5Y;_1 = 0.75Y;_;.

Consider now a classical hypothesis H on returns stating that (R;) is a sequence
of independent random variables having mean p and variance o2. It is called the
random walk hypothesis.

Although the random walk hypothesis turned out to be an oversimplified assump-
tion about returns, it is interesting to see what are its consequences. Consider
the yearly return R on some index performing from moment n to moment n+ N
(usually N is considered equal to 21 x 12 = 252 (time is calculated in business
days on a stock-exchange). R is thus the simple return for the horizon N :

N
Yoon—-Y, Y,
R= N = ot :exp{ZRn-i-h}_l'
h=1

Y, Y,

We want to approximate expected value ER using random walk hypothesis. We
apply Central Limit Theorem to (R;) and have that

N
Z R,,n has w approximately distribution N(Npy, No?),
i=1

and precisely this distribution if the returns are normal. Thus given that H
is satisfied R + 1 has approximately lognormal distribution and in view of the
properties of the lognormal

1
ER ~ exp(Nu + §NO'2) -1
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Thus ER may be estimated by
— _ 1
ER =exp(NR + §N52) —1,

where R is the empirical mean of R, .1, and S? its empirical variance.
Taylor (2005) uses this approach to calculate return on cacao for the period of
1971-1980 (N = 2441 observations). He finds that 10*R = 9.57, 1025% = 2.03,

and thus according to the last equality ER = 0.34%.

11.1.2 Stylized properties of financial returns

Analysis of financial data leads to formulation of three stylized properties on
financial indices:

e Tails of distributions of financial returns R; decrease more slowly than that
of N(0,1),
R; are uncorrelated whereas R? are correlated,
Large changes of consecutive values of R; frequently follow previous large
changes (volatility clustering).

Note that the second and the third of the stylized facts directly contradict the
random walk hypothesis.

Let us define volatility as some measure of variability of Ry, usually a standard
deviation, either unconditional or conditional one given the past of the process.
The plot below shows logarithmic returns of Y being S& P500 index from the
begining of this century to August 31, 2012 (based on adjusted closing prices).
Volatility clustering is evident.

0.10
I

0.05
I

0.00
I

-0.05

T T T T T T T
2000 2002 2004 2006 2008 2010 2012

-0.10

Index

The second stylized fact asserts that returns are nonlinearly dependent as in the
following example. If we take random variable X symmetric with respect to 0
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and consider pair of rvs: X and Y = X? then they are evidently dependent but
uncorrelated: p(X,Y) = 0 as Cov(X,Y) = EX x X? — EXEX? =0 . In such
situations the correlation coefficient will not detect their dependence.

A similar phenomenon is observed for financial returns. Consider the plots of
autocorrelations for Y = S&P500 and their squares below. The bands on the
plots correspond to confidence intervals for ACF's of white noise. ACF for returns
suggests that they are uncorrelated. However, persistent dependence for squared
returns is visible on the second plot.
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Consider now the first stylized fact in the case S&P500 index. For this time
series min R; = —23%. Under normality, and considering the empirical standard
deviation as an adequate estimator of ¢, probability that such value or larger
is observed is 2,23 x 107°7 and would happen once in 109 years. This strongly
contradicts normality of financial returns. Below we show the histogram of S& P
index (in percents and truncated at 4%) with superimosed normal density with
the same empirical mean and the variance.
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Histogram of SPtrunc
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Note that a peak of returns’ distribution is higher than the peak of the reference
normal distribution whereas its tails are heavier than for the normal. Also the
’shoulders’ of the empirical distribution are lower than for the reference distribu-
tion. The two first observations correspond to the fact that there are relatively
more days with small and large volatility than predicted by the normal model.
modelling of distribution of financial returns is a challenging task. Whether the
proposed distribution is adequate or not may be also visualised with the aid
of quantile plot with a respect to postulated distribution. Note that the most
frequently used normal plot is the quantile plot with the respect to the normal
distribution. Consider quantile plots of S& P with respect to the normal distribu-
tion and ¢ distribution with number of degrees of freedom 3,4 and 5 respectively
shown clockwise on the plot.
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It is seen that in this case the best fit among four considered distributions is
obtained for the ¢ distribution with 4 degrees of freedom.

11.2 Nonlinear processes ARCH and GARCH

11.2.1 ARCH(1) processes

Observe that for (X;) a causal AR(p) process we have that Var(X;|X,,s <t) =
o2, thus the conditional variance given the past is constant and the process is con-
ditionally homoscedastic. We define now the class of conditionally heteroscedastic
processes i.e. processes for which the conditional variance depends on the pre-
vious values, which also have other properties exhibited by returns. We start
with the simplest process of this kind, namely autoregressive conditionally het-
eroscedastic process of order 1, ARCH(1).

Definition 28 (X;):cz is ARCH(1) process when it satisfies the equations

Xt = O'tZt, Ut2 =g + OletQ_l, (111)

where Zy is a strong WN(0,1) such that Z; is independent of (Xs)s<t—1 and
g, a1 = 0.

Note that in contrast to ARMA (p, ¢) processes weak stationarity is not required
in the definition of ARCH(1) and for general ARCH(p) proceses defined later.
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A sufficient property for existence of stationary version of ARCH(1), namely
that a; < 1 is discussed below. We have the following two basic properties of
ARCH(1) process:

E(Xt ‘ XS,S < t) = E(Xt | Xt,]_) = O'tE(Zt | Xt,]_) = O'tE(Zt) =0
and
Var(X; | X, 8 <t) = Var(X; | X;1) = B(01Z}| X)) = 0?EZ? = ap+an X7 4,

thus o7 in (11.1) is the conditional variance of X, given the past of the process.
This means, in view of definition (11.1) that the predictive dstribution of X; i.e.
conditional distribution of X; given X, s < t is a scaled distribution of Z; where
the scaling depends on the value of the last observation. We first indicate one of
the most important properties of weakly stationary ARCH(1) process, namely
that it is a weak white noise. Indeed, note that as E(X; | X;—1) = 0 we have
that EX; = 0. Similarly for h > 0 we have

E(Xt ) Xt+h | Xi... aXt+h71) = E(Xt0t+th+h | X, ... aXt+h71)
= Xt(OéQ + ale+h_1)1/2EZt+h =0

and taking expectations of both sides with respect to X; ..., X;1,_1 we obtain
that
E(Xt . Xt+h) = 0

Note that we tacitly assumed that the conditional expectation E(X; - Xitp |
Xty ..., Xipn—1) exists which follows from the fact that X, - X4, is integrable.
It turns out that the condition

ap <1

is sufficient and necessary condition for existence of strictly stationary solution to
(11.1) for which EX? is finite. Thus in this case (X;) is a weak white noise (but
obviously not a strong one as the process is conditionally heteroscedastic). We
also discuss below a condition under which EX} is finite. Why such a property
is important ? Namely, we show that under this condition X? is AR(1) process,
more specifically it is a weakly stationary process satisfying

X2 —ag—a1 X2 | =&y, (11.2)
where (e;) is a weak white noise. Indeed, note that in view of the definition of
the process we have X2 —ag — a1 X? | = X? — 02 and whence ¢; = 02(Z2 — 1).
We check that (g;) is indeed a weak white noise. We have

Ee, = E(E(es | Xuw,w < 8)) = E(62E(Z2 — 1)) =0,
and analogously

E(es-e) = E(E(eser | X, w < t,Zy,w < t)) =0, s <t



164 11 Nonlinear processes ARCH and GARCH

where in the last equality we used the property that Z; is independent of
X, s < t. Finiteness of EX;* was needed to ensure existence of E(gse; | Xy, w <
t, Zy,w < t). Note that from (11.2) it follows that provided a; < 1 we have that

EX? =ag/(1 —a1)
(for ag = 0 we have that X; =0 for all t € Z). As EX; = this implies
Var(X:) = ao/(1 — o).
Note also that for £ > 0 we have

Var(Xip 5| Xi—i i > 0) = E(07, . Z¢ 1| Xi—i,i > 0)

=ao+ o E(X} 4 1 Z7 el Xi—ini 2 0) ... = g + apan
+ootapad M+ oV E(ZE 22y ZEXE X1 > 0) =
ap(1 — of) ky2
X 11.3
(1 _ al) +a1 to ( )

which shows that a large absolute value of X; will influence variability of X;
for several steps k ahead. Note that from the above reasoning it follows that

Var(XHk\Xt) = VaI'(Xt+k|thi,7; > O)
In order to ensure that EX} < oo it is sufficient to assume that
EZ!<oo and  max(1,(EZHY%0) < 1,

We remark that that when the above condition is satisfied X? is weakly station-

ary AR(1) process and moreover in view of the expression for EX? we can write
(11.2) in the form

X}~ EX} = (X}, — EX? ) +ey.
Thus it follows from the properties of AR(1) time series that

px(h) = ol
Note that for Gaussian N(0,1) noise we have that EZ}! = 3 and the condition
on finiteness of EX} states that 3a3 < 1. We calculate kurtosis of X; under this
condition and show that it is larger than 3, which indicates that the marginal
distribution of X; is not Gaussian. Indeed, multiplying both sides of (11.2) by
X? and taking expectation of both sides yields

EX} = EX? + o BE(X2  X?) + E(X?ey). (11.4)

Using independence of Z; and X;_; it follows that E(X?2e;) = Ee?. Moreover,
as ap = (1 — a1)EX}? and E(Z} — 1) = 2 we have
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Bej = B((Z7 —1)*(a0 + a1 X7 1)?)
= 2[(1 — 1) (EX?)? + alEX] + 204 (1 — an)(EX})’]
and
E(X? X2 =1 —a1)(EX?)? + a1 EX}.
Plugging the last two equations into (11.4) after some easy calculations and
using ap = (1 — a1) EX? again we obtain that
(1-3a)EX} =3(1 - i) (EX?)?
and whence x4 ( 2
_ BEXy 3(1-of B
T EXEE T (sap 0T

Thus the tails of distribution of X; are heavier than the tail of normal Z,.

11.2.2 ARCH(p) processes

We define now the class of ARCH processes of an arbitrary order p introduced
by Engle (1982) to model variability of inflation rates in the U.K.

Definition 29 We say that (X:) is an ARCH(p) process if

2 2 2
Xy = 02y, oy = apta Xi +-- ~+oszt_p,

ag,ai,...,0p >0, (11.5)
where Zy is strong WN(0,1) and Z; is independent of X, s < t.

As before by conditioning we prove that
EX, =0

and
Var(X; | Xo,s <t) =+ X7 |+ + X7,

Thus the conditional variance Var(X; | Xs, s < t) is an affine combination of the
squares of p previous values of the process with non-negative coefficients.

We state now the theorem which specifies the conditions under which a strictly
stationary version of (X;) with finite second moment exists and when its fourth
moment is finite.

Theorem 11.2.1 (i) Sufficient and necessary condition for existence of strictly
stationary time series (X) satisfying (11.5) such that EX? < oo is

P
Zaj < 1.
j=1

(it is also mecessary condition for existence of weakly stationary solution). More-
over, we then have
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Qo

=11

(11.6)
and Xy =0 if g = 0.
(ii) If EZ} < oo and

p
max(1, (EZ})"*)> " a; <1, (11.7)

j=1
then fourth moment EX} < oo .

Below we list several properties of ARCH(p) time series which follow from the
result.

1) Under assumptions of Theorem 11.2.1(i) weakly stationary process ARCH(p)
is a weak WN(0, 0% ), where 0% = /(1 — >0_, o).

2) Moreover, note that we can write

P
X} =0+ Zain_i + &, (11.8)
i=1
where
P
e =(Z; — {0+ _ X7} (11.9)
i=1

Under assumptions of Theorem 11.2.1(ii) (g;) is WN(0, 02), where
¢ 2
o2 = Var(Z}) - E{ao + Z o X7}
i=1

Also note that in view of (11.6) structural equation (11.8) for X? can be written
as

P
XP - EX] =) aiXi, —EX{ ) +e,
i=1

thus (X?):ez is AR(p) process. Moreover,
3) If condition (11.7) holds then X} is a causal process AR(p). This property
follows from the last equation after noting that

P P
sup | Y a2 | <oyl <1
i=1

[z|<1 j=1

for |z| < 1, thus

P
plz) =1- Zajzj > 0, |z| < 1.
j=1
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4) If E(X? | X¢—1,...,X;—p) is not constant, or, equivalently, >, a; > 0,
then

Kx > Kz.
Indeed,

E(X}| Xio1,. ., Xiop) = ofEff s , ,
= kzo (BEZ})? = kz{B(X? | X1, -, Xi_p)}2

Thus

EX} = kzE(B(X? | Xi-1,. .-, Xo—p))? = kz(BEX})?

The last inequality follows from EY? > (EY)? applied to Y = E(X? |
Xi-1,...,X—p), note that equality holds only for Y = ¢ a.s.

Finally we define ARCH(00) process as follows: Y; = p&; is ARCH(o0) if & is a
sequence of nonnegative iid random variables with mean 1 and

o0
pr=a0+ Y Y,

=1

where a; > 0 for i« > 0. Note that for any ARCH(p) its square satisfies the
conditions for ARCH(oo) process and additionally a; = 0 for j > p. We will
prove that stationary version of ARCH(co) process exists provided Zjoil o < 1.
This will be used to check stationarity conditions of GARCH(p, ¢) process in the
next section. Namely, using the definition of Y; recursively we obtain

Vi =aol+ > bl ipr—i = a0+ a0 Y cibibii+ > ia&bs Vi

=1 i=1 i,j=1

k
= o + ag § : § : gy G &gy e Se—ji—gi
=1 1<j1,...,u
+ E : (o5 Oljk+1§t€t—j1 s gt_jl_"'jkn_jl_"'_jk+1
1<g1,J2 2 Jk+1

We define now Y, by omitting the last term in the decomposition of Y; and
replacing k by oo , namely

oo
Y, = aoés + ao Z Z @y 05 &gy St —i
1=1 1<j1,....4u

Observe that as the summands of the inner sum consist of products of indepen-
dent random variables with mean 1, we have that

E( Z ajy 0, &gy '--gtfjlf'“jz) = Z T (Zaj)l

1<d1,- 0 1<, 001 j=1
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Thus in view of the condition on ¢; we have that E(Y/) = ao/(1 — Zjoil a;)
and since Yy is nonegative it follows that it is finite almost surely. In view of its
definition Y is stationary and it is easily seen to satisfy definition of ARCH(00).
Moreover, it can be shown that Y} is the unique stationary solution.

11.2.3 GARCH(p, q) process

We consider now the most natural, and also most commonly used, generalization
of ARCH(p) process which consists in incorporation of moving average part into
the definition of conditional variance of X;. It was introduced independently by
T. Bollerslev and S. Taylor in 1986.

Definition 30 (X;)iez is called GARCH(p, q) process (Generalized ARCH) if

Xt = O'tZt, (1110)

p q
of =ag+ Y X2+ Bot (11.11)

i=1 j=1

where, as before, Z; is independent of Xs,8 < t, p,g € N, p > 1 and all
coefficients o, o, B are nonnegative.

Note that for ¢ = 0, the process reduces to ARCH(p). By conditioning we have
that

p q
Var(X;|Xy—s,07 s> 0) =0} =ap+ Y X2, + > Biot,
j=1

=1

and depends linearly not only on previous squared values of the process, as in
the case of ARCH(p), by also on ¢ previous values of the conditional variances.
Moreover, note that it follows from the definition of o7 that o2 jforj>0isa
measurable function of X2 , with k > j (cf. equality 11.16) below) and thus Z;
is independent of af_j . We note that o2 does not depend on the sign of X;_;.
For nonsymmetric modelling of volatility we refer to Nelson (1990).

As before, we do not require that (X;) is weakly stationary. Existence of sta-
tionary solutions is dealt with in the next result.

Theorem 11.2.2 (i) Strictly stationary solution of (11.10) with a finite second
moment exists if and only if

p q
dai+ ) B < 1. (11.12)
i=1 j=1

Moreover, in this case Xy is a weak WN(0,0%), where

e%y]

2
o5 = .
1- D 0 — 23:1 B

(11.13)
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(i) If

q

max{1, (EZ})'/?}( zp: A=Y 8)) <1 (11.14)

=1 j=1
then EX} < oco.

We discuss now why the condition >37_; a; + 37, 8; < 1 stated in (11.12) is
sufficient for existence of weakly stationary solution. We can write

a P
(1-Y"8;Bo? =0+ ;B X2
j=1 i=1
As the condition (11.12) in particular implies that >3, 8; < 1 and thus

autore ressive 01 nomial 1-— q Z] does not have Zeros in the unit diSC
g=1~7 ’
we have

q p [es}
=(1- Zﬁij)’l{ozo + ZaiBin} =do+ Y diX7 (11.15)

j=1 i=1 i=1
where (1 —>79_, 8;B7)dy = ag and thus do = ao/(1 =329, B5) Moreover, d;
for i > 1 satisfy the equation Y o, d;z* = >0 a;2%/(1 — 37, Biz"). Taking

z = 1 we obtain - , .
Dodi= /(1= B)
i=1 i=1

Also d; = B; + Zk 1 0d; 1, where undefined ; and «; are taken equal 0, from
which it follows that d; > 0 for all i. It follows that (X?) has representation as
ARCH(o0) and is strictly stationary in view of the last comment of the previous
section provided that Y .-, d; < 1 which is equivalent to the condition stated in
the theorem.

We also note that by induction it can be proved that

P
+ Zaiz Z Z Bjy -+ B Xt2 i—j1——Jk (11.16)

Now we establish an important relation of GARCH processes with ARMA(p, q)
processes. Note that

p q
Xt2 = qq + Zaith_i + Zﬂjd?_j + &,

i=1 j=1

where
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Et:XtQ—O'tQ

2

Thus substituting ;_; = Xffj — 0j_;, we obtain

pVag q
Xt2 =qp + Z(Oéi + 5j)Xt2,j + &t — Zﬁjgtij
i—1 j=1

where apy; = Bg4; = 0, for j > 1 and p V ¢ = max(p,q). Under condi-
tions of Theorem 11.2.2 (ii) we prove that (e;) is weak white noise and thus
X2 is ARMA(p V ¢,q), which is causal nad invertible due to the condition
S+ B < L

Usually in practice when modelling autocovariance structure of (X?) with the
use of ARCH(p) process, we need large order of this process. Hovever, as causal
ARMA process is AR(c0) and we know that (X7) is ARMA when (X;) is an
GARCH process, one can try to use instead of ARCH process of large or-
der GARCH(p, q) process with moderate p and ¢. Actually, very frequently
GARCH(1,1) process yields adequate approximation of financial time series.
We have proven above that stationary ARCH(p) process has kurtosis kx > kyz
provided its conditional variance is not constant. This extends to GARCH pro-
cesses by conditioning with respect to all lagged X;_; in the proof instead of p
last values.

Case of GARCH(1,1). We now consider in a greater detail the case of
GARCH(1,1) time series. Theorem 11.2.2 gives sufficient and necessary con-
dition for existence of strictly stationary GARCH(p, q) process with the finite
second moment. We now study the question of existence of strictly GARCH(1,1)
with no condition on its second moment imposed. Let a(z) = a12% + .

Theorem 11.2.3 If
v = E(log(a1Z; + 1)) = E(loga(Z;)) < 0 (11.17)

then

o0

hy = ap(1+ Za(Zt—l) o))
i=1

converges and is finite almost surely. The process X; = v/hiZ; is the unique
stationary GARCH(1,1) process. If v 2 0 and ag > 0 then no stationary solution
exists.

Note that if a3 + 61 < 1 holds which is sufficient condition for existence of
strictly stationary solution with the finite second moment, we have in view of
the concavity of the logarithmic function that

B(loga(Z,)) < log(E(a(Zy))) = log(as + ) < 0

thus the condition (11.17) is weaker than «; + 1 < 1. We also note that in
contrast to the condition o + 51 < 1, (11.17) is not symmetric in o and (7 and
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depends on the distribution of 1.

Proof.We will prove that condition (11.17) is sufficient for existence of stationary
solution. The key observation here is to note that for the GARCH(1,1) processes
definiton of o? can be written in the form

O't2 = g + a(Zt_l)crf_l

and iterating we obtain that o7 has to satisfy the following equation

N
o7 = ap(l+ Z a(Zi—1)-a(Zi-i)) + a(Ze-r) - a(Z-N)of Ny

Let hy(N) = ao(1l + Zf\il a(Zi—1)---a(Zi—;)) and note that when N — oo
hi(N) converges to h; almost surely as summands of the sum are nonnegative.
Thus it is natural to consider h; as a candidate for o7. We will prove that under
condition (11.17) h; is finite almost surely. We check the Cauchy rule for series
with nonnegative summands. We have

[@(Zi1) -+ (Zen)]V" = exp{% Zlog a(Zi—i)} — €' <1
i=1

almost surely in view of strong law of large numbers. Thus h; is finite almost
surely (by the same token for v > 1 we show that h; = oo almost surely and
thus stationary solution does not exist in this case). Note, moreover, that the
definition of h; yields

hy = ag + hy—1a(Zi—1).

Thus defining X; = v/h;Z; in view of the last equality we have that

Xy = (o + he1a(Zi1))Y%Z = (ap + arhs 1 22 + Brhe—1)Y? 2,
= (a0 + a1 X7, + Bihi—1)?2Z,

which yields the structural equation of GARCH(1,1) process with o7 = hy.
In order to check uniqueness, assume that X; = gn; is another solution. Then
reasoning as before we obtain

57 —he = (he(N) — he) + a(Zi—1) - a(Ze—n)67 N4

Note that as h; converges to a finite limit a.s. thus a(Z;—1) - - - a(Z;— n) converges
to 0 for N — oo and as in view of stationarity the distribution of o2 ,_; does
not depend on N, the second term in the last equation tends to 0 and as the
first term also tends to 0, the uniqueness follows.
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11.3 Estimation for ARCH(p) and GARCH(p, q) processes

The most frequently used method of estimation is method of maximizing con-
ditional likelihood. The reason for this is that by conditioning we express it in
terms of menageable conditional densities and without relying on marginal den-
sity of X;. In order to ilustrate the method we start with ARCH(1) process with
Gaussian innovations. We have that the density fx(X1,...,X,) of (X1,...,X,)
can be written as

Ix (X1, X)) = f(X)f(X2 | Xu) - f(Xn | Xy ooy Xmn).
Thus
fX(Xl,... " | X)) =f(Xo | X1) - f(Xn | X1, .., Xp1) =

X7
[ 11.18
H {277 oo + qu2 /2 P ( 2(ap + 041X1:271)) ( )

Conditional ML estimator is defined as

(6&0,5[1) = argmaXfX(Xl, . 7Xn | Xl).

@p,01

This simple reasoning can be extended to ARCH(p) processes, and, with some
modifications, to GARCH(p, ¢). If (X;) is ARCH(p) with Gaussian innovations,
we obtain in a similar manner for n > p that

—2log fx(X1,...,Xn | X1,...,X;,) = (n—p) log(2m) Z logat+—2,

t=p+1
(11.19)
where 07 = ag+a1 X7 | +---+a, X7 . Thus, as before treating loglikelihood in
(11.19) as the function of vy, . . ., ap we look for its maximisers being conditional

maximum likelihood estimators.

We can also use (11.19) for GARCH(p, q) series. The essential difference is now
that in view of (11.16) o? depends now on infinite number of previous Xf_j
As we have only Xi,...,X, at our disposal, truncation of the infinite sum in
(11.16) is necessary. Namely, we define

p
_ (7))
0'1% = m%—;ai){?ﬂ—l—
p ']
—i—Za ZZ Zﬁh"' tzjr =i > 1)

=1 k=171=1 Jr=1

for t > p and we plug &7 in the loglikelihood above in place of o?.

The method of conditional maximum likelihood can be extended to the case when
Z; have known, but not necessarily normal distribution. Then minimization of
(11.19) is replaced by minimization of
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> logo} —log f(Xi/04)

t=p+1

and in the case of GARCH(p, q) process oy is replaced by &; defined as above.
Apart from normal distribution, distributions with heavier tails than normal are
often used as e.g. the t-distribution with v degrees of freedom, when v can be
any number larger than 2, or Generalized Gaussian Distribution (GED).
Another possibility of estimating GARCH(p, ¢) parameters is provided by Whit-
tle’s estimator . It relies on representation (11.15). In view of it the squared
process Y; = X? = 0?Z? can be under assumptions of Theorem 11.12 (ii)
represented as AR(co) series

C¥0

Yt_
lﬁJ

+ZdYt i+tee,

where
:(Zf_l){l_zq N +ZdY;5 7}

Then it follows that the spectral density fy of (Yt) is

o0
= % oA |2
fy()\)*Qﬂ_ Zdje | )
Jj=1
where 02 = Var(e;). Note that 02 and (d;) are nonlinear functions of ag, a1, . . ., a
and 1, ... B3,. Whittle’s estimator choses parameters ag, g, ..., ap and By,. .. G,

which minimize Whittle’s criterion function

see Giraitis and Robinson (2001).

11.3.1 Testing for ARCH(p)

Detecting heteroscedasticity in data is an important task as disregarding it may
lead to errors in testing procedures, most frequently to overrejection of conven-
tional tests. We mention only two tests for ARCH effects. The hypothesis we
want to test is Hy : a = (a1,...,0ap) = 0 and H; its complement. The first is
an application of the conditional likelihood ratio test and assumes that we know
the density f of innovations. In this case suppose that (&g, &) is unconstrained
ML estimator of model parameters and let &g be ML estimator of cig under null
hypothesis. Conditional LRT statistic is
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LRT = 2log ﬁ Ut(éio’ d)jf(Xt/Gt(O:éo, @)) }

t=pt1 Jt(a070) f(Xt/Ut(QOaO))
Under appropriate regularity conditions LRT has approximately chi squared dis-
tribution with p degrees of freedom. Two other tests, frequently used in similar
contexts, namely the Wald test and the score test can be also used. The adven-
tage of the score test is that the fitting of the ARCH(p) model is not necessary.
It was shown by Engle (1982) that in the case of normal innovations the score
test is equivalent to the test based on R? statistic. The latter uses the property
that X? is AR(p) process provided that fourth moment of X, exists. Thus we
can fit the model

P
Xt2 = Qp + ZaiXtZ—i + Zt,
i=1
using as estimates ML conditional likelihood estimators and calculate the
squared coefficient of determination R? of the fit. Under Hy, R? has approxi-
mately chi squared distribution with p degrees of freedom.

11.3.2 Problems
1. Consider time series (X¢)¢ez given by
X; = sin(eym) sin(eg_17),

where (g;) is a strong WN (0, 02) such that for t € Z &, is uniformly distributed
n [—1,1]. Prove that (X;))icz is a weak WN(0, %) and calculate o2.

2. Assume that (11.12) holds and check that EX; = 0 and EX? satisfies EX}? =
ao+ (00 i+ 30, B;)EX? and thus (11.13) holds.

3. Show that under assumptions of Theorem 11.2.1 (i) the sequence (&¢) defined in
(11.9) is a martingale difference with respect to the whole past i.e. F(X|X¢—;,1 >
0)=0.

4. Check that under assumption (11.12) GARCH(p, ¢) is an invertible ARMA((pV

q, q) process.
5. Consider GARCH(1, 1) series and prove that under condition (11.14) we have

Var(X| X,_s,i> 1) = —2

e

oo
1 + aq Zﬁ{XtQ—j—l'
j=0
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Long-range dependent time series

We review properties of stationary time series with non-summable covariances,
known as long-range dependent or long memory processes. It turns out such
processes arise smong others as increments of self-similar processes and the es-
timators of their characteristics exhibit different behaviour than in the case of
weakly dependent data. Moreover, regression estimation when the regression
function is contaminated with long-range dependent errors is discussed.

12.1 Strongly dependent processes

In many places in this book we assumed that covariances of the time series are
absolutely summable: in particular this was the sufficient condition ensuring ex-
istence of the spectral density. Many time series models enjoy this feature, in
particular for causal ARMA processes their autocovariance decays to 0 exponen-
tially fast i.e. there exists D > 0 and 0 < r < 1 such that

[v(k)| < Dr*.

However, there are many examples of financial, hydrological, geophysical data
and data in various different domains which indicate that strong dependence
persists even for observations which are recorded at distant time points. Sample
paths of such data frequently show many periods of apparent trends, which also
may change their direction. Consider the classical data of minimal levels on the
Nile river between 622-1224 analised by Hurst and Mandelbrot shown below.
Autocovariances for Nile data decay quickly to around 0.5 and then the decay
becomes very slow. This typical feature of long-ranging dependence between
observations became frequently studied and data having this property is called
long-range dependent or long-memory data. On the theorethical level long-range
dependence is defined as follows.

Definition 31 We call weakly stationary series long-range dependent (LRD) if

S x(h) = o, (12.1)
h=1

that is if the sum of covariances diverges. In the case when the sum of covariances
converges and its sum is strictly positive the sequence is said to be short-range
dependent. The case when the sum of covariances is zero is called antipersistent.
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Note that long-range dependence is one of many possible quantifications of strong
dependence. We remark also that without some assumptions on regularity of the
decay, condition (12.1) is practically unverifiable based on a finite part of tra-
jectory as we may have long stretch of small and quickly decaying correlations
followed by a very slow decay later on. That is why in the LRD models pre-
sented below some regularity of the decay of the autocovariance is imposed,
most commonly that it is, up to a slowly varying factor, an hyperbolically de-
caying function.

We stress that it is one of the possible definitions of LRD. It makes a perfect
sense to define LRD in terms of non-summable partial autocorrelations as in
Debowski (2007) or Inoue (2008). Alas, this theory is much less developed than
for LRD in sense of (12.1).

We also note that frequently slightly modified definition of long-range depen-
dence is used in which instead of condition (12.1) the condition of absolute
summability of autocovariance is imposed. However, for models considered later,



12.1 Strongly dependent processes 177

autocovariance will have the form y(h) = L(h)h~%, where 0 < a < 1 and L(+)
is a slowly varying function. As L(-) has constant sign in infinity (cf. problem
12.6) there is no much difference between these two possible definitions.

There is an important link between long-range dependent sequences and self-
similarity property which partly explains frequent occurrence of the former. We
recall the following.

Definition 32 A process (Yi)ier is self-similar with parameter H, where 0 <

H<1,if
D
(Ycu)uelR :CH(Yu)u€R7

where 2 denotes equality in distribution.

It is known that the limits of normalized partial sums of ergodic sequences
ZEZ]l X, are necessarily self-similar (the Lamperti theorem) which shows that
such processes in exact or approximate form are ubiquitous. The definition also
implies that the sample paths of the self-similar processes aggregated at different
time scales should behave essentially the same. Such feature is observed e.g. for
many characteristics of internet traffic (see e.g. Willinger et al. (1995)) and its
connection with LRD for underlying phenomenon is intensively explored.

Now we show that the increments X, = Y, — Yi_1 of the self-similar pro-
cess with stationary increments and parameter H such that 1/2 < H < 1 are
LRD. Namely, it is easy to see that (X)gen is weakly stationary series and as
Var(Y,,) = u? a2 for u > 0, where 02 = Var(Y;) we have

2
g
vx (k) = Cov((Yern = Yerr—1), (Ve = Yi1)) = o[l + P [k — 127 — 2|k 2],

Transforming it further

1L+ $P |1 - 37 2
"

2
vx (k) = %kZH—Z ~ o2H(2H — 1)k2H=2, (12.2)

where the equivalence follows from expanding z?# around 1. Since for 1/2 < H <
1 we have that —1 < 2H —2 < 0, (X}) is LRD. The Gaussian self-similar process
with parameter H and stationary increments such that Var(Bg (1)) = 1 is called
the fractional Brownian motion (fBm) with self-similarity (or Hurst) parameter
H and is usually denoted by By . Note that for H = 1/2 the ordinary Brownian
motion B(-) is obtained. By(:) has the following integral representation with
respect to B(-)

+oo
But) = [ =i () )aB@), (23)

where the normalizing constant equals

2

C*(H) = i+/ (14 0)HY2 _p =12 gy,
0

2H
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Its increments Xy, = By (k)— By (k—1) discussed above are called the Fractional
Gaussian Noise (FGN).

12.1.1 Hyperbolically decaying covariances

Typical regularity assumption on the behaviour of the covariance function of
LRD sequence (X;) is that

7x (k) = L(R)E™, (12.4)

0 < a < 1 and L(:) is ultimately positive and slowly varying function at
infinity in Karamata’s sense i.e. such that lim, .. L(wz)/L(z) — 1 for any
w > 0. Typical slowly varying function, besides an arbitrary constant obviously,
is L(z) = log(x). It follows from the properties of slowly varying functions that
similarily to the case when L = C for which Y -, vx (k) is infinite, this also
holds for a general L(-), thus (X;):en with autocovariance (12.4) is LRD. Note
that due to asymptotic equivalence (12.2) the FGN satisfies (12.4). We will need
also some assumptions on the structure of the process itself, such as Gaussian or
linear subordination, to study its asymptotic behaviour, however some proper-
ties can be derived directly from (12.4). In particular this concerns behaviour of
the spectral density at 0. To this end we define a slightly different and stronger
concept of slow variability in Zygmund’s sense which stipulates that the function
L(+) is ultimately positive and for any § > 0 the functions 2° L(z) and x~°L(z)
are ultimately monotone. Then the following result holds (see e.g. Theorem 1.3
in Beran et al. (2013) and references therein)

Theorem 12.1.1 (i) Assume that (12.4) is satisfied with 0 < o < 1 and L(-)
slowly varying in Zygmund’s sense. Then the spectral density f exists and

FO) ~ Ly, A=, (12.5)
where Ly(A\) = LA™Y (1 — «) sin(ra/2).
(ii) If
FO) =LA 0< A<, (12.6)
where 0 < d < 1/2 and Ly(X) is slowly varying at 0 in Zygmund’s sense then
(k) ~ Ly (k) K[>, (k] — oo,

where L~ (k) = 2Ls(k~1)I'(1 — 2d) sin nd.

We discuss now several other models beside FGN of long-range dependent series
with covariance structure (12.4). For an exhaustive treatment of the subject we
refer to Beran et al. (2013).
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12.1.2 Subordinated Gaussian processes

Let (Z;)1en be a stationary Gaussian sequence such that Z;s are standard normal
and (12.4) is satisfied. In order to make the model more flexible and allow for
an arbitrary marginal distribution we consider so-called subordinated Gaussian
process.

Definition 33 (X;)ien defined as
X, =G(Z), t=12..., (12.7)

where G(-) € L2(R,¢) i.e. [G*(2)p(2)dz < oo, EG(Z1) = 0 and ¢ is the
standard normal density is called subordinated Gaussian process .

L2(R, ) is a L2 space with weight ¢ in which a scalar product is defined as
< F,G >= [ F(s)G(s)¢(s)ds. The question when (X;)¢en is also LRD is most
conveniently answered by considering Fourier expansion of G' in £?(R, ¢) with
respect to the Hermite polynomials:

= J,
G(z) =) k—’?Hk(x), (12.8)
k=1
where
k_x%/2 d* —x2/2
Hy(x) = (-1)"e W(e )

is k" Hermite polynomial: Hy(z) = 1, Hy(z) = x, Ha(x) = 2% — 1,.... Formula
(12.8) follows from the fact that (Hy)72, form an orthogonal basis in £L2(R, ¢)
and moreover

/Hk(z)Hl(z)go(z) dz = I{k = 1}k

Note that coefficient Jy is missing in the expansion (12.8) due to EG(Z;) = 0.
Let m = min{k : Jx # 0} be the Hermite rank of the function G i.e. the index
of the first non-zero term in the expansion (12.8). Obviously, the Hermite rank
of Hy, is k. The Hermite rank plays pivotal role in determining whether (X;) is
LRD. Namely, the following equality known as the Mercer formula holds

Cov(Hy(Z1), Hi(Z5)) = k!Cov(Zy, Zo)*I{k = 1}.

This is proved using the expansion of bivariate normal density with respect
to products of Hermite polynomials H,,(z)H,,(y). Note that it follows that
(Hk(Z,)) is long-range dependent sequence provided ko < 1. This statement
can be generalized to arbitrary G. Namely, the ensuing equality based on (12.8)

COV(G(Z:[)7G(ZQ)) = i %]?COV(Z:[,ZQ)IC (129)

k=m

and properties of the slowly varying functions imply the following Lemma.
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Lemma 12.1.2 Assume that ma < 1, where m is the Hermite rank of G. Then

(i 2

() ~ () (12.10)

when j — oo and (X) is LRD.
(i) Moreover,

2m/!

Xi+...+X,) ~ L™ (n)n*~me 12.11
Var(Xy+... + Xn) (1 —ma)(2 —ma) (n)n ( )
Proof (i). Rewriting (12.9) we have
‘ J?
x(j) = k’i 15 (j)-
k=m
Now note that
- J2 C . J’%’L 77 m - J2 —m— .
> @) = Smag @) + 7T 6) R )
k=m k=m+1
J2 .
=3z ()1 +o(1)), (12.12)

k!

as vz(j) — 0 when j — co and Y 77 .\ J2y k=m=1(4)/k! is summable in view
of summability of Y, J2/k! for j such that |’yZ( )] < 1.
Proof (ii). We asssume more generally that vy (k) ~ Li(k)k~?, where L, is
ultimately positive slowly varying function and 0 < § < 1. Observe that denoting
Sp =X1 +...4+ X, and letting L(—k) = L(k) we have

Var(S,) =n Z ( —%)Wx(k)

|k|<n
~n Y LK Y Lk)[k O

|k|<n,k#0 |kl <n,k#0

_ —B+1
:L(n)nQ_B[% 3 m(@) B_% 3 L(g(lkl) N
|k|<n,k#£0 |k|<n,k#£0
~ n)n?-# uw P du— u P du
2L( )2 (/O d /0 1 du)

— mL(n)nQ—ﬁ. (12.13)

The last equivalence above follows from the properties of slowly varying functions
and definition of the integral. We skip its formal proof. Taking 8 = ma and
Lq(2) = L™(z)J2,/m! we obtain the proof of (ii).

Observe that it follows from the derivation above that in the case of LRD that
the sum of individual variances is negligible compared to the variance of the sum
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Z Var(X;) = o(Var(Sy)).

Note also that for the FGN series defined above variance of the mean can be
exactly calculated

n

Var(n ™ Z Y;) = Var(n"'By(n)) = o?n?7 2,

i=1
It can also be proved that when ma > 1 covariances of the gausssian subordi-
nated series are summable i.e. (X}):en is short-range dependent.
Let H be Hurst exponent defined by the equality 2H = 2 — ma and note that
for the case ma < 1 considered in the lemma we have that 1 —1/(2m) < H < 1.
Note that the lemma asserts that for LRD subordinated Gaussian series standard
deviation of the partial sum 5, is, up to the slowly varying function, of order n’!
and it increases more quickly than the rate n'/? of standard deviation of inde-
pendent and weakly dependent variables. Note also that the behaviour of S, is
the same as the leading term of its expansion namely Y27 (J,/m!)H,,(Z;). We
state now two fundamental results concerning asymptotic behaviour of partial
sums of LRD series and empirical processes based on them.

Theorem 12.1.3 Let (X;)ien be defined in (12.7) and ma < 1. Let Ly, (n) =
CmL™(n) and Cyp, = 2/(1 — ma)(2 — ma). Then
nHL-12(n)S, 2 ‘L’”Zmﬂu), (12.14)

where Zy, g(1) is the value at 1 of the Hermite process Zpy, u(t). For m =1
Zm, 1 (+) is the fractional Brownian noise and Zn,(1) is standard normal. For
m > 1 Z,,(1) is not Gaussian.

Hermite processes are defined e.g. in Beran et al. (2013), definition 3.24. There
are two remarkable features of the result. The first one is normalization of the
partial sum which is smaller than the usual n~'/2? norming and the second is
non-normality of the limit. This shows that the long-range dependent processes
behave qualitatively and quantitatively differently from the weakly dependent
ones. This has profound consequences for the estimators of parameters of such
series and will be discussed later.

Wee now discuss the result for empirical process and show that it also essentially
differs from the analogous result for the weakly dependent processses.

Let F' be cumulative distribution of G(Z;) and denote by m(z) the Hermite rank
of G,(s) = I{G(s) < z} — F(x) i.e. the first nonzero term in the expansion

> Jk(x)
k!

HG(s) <z} = Fx) = Hi(s),

k=1
where Ji(z) = E(I{G(X) < 2} H(X)). Moreover, define the Hermite rank m of
the class of functions {I{G(-) < 2} —F(z)}secr as m = infseg m(x) i.e. the small-
est possible Hermite rank for these functions. Let F,(z) =n~' Y7 | I{X; < z}
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be the empirical distribution function of Xj, ..., X,,.We are now in the position
to state

Theorem 12.1.4 Let (X:)ien be defined in (12.7) and ma < 1, where m is the
Hermite rank of the family {I{G(-) < } — F(x)}ser . Then in D][—o0, o0]
nIH L2 ) (B () - P() 25 ot

n—oo m!

Zm(1), (12.15)

where Ly, (+) is defined in the previous theorem.

Note that in contrast to the case of independent and identically distributed
observations, where the limit of n'/2(F,(-) — F(-)) is the Brownian bridge, here
the limit turns out to be a degenerate process being a product of a single variable
and the deterministic function. Moreover, note that the limit is zero for all points
x for which the Hermite rank of the function G.(-) is larger than m.

12.1.3 Subordinated linear processes

The similar construction to subordinated Gaussian processes is possible starting
from LRD linear sequences. Namely let

LS
- § ATt —iy
=0

where a; = L(i)i~",1/2 < 3 < 1 and L(-) is a function slowly varying at infinity.
Moreover, assume that n; are zero mean independent and identically distributed
random variables such that en? = 1. Using properties of slowly varying functions
again it can be proved that in such a case (g;) is LRD. Namely, the following
result holds.

Lemma 12.1.5 Assume that 1/2 < 3 < 1. Then (i)
Ve (k) ~ L(k)E™, (12.16)
where o = 26 — 1 and L(k) = C3L?(k), Cy = [z + 2%) 7P da.

(i) Moreover, for S, =e1 + -+ + €, we have
2
(2-28)(3-28)

Note that the exponent of decay of . (k) satisfies 0 < av < 1 thus (g;) is LRD.
Proof (i). The proof is similar to that of the previous lemma. Namely,

Var(Sy,) ~ L% (n)n®=20.

Z%%MNZL AL+ k)G + k)1

S () (e )
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oo
= LQ(k)k:l—Zﬂ/ P+ x)P da. (12.17)
0

Again, the last equivalence follows from the properties of the slowly varying
functions and the definition of the integral. Note that fo 7P (142)~" dz exists
as 1/2 < .

The proof of (ii) follows from the proof of (ii), Lemma 12.1.2.

Remark 12.1.6 Note that in view of the above results the following relations
hold between parameter of decay o of covariance function vy, B of coefficients for
linear process a; and the order 2d of the pole of the spectral density at 0. We
have

a=20-1, pf=1—-d, a=1-2d.

Moreover, Hurst parameter H satisfies 2H = 2 — a.

Important LRD linear process is fractionally differenced white noise denoted as
FARIMA(O0, d,0), where 0 < d < 1/2. Recall that d-fold differencing with d € N
corresponds to the operator (1 — B)¢, where

A =(1-B) = k-zd:=0 (Z) (-B)4.

We generalize this definition to arbitrary d replacing ( ) by I'(d+1)/(I'(k +
1)I'(d—k+1)) and letting

O I'(d+1)
(1-B *ZO 1)F(d—k+1)Bk'

Consider the process FARIMA (0, d, 0) which is the solution of the equation
(]. — B)dXt =Mt
and (1) is a strong white noise such that ET]JQ» — 1. We have X; = A(B)n;, with
> /_d o
A(z)=(1—-2)" Zajzjzz C(=1)727,
§=0
for |z| < 1. Using I'(x) = I'(x + 1) it follows

—_(_1\J —d _(_1\J F(fdJrl) — F(j+d)
a; = (1) (j>( 1) FG+0O)I(=d—j+1) T(G+0)I(d)

Moreover, using Stirling’s formula we obtain

a; ~ ——
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and thus (§ in the definition of LRD linear process equals § = 1 — d and is
contained in the interval (0,1/2). Observe also that the spectral density of
FARIMA(0, d, 0) process exists and is given by

1 ; 1
A) = —11— —7)\—2dN7)\—2d
Fxh) = o1 — e P2~ Ly

(recall that Var(n;) = 1). This is common feature of LRD proceses in general,
namely under some technical conditions their spectral densities exist and have
a pole at 0 of order A\'72H

Definition 34 We define general FARIMA (p,d,q) process as a process such
that its d-fold differencing yields ARMA((p,q) series. Thus FARIMA (p,d, q) pro-

cess has representation

X = (e1), (12.18)

where (g¢) is FARIMA(0,d,0) process.
The spectral density of FARIMA(p, d, q) satisfies

Fx() = 0% 0(e”™) ‘2‘1 _emiA2 a%0(1) |2 ~2d

= 2l ol ) 2 ()

when A — 0.

Below we show sample paths and empirical ACF of FARIMA(0, d,0) series for
d = £0.35, that is of the process which after d-fold differentiation becomes white
noise.

It is seen that sample paths and autocorrelations differ greatly. For d = 0.35 au-
tocorrelations decay very slowly in contrast to the case d = —0.35. Sample path
for d = —0.35 does not exhibit persisting local trends in contrast to d = 0.35.
Note that in representation (12.18) FARIMA(0,d,0) process can be replaced
by any LRD sequence, e.g. by FGN process, and we still obtain LRD series
as the result. This yields a flexible method of obtaining new models for LRD.
Generalization of this is subordination approach.

Definition 35 We define a series subordinated to the linear process as
Xt = G(Et),

where (g¢) s the linear process defined above.

We now state the result analogous to Theorem 12.1.3. First we define the power
rank of function G which is analogue of the Hermite rank of G which we used
in connection with Gaussian subordinated processes.
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The power rank of the function G with respect to €1, where G is such that
EG(e1) = 0, is the smallest integer m such that m-th derivative e (0) £0
where G (z) = EG(e1 + x). Note that power rank depends on the function G

and distribution of 1.

Theorem 12.1.7 (Ho and Hsing (1980)) Assume that power rank m of G sat-
isfies m(26 — 1) < 1, Elm|**° < 0o and moreover

max sup |G7 (y)| < oco.

r=1,....m yeR

Then

nHLV2(0)S, 25 GU(0) Zu (1),
n—oo

where

2m/!

LM() =

(1=m(28 -1))(2-m(26 - 1))

Lm()v

(12.19)

L(-) is defined below (12.16), 2H = 2 — m(28 — 1) and where Z,, (1) is the

value at 1 of the Hermite process Zy, m(t).

Note that for the quadratic function centred at 0 G(x) = 22 — F&? it is easy to
see that Gg;)(()) = 2Fe; = 0 and G(oz)(O) = 2. Thus the power rank of G is 2



186 12 Long-range dependent time series

and the limit in this case coincides with 2Z; (1).
It is also interesting to observe that if k is an integer much smaller than n
and we sample every k' observation from the LRD sequence X1, ..., X, with
covariance function yx(n) = L(n)n~% with 0 < a < 1 and consider the mean of
such subsample

- 1 [/
X, (k) = o ; X (12.20)

then, asymptotically, its variance does not depend on k in sharp contrast to
independent case. Namely,

Var(X, (k) ~ CaL(n)n ™", (12.21)

where C, = 2[(1 — @)(2 — )]~!. This follows from (12.13) after noticing
that the covariance function for Xz, Xog, ..., Xjn gk is (i) = i(i)i_"‘, where
L(i) = L(ik)k—®.

On the more sombre note observe that the results above indicate that a con-
struction of a confidence interval for the mean is much more complicated for
LRD data than for independent data. However, the main difficulty is not de-
pendence of the asymptotic variance on the unknown parameters which may be
estimated, but the fact that the asymptotic distribution of the mean may vary
for the given value of the Hurst parameter H. Namely, consider empirical mean
of (H"(Z;))™_,, where (Zi(m)) is the Gaussian sequence with decay of covariance
function equal a/m for 0 < a < 1. Then, the Hurst parameter for subordinated
Gaussian process (H'(Z;)) with G = H] is « regardless of m but e.g. for
m = 1,2 the limit of the mean is proportional to Z;(1) and Z(1) respectively
which is Gaussian in the first case and differs from Gaussian in the second. This
is unresolved problem and no definitive answer to this is known, although some
promising methods based on resampling exist (cf. Hall et al. (1998)).

12.2 Estimation of long-range dependence parameter

We discuss shortly the problem of estimation of long-range dependence param-
eter. Usually the main parameter of interest is the Hurst parameter i.e. H such
that the partial sums of the sample path S,, behave like n?# | possibly up to some
slowly varying function. This immediately yields the first method of estimation
of H, namely the estimator based on the variance plot.

Variance plot Let k& € N such that 2 < k < n/2 and consider my, subsequences
of length k of X1, ..., X,,. These can either be built as disjoint [n/k] subsequences
or partially overlapping n — k subsequences with varying first observation. Let
X1(k), ..., Xm, (k) be the sample means of these subseries and denote by s%(k)
their sample variances. Variance plot is the scatterplot of log s?(k) against log k
for k = 2,...,[n/2]. For long-range dependent sequences the least squares re-
gression line fitted to the plot has a slope approximating 2H — 2 > —1. Thus
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quick and dirty test of occurrence of LRD would be to draw a line with a slope -1
and see whether the slope of the regression line is less steep than this reference
line. Alternatively, we can create a correlogram, that is a plot of log p(k) against
k and fit regression line to this plot. Again its slope should be close to 2H — 2.
Another statistic which was used to discover long-range dependent phenomenon
for Nile data is the rescaled range statistic R/S defined in (9.7).
The R/S estimator Let Q(¢,k) = R(t,k)/S(t, k) be R/S statistic based on
X, ..., X¢yk—1 observations and consider the scatter plot of n — k values of
log Q(-, k) against log k. Then it is known (Mandelbrot (1991)) that for weakly
dependent ergodic data such that the normalized partial sums t~1/2 Zi:l X
converge to the Brownian motion we have that k~Y2Q(t,k) — &, where
¢ is a nondegenerate random variable whereas for LRD ergodic data when
t—H 22:1 X converge to the fractional Brownian motion the correct normaliza-
tion to obtain nondegenerate limit in distribution is k= . Thus the least squres
regression line fitted to the constructed R/S plot will have approximate slope H.
Lo (1991) introduced a modification of R/S statistic which used different esti-
mator of the variance of the cumulative sum. Drawbacks of the procedures above
is that they are not robust against the departures of stationarity, in particular
against slowly decaying trends, that is simple nonstationary processes consisting
of a trend contaminated by a white noise can be confused with stationary ones
exhibiting LRD (cf Bhattacharya et al. (1983)). Moreover, the two described
heuristic procedures rely on asymptotic behaviour of the involved statistics and
this means that the initial part of the respective plot under consideration should
be discarded. The corresponding cut-off point is usually chosen based on visual
inspection but this is subjective and, what is even more significant, its choice
has large impact on the value of the estimator.
Estimation of the Hurst parameter in the spectral domain The other
possibility is to exploit behaviour of the spectral density of LRD sequences at 0,
namely that

FO) ~ g A2, (12.22)

or more generally, similarity in (12.22) is up to a slowly varying function. We
plot I(\;,) against \;,, = 2mj/n for [ < j < m , where [,m € N are parameters
of the procedure and let H = (1- Bl) /2, where (3 is the slope of LS line fitted to
such data. This is known as Geweke-Porter-Hudak (GPH) or log-periodogram
regression estimator of H. Then the following result due to Robinson (1995)
holds

Theorem 12.2.1 Assume that (12.22) holds with 1/2 < H < 1 and that m,l —
oo are such that m = o(n*'?), logn = o(m'/?), I = o(m) and m*/?logm = o(l).
Then under reqularity conditions on f we have

2

m'2(H — H) — N(0, %).

1/2 1/2

Note that the norming is m*/= and not n'/= thus one can expect considerable
variability of H. Choice of boundaries m and [ is highly nontrivial and may influ-
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ence the value of the estimator. We refer to Beran (1994) for a short discussion
of this problem.
We present approximation of the maximum likelihood estimator based on (8.15)
and Whittle’s approximation to it. Namely, Whittle’s approximation consists in
replacing T';,;1(0) by
1 T 1
Wo(0) = [—— / P — )\ ,
0=l LT R ™

where fx (A, 0) is a postulated parametric spectral density and defining Whittle’s
estimate of 6 as the minimizer of the respective quadratic form

r,s=1,...,n

Oy = argminx' W, (0)x.

W, is an asymptotic inverse of T, in the sense defined in Beran (1994), lemma
5.3.

Consider the situation when 6 is one dimensional and equal to the decay param-
eter of the spectral density at 0, namely fx(A) ~ c¢f|A|72¢ when A — 0. Then
we have (cf. Giraitis and Surgailis (1990))

Theorem 12.2.2 Assume that (X;)iez s a linear process with a spectral density
fx(A) ~ cf|A[ 724 when A — 0 for —1/2 < d < 1/2 and 6 = d. Then under
appropriate regularity conditions we have

n?(dy — d) — N(0,4nxV 1),

where V = f:rﬂ(fs(()\)/fx()\))2 dM.

Note that the integrand is the square of the logarithmic derivative of fx. An
amazing fact about this result is that even in the case of LRD (0 < d < 1/2) we
have that normalizing factor is n'/? and the limit is normal. We also note that in
some important cases the limiting variance does not depend on LRD parameter.
Indeed, note that for FARIMA(0, d, 0) series we have

0.2

2
- 1= —i)\2:0-71_2 —d
Ix) = T e = (1 2cos))
and it easily follows that its logarithmic derivative equals —log(2 — 2 cos A) and

the limiting variance V = 72 /6.

12.3 Fixed-design regression

We discuss now one specific problem of nonparametric estimation which nicely
shows how different the inference for LRD data is in comparison with indepen-
dent or weakly dependent case. We also indicate some ways how to account for
this problem. Namely, we consider in greater detail the problem of nonparamet-
ric estimation of regression function in the fixed-design regression model (FDR)
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with LRD errors. FDR model with uniform design stipulates that the observa-
tions are given as
Yin=g(/n)+ein, i=1,...,n, (12.23)

where g : [0,1] — R is an unknown function to be estimated using Yy, 1, ..., Yy n-
Triangular array (e;,) is LRD in the sense that for each n sequence (g;,,)7; is
stationary with zero mean and covariance function r(-) which does not depend
on n and such that Y r(h) is infinite. In the following we will suppress in the
notation dependence of Y; ,, and €; ,, on n. We will only discuss one of possible
regression estimators, namely Priestley-Chao estimator defined as

n

gn(x) = 721((#)12 (12.24)

i=1 "
Although other, more sophisticated estimators, as e.g. local linear smoothers,
are frequently considered, simplicity of Priestley-Chao estimator makes it easier
to show how LRD errors influence inference here. Behaviour of MSE of §,(z)
was derived by Hall and Hart (1990) who proved

Theorem 12.3.1 Assume that r-(k) ~ Ck~ when k — oo for some C' > 0
and 0 < a < 1. Moreover, supy., .1 |¢'” (x)| < oo for i = 0,1,2. Then for any
0 > 0 we have

MSE(gn(x)) =

y|m K (2)K(y) dx dy

4b
Zf(/ ds)®g"(s) + o((nby) " +b%),  (12.25)

uniformly in x € (5,1 — 0).

The first term in (12.25) corresponds to the variance and the second to the
squared bias of g, (x). We readily calculate the value of the minimizer of the two
main terms in the decomposition of MSE which yields

bn = (aDl/D2)l/(4+a)nia/(4+a)a

where Dy(a) =C [ [ |z —y| K (z)K (y) dovdy and Dy = ([ s*K (s) ds)Qg”Q(s).
This shows that asymptotically optimal bandwith for estimating g(x) depends on
parameter « of hyperbolic decay which is unknown and this complicates greatly
using its empirical version as plug-in versions exhibit significant variability. It is
also known that in the case of one-sided linear process with covariance function
ve(k) = L(k)k~® we have that g,(x) is asymptotically normal when the normal-
ization a¥ = (nb,)*/L'/?(nb,) is used.

Observe that the design points are consecutively sampled from the uniform grid
and thus the errors related to points which are close will be highly correlated.
This leads to a natural question what happens when the design is still uni-
form but random. This question is partially answered by Csorgé and Mielniczuk
(2000). Namely, consider the random-design regression model (RDR)
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Yin = 9(Xi) +&im, i=1,...,m, (12.26)

where X; are independent uniformly distributed on [0,1] and also independent
from &, ,,. Define Priestley-Chao estimator for this model analogously to (12.24)
by

(12.27)

gn X :%

Csorgé and Mielniczuk (2000) have shown that for one-sided LRD moving aver-
age (g;) we have

na/Q
min ((an)l/Qa Ll/g(n))(gn(x) - g(x)) - p(l‘)Z’ (12'28)

where Z has the standard normal distribution and p(z) is a deterministic func-
tion which form depends on which norming above actually prevails. Note also
that the norming factor in (12.27) is larger than a} suggesting that §,(x) for
RDR design is less variable than in the case of FDR design. This can be intu-
itively justified by seeing that g, (x) is based on observations Y; corresponding
to observations X; or i/n which fall into small neighborhood of z, where for
simplicity we assume that K is compactly supported. In the case of FDR these
observations are a block of consecutive observations and thus are strongly de-
pendent. However, in the case of RDR the observations falling in the vicinity of
x have random indices and thus their mutual dependence is much smaller. This
leads to idea of using randomization for the FDR design. Namely, we define
o = o, to be random permutation of {1,2,...,n} and consider the randomized
fixed-design regression model (RFDR) as

Y;,n:g(an;))—‘ré'zn, i=1,...,n, (12.29)

which corresponds to the situation when in the i** step we randomly sample the
design point ¢,,(i)/n and sample the i*" observation Y; there. We stress that the
model (12.29) is adequate if the dependence between errors is due to the length
of time interval which elapsed between respective observations. Obviously, in
such a case we have the following form of Priestley-Chao estimator

/n
n( nb Z )Y (12.30)

To see that randomization helps consider momentarily simple linear regression
model Y; = B + f1x; + €4, = 1,...,n, where x; = i/n and errors are positively
correlated i.e r(i) > 0 for i € N. Let 3; be LS estimator of the slope. Now
we randomise the design points in which we take observations and we obtain
the observations Y; = (o + f1%,(;) + €. Let Bl be the slope of the LS line
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fitted to these observations. Thus we have that 3y = Y1, Y;(x; — &)/S where
S =" (xi—z)?* and

Dizy (i = G)(@i — T)(x; — T)
52 ’

. o2
Var(ﬁl) = g +
where 02 = v(0), whereas

Var(By = % 4 Dot T2 Ve = Doy )

and 7#(i —j) =7 = (n(n—1))7! Zk# r(|k =1]).
In the case of positively correlated errors we have that 7 > 0 and thus as
>oigi T(li = j) (2 — T)(2; — ) = =5 < 0. Thus

~ 0'2
Var(3;) < -= ~n~ !,
S
where the equivalence is due to property that S ~ n/12 in probability. However,
in the case when spectral density f of €; satisfies f(\) ~ A*~! for A — 0, Yajima
(1988) proved that n*Var(3;) — ¢ > 0 thus Var(f) is of order n~* and thus
larger than n 1.

MSE analysis of g,(z) is based on the decomposition

(@) = 2> Kofa = DM 1Y k(o - 20,

n

1 ¢ i 1 &
b ; ki(m)g(g) b ; ki(2)eg-1(1) (12.31)

where Ky(z) = b1 K (x/b) and k;(x) = K((z — i/n)/b). Thus the random com-
ponent of g, (z) is a weighted sum of &;, = e,-1(¢) and it is easy to see that &;,
are exchangeable random variables such that
2L(n)n~“

(1-a)2-a)

for ¢ # j. This clearly indicates why randomization in case of estimation of local
parameters is beneficial. Namely, covariance L(h)h~% of Y; and Y, is replaced
by CL(n)n~% which for h much smaller than n (and observations corresponding

to such h are dominant for local estimators) is significantly smaller. Thus by an
easy check we obtain the analogue of Theorem 12.3.1.

Theorem 12.3.2 Assume that conditions of Theorem 12.3.1 are satisfied. Then
Cy 1
MSE(gn,(x)) = o // |z —y| K (z)K (y) dx dy + ﬁag/Kz(s) ds

_ +%( / K (s) ds)”g"(s) + o(n~® + (nb,) "' + b2), (12.32)

COV(gm, éjn) ~

uniformly in x € (8,1 — §), where Co, = 2C/(1 — a)(2 — ).
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It is thus seen that by using randomized design we have diminished the vari-
ance of Priestley-Chao estimator. Note also that for small bandwidths the term
(nby,)~! is larger than n~® and the MSE behaves as in the case of independent
data. For large bandwidths, however, the term n~% which does not depend on b,
prevails. This is example of co-called smoothing dichotomy, for other examples
see e.g. Csorgd and Mielniczuk (1995) and Wu and Mielniczuk (2002).

12.4 Problems

1. Check the asymptotic validity of (12.21) using the discussion in the text.

2. Prove Theorem 12.1.7 for G(s) = s using Ibragimov-Linnik theorem.

3. Consider a linear process X; = >~ a;m—; with zero mean square integrable
innovations and such that (a;) € ¢* and > ;- a; # 0. Show that (X;) is short-
range dependent and that n='/2(X; +---+X,,) — N(0,v) in distribution, where
U= oo yx ().

4. Let Zy, Z5 be the standard normal random variables. Using the diagram for-
mula (Theorem 2.1.2) show that

Cov(Z},Z2) = 2Cov* (2, Zs)

i.e. Mercer formula for m = 2.

5. Show the conclusion of Problem 4 for the LRD linear process with innovations
n; such that En} < oo.

6. Show that if L() is slowly varying in Karamata’s sense then sign of L(-) is
ultimately constant. Hint: reasoning by contradiction take p,q > to such that
L(p) > 0 and L(q) < 0 where ¢, is such that L(2t)/L(t) > 0 when ¢ > tg. Show
that then for any n € N L(2"p) > 0 and L(2"q) < 0.
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