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Foreword

Maciej Romaniuk, Piotr Nowak

There are many mathematical problems in statistics, economy, finance, biol-
ogy, physics etc. which can be solved only in an approximate way because of
their complexity. Even such “simple” problem as calculation of value of the one-
dimensional integral is in many cases too difficult to find the relevant solution
in purely analytical form.

Two groups of general approaches to such challenges are commonly used. The
first group consists of strictly deterministic algorithms, like the widely known
Newton’s method, which finds roots of a real-valued function. These methods
have many advantages, especially their fast convergence in many cases should be
emphasized. However, they share also one common disadvantage – the necessity
of fulfilling various assumptions before any such method could be even applied.
For example, in the case of Newton’s method, derivative for the considered func-
tion should exist.

The second group of methods consists of algorithms based on numerical simu-
lations, and this group is related to random approach. Simulations are especially
useful nowadays in our computer era, when relatively cheap and fast hardware
and commonly accessible, special-tailored software can be easily used to solve
many important practical and theoretical problems in minutes or even in seconds.
In Chapter 1 we discuss some advantages and disadvantages of such numerical
methods.

Chapter 2 contains some basic definitions, facts and theorems of probability
theory and stochastic analysis in continuous time, needed in the chapters that fol-
low. These elements of theory are used for description of simulations algorithms.
They are also very useful in Chapter 7, where methods of stochastic analysis are
applied to derive and prove the valuation formula of the there described finan-
cial instrument. In that chapter there are also many references, which can help
the interested readers to familiarize themselves with further details concerning
defined notions.

Of course, in order to undertake any random simulations, the efficient way
to obtain abundant quantity of random values is necessary. These values could
be acquired as an effect of some physical random event or derived directly as
an output from special computer algorithm. The physical events mentioned are
related to the so called hardware random number generators. A simple example



16 Foreword

of such a generator is given by tossing a coin. However, practitioners rather rely
on specially devised computer algorithms, because of the previously mentioned
availability of hardware and software. But, as stated by John von Neumann,
“Anyone who considers arithmetical methods of producing random digits is, of
course, in a state of sin.” It is, namely, so that, such special computer algo-
rithm, known as (pseudo)random number generator, gives purely deterministic
series, which only resembles (in some statistical sense) independent, identically
distributed sample of random variables. In Chapter 1, the difference between the
hardware and the software random number generators are considered in a more
detailed way. We also discuss important problems concerning treating determin-
istic values as random variables. Especially, the statistical approach, based on
the sets of various tests, is emphasized.

There are many kinds of simulation algorithms. Some of them are related
to transformations of variables between various random distributions known in
statistics, like the method to change some variable, which is distributed accord-
ing to the uniform distribution into the related value from normal distribution.
There are also more sophisticated approaches, which are intended to solve real,
complex problems, like the previously mentioned issue of the evaluation of inte-
grals. In this case, especially Monte Carlo (MC) or Markov Chain Monte Carlo
(MCMC) methods should be emphasized. The first one is based on iid sample,
the second one is related to mathematical concept of Markov chains. The nec-
essary theoretical background concerning Markov chains is introduced in Chap-
ter 3. In Chapter 4 useful algorithms, various examples and necessary theorems,
concerning both the generation of random variables from different distributions
and the sampling of trajectories of some stochastic processes are provided. Also
the so called curse of dimensionality problem, which arises in multidimensional
settings, is discussed in a more detailed way. In turn, Chapter 5 is devoted to
detailed considerations of MC methods. As previously, practical algorithms, in-
troductory examples and theoretical background for this simulation approach are
provided. The same concerns Chapter 6, where MCMC methods are discussed.
Moreover, special attention is paid to the significant problem of convergence di-
agnosis for MCMC methods. Some possible answers to the question when the
simulations should be finished are considered there.

Simulation methods are used in order to solve important problems from var-
ious scientific and practical areas, like e.g. statistics, physics, biology etc. In this
book, though, we focus on applying Monte Carlo methods in financial mathe-
matics.

In Chapter 7, we consider pricing of a new kind of financial instrument, which
is known as catastrophe bond (or cat bond). Nowadays, catastrophic events like
hurricanes, floods and earthquakes are serious problems for the reserves of many
insurers. The losses from such catastrophes can even lead to bankruptcy of in-
surance enterprises. Catastrophe bond is one of the solutions to deal with these
problems, as this derivative is used to transfer risk from the insurer onto the
financial markets. We derive and prove a generalized version of the catastro-
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phe bond pricing formula. Applying stochastic processes in continuous time,
we propose theoretical models of catastrophe losses and risk-free interest rates.
Moreover, we assume a general form of cat bond payoff function. Using meth-
ods of stochastic analysis and financial mathematics, we derive the instrument’s
valuation expression, which can be applied for various types of cat bond payoff
functions and affine interest rate models.

Because of complex pricing formulas developed in Chapter 7, simulations
are necessary to estimate the relevant expected values. Numerical analysis of
cat bond prices, based on Monte Carlo methods, is presented in Chapter 8.
Moreover, Monte Carlo methods are also used to solve the important problem
of probability of bankruptcy of the insurer in this part of the book. In order to
do this, the portfolio of the insurer, which consists of a few layers is modelled
there. As these layers we apply the classical risk process based on the insurance
premiums, the reinsurance contract and the payments related to the specially
tailored catastrophe bond. Additionally, one-factor Vasicek model of the interest
rate is embedded in the structure of such portfolio. Then, by applying numerical
simulations of catastrophic events calibrated to real-life data, the stability of
the constructed portfolio is evaluated. Using methods of descriptive statistics,
outputs of various scenarios based on simulations are analysed. In particular,
probabilities of bankruptcy for some interesting cases are estimated, as the key
factors for the insurer during the process of construction of the related portfolio.





1

Introduction to (pseudo)random number
generation

Maciej Romaniuk

1.1 Basic concepts of (pseudo)random number generators

We start from introducing some basic concepts and definitions concerning so
called (pseudo)random number generators – special algorithms, which are used to
imitate behaviour of random samples, but are based only on strictly deterministic
sequence of numbers.

1.1.1 John von Neumann’s Middle-Square Method

Historically, one of the first (pseudo)random number generators is the algorithm
known as John von Neumann’s Middle-Square Method. It was introduced in 1949
(see (von Neumann 1951)).

A sequence of numbers with m digits is created as an output of this method.
The parameter m is always even. This algorithm can be described by the follow-
ing steps:

Algorithm 1.1 (John von Neumann’s Middle-Square Method).

1. Take the previously generated number Xn−1.
2. Calculate Yn = X2

n−1.
3. If it is necessary, add additional zeroes at the beginning of the Yn, so

that Yn has 2m digits.
4. Take middle m digits of Yn as the new output Xn.

It can be easily seen that von Neumann’s algorithm may be described by the
general formula

Xn = f(Xn−1) , (1.1)

where f(.) is some fixed mathematical function. Therefore the output of this
algorithm is a strictly deterministic sequence of numbers. But, because of their
“irregular” behaviour, these values could be regarded as “random sample”. It is
easy to see that, in order to start such method, it is necessary to choose some
starting value X0, which is known as seed or initialization value.
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It should be noted that there are some problems with treating the output of
the Algorithm 1.1 as “random values”. The generated numbers very frequently
decrease to the sequence of zeroes. This algorithm can also get stuck on a number
other than zero (e.g. for m = 2, X0 = 10). Therefore, nowadays, this method
has a rather historical significance and more complex and better algorithms are
applied.

Additionally, in the case of all methods described by the general formula
(1.1), there is a phenomenon known as period of the algorithm. For the output
given be the sequence

X0, X1, X2, . . . , Xn, Xn+1, . . . , Xn+p, Xn+p+1, . . . (1.2)

there are always parameters n and p, so that Xi = Xi+jp for i ≥ n and j =
1, 2, . . .. It means that the generated numbers are continually repeated in the
same sequence of p values, which is called the period of the generator. Therefore,
only aperiodic part of the whole output X0, X1, . . . , Xn+p (or more precisely
– output without the starting value X0) may be treated as approximation of
random numbers.

1.1.2 Hardware and software generators

The methods which are used to generate “random samples” can be divided into
two groups: hardware (or physical) generators and software generators (computer
algorithms).

A hardware random number generator is a device that generates random
numbers based on some kind of physical process (e.g. thermal noise or the photo-
electric effect or other quantum phenomena, see e.g. (Davies 2000)). This physical
process creates “noise” which is converted afterwards into sequence of numbers
(e.g. binary digits 0 or 1). These numbers may be treated as the statistically ran-
dom output. In theory, such output is “truly” random because it is completely
unpredictable. Also more “macroscopic” processes like coin flipping or dice may
be used as the source of the random output.

However, hardware random number generators are often relatively slow, i.e.
they create limited size of random sequence per unit time. Additionally, there
may be some problems with stability of the output of such devices. Even a small
change in physical parameters of environment of the device may influence the
generated sequence. Therefore, usually hardware generators are rather used to
initialize (i.e. to create the seed) for software (pseudo)random number genera-
tors. A value taken from system clock, which may be found in every computer,
is an example of such approach.

Usually, instead of hardware random number generators, (pseudo)random
number generator (abbreviated as PRNG), also known as a deterministic ran-
dom bit generator (DRBG), is used to conduct simulations. PRNG is an algo-
rithm which generates a sequence of numbers that seems to “be random” (see
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(Law 2007, Wieczorkowski & Zieliński 1997)). The “randomness” may be identi-
fied with satisfying some statistical goodness-of-fit and independence tests (see
Definition 1.3 for a more detailed approach).

Generally speaking, software generator is started from an arbitrary starting
state (seed) and afterwards some mathematical function determined by the al-
gorithm is used to obtain subsequent values as in the case of the Algorithm 1.1
and the general formula (1.1). If we know this seed and the applied method, the
corresponding output is completely anticipated.

PRNGs are usually much faster than hardware generators and because only
computer is necessary (instead of some special device), usually the software
generators are used for modern simulations.

Software generators have additional advantage in that the generated output
could be reproduced using the same seed for each run. It is often necessary to test
what happens when some parameters of the simulations are altered but exactly
the same sequence of generated values is used in many different simulation runs.
In other cases, it must be possible to stop a simulation and then re-continue the
same analysis. Therefore, the current state of the PRNG should be stored in
memory to use this value during the next run.

1.1.3 Stages of generation

We introduce first an important definition of uniform distribution.

Definition 1.2 (Uniform distribution). A distribution of the random variable
X is a uniform distribution on the interval [a, b] (further we use notation X ∼
U [a, b]) if the density of this distribution on [a, b] is given by

f(t) =
1

b− a
.

If X ∼ U [a, b], then EX = a+b
2 , VarX = (b−a)2

12 .

The whole simulation process may be divided into the following steps.
During the first step, usually, the numbers generated by PRNG are values

from some subset of N, e.g. 0, 1, 2, . . . ,m (as in the case of linear congruential
generator, see Section 1.2.1). But in many applications and more sophisticated
algorithms (e.g, see Chapter 4, Chapter 7 and Chapter 8) we need random
variables distributed uniformly on the interval [0, 1]. In such a case, during the
second step, the output from PRNG, denoted by X1, X2, . . ., is transformed into
a new sequence U1, U2, . . . using straightforward formula

Ui =
Xi

m
(1.3)

or a similar one (e.g. Ui =
Xi

m+1 ). It should be noted that contrary to the ran-
dom sample from the “true” uniform distribution, in the case of the numbers
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obtained via PRNG the probabilities of a single value (e.g. like 0 or 1) may be
not uniformly equal to zero.

In order that the new points U1, U2, . . . be sufficiently “densely” distributed
on the interval [0, 1], the value of the parameter m should be large. As it will be
described in Section 1.2.1, the larger values of m are sometimes also necessary
to a obtain longer period of some PRNGs.

During the third step, the sequence U1, U2, . . . is transformed into the val-
ues, which may be identified with samples from other random distributions, e.g.
normal distribution or exponential distribution. In this case, some special algo-
rithms are applied which are based on mathematical theorems. The examples of
the relevant methods are described in Chapter 4 in a more detailed way.

Then, finally, the obtained output is used for some numerical simulations or
procedures, e.g. as in the case of Monte Carlo or Markov Chain Monte Carlo
methods (see Chapter 5 and Chapter 6).

1.1.4 Problems with “randomness”

Von Neumann said that “Any one who considers arithmetical methods of pro-
ducing random digits is, of course, in a state of sin.” As previously stated, the
output generated by PRNG is entirely deterministic, because it is based on some
mathematical function (in other words – some deterministic algorithm). There-
fore, there are significant problems with “randomness” of such sequences (see e.g.
(Law 2007, Thompson 2000, Wieczorkowski & Zieliński 1997)), which could be
related to:

• length of the period,
• existence of spatial structure (i.e. problem with multidimensional distribu-

tions),
• accordance with iid requirement (i.e. the output may be considered as inde-

pendent, identically distributed random variables).

Now we consider these issues in a more detailed way.
In order to approximate a random sample, the period of the considered al-

gorithm should be longer than the required number of simulations n in each
numerical experiment. Many authors insist that the length of the period p
should be much greater than the value n. Some of them state that n < p2/3

(see (Maclaren 1992)) or even n < p1/2 (see (Ripley 1987)), especially for linear
generators (see Section 1.2.1 for the description of this type of software gener-
ators). We will discuss some theorems, concerning the length of the period in
Sections 1.2.1 and 1.2.2. However, we should keep in mind that apart from the
considered method, the length of the period also depends on the applied seed. It
is known that the quality of some of the algorithms considered as “good” PRNGs
can be lowered if the seed is not appropriately chosen. Therefore, for more com-
plex methods the practical examination of the generated output is necessary.

Another issue is related to multidimensional distribution of the obtained
output. As indicated in Section 1.1.3, we are usually interested in the sequence
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U1, U2, . . . from the interval [0, 1]. For the fixed parameter d ≥ 1 we may consider
sequence of points in the d dimensional space described by coordinates

(U1, U2, . . . , Ud), (U2, U3, . . . , Ud+1), . . . (1.4)

If the sequence U1, U2, . . . is “sufficiently” random, then the points (1.4) should
be “uniformly” and “randomly” distributed in the d dimensional unit cube (as
in the case of Figure 1.1). But for some PRNGs, these points have often more
regular and not “chaotic” spatial structure. Then we could see some “crosses”,
“lines” and other geometrical shapes instead of the irregular “cloud” of points
(as in the case of Figure 1.2). Apart from the coordinates described by (1.4), we
may also analyse the spatial behaviour of other sets, e.g.

(U1, U2, . . . , Ud), (Ud+1, U3, . . . , U2d), . . .

0.2 0.4 0.6 0.8 1.0
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0.4
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0.8
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Fig. 1.1. Example of “random” spatial structure

The third problem is related to the statistical notion of “random sample”.
Let us suppose that we need a generator which generates random values from
some fixed random distribution. It means that the output from this PRNG has
to satisfy two important conditions, known from mathematical statistics and
probability theory:

• the values (Xi)i=1 constitute independent (from probabilistic point of view)
sequence,

• the values (Xi)i=1 are consistent with a fixed random distribution, i.e. they
are identically distributed.
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Fig. 1.2. Example of “lines” produced by PRNG

In such case we may say that (Xi)i=1 is iid (i.e. independent, identically dis-
tributed) sequence.

There are many statistical methods for checking the above mentioned condi-
tions. We can briefly mention some of them (see also (Law 2007, Wieczorkowski
& Zieliński 1997)): histogram and other graphs, descriptive statistics, correlation
coefficient, time series analysis, statistical tests etc.

Let us suppose that our sequence should be distributed according to U [0, 1].
Then the histogram for such data should be accordingly “flat”. In case of other
distributions, we could also check the shapes of the corresponding histograms.
Other useful graph in this setting is a box-and-whisker plot which could be used
to check skewness of the empirical distribution or to find possible outliers.

If the random distribution is fixed, then we could compare values of theoret-
ical moments like average EX and variance VarX with corresponding empirical
estimators like mean X̄ and empirical variance S2

X of the generated sequence.
Another tool is Pearson’s r (Pearson’s correlation coefficient) which may be

used to check if there is a linear correlation between two sets of output from
PRNG. In such a case the sequence (Xi)i=1 can be divided into two parts to
find the relevant value

ρ =

1
n/2

∑n/2
i=1

(

Xi − X̄1

) (

Xn/2+i − X̄2

)

√

1
n/2

∑n/2
i=1

(

Xi − X̄1

)2 1
n/2

∑n
i=n/2+1

(

Xi − X̄2

)2
,

where X̄1 is average for the first part of (Xi)i=1 and X̄2 is average for the second
one. If ρ is close to zero, then these two sets are uncorrelated. It means that there
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is no linear correlation between these two sequences, but there may be other kind
of probabilistic dependency between them.

Time series analysis could be also applied. For example, we may analyse the
simple model given by the equation

Xn = aXn−1 + b

and then check the corresponding autocorrelation coefficients.
There are also many statistical tests for checking if the sequence (Xi)i=1

is distributed according to the specified distribution and / or if the values are
independent. Such tests as χ2 goodness-of-fit test or Kolmogorov–Smirnov test
should be mentioned here.

The tests and methods referred to may be also classified otherwise:

• Theoretical tests which are based on theoretical (i.e. mathematical) prop-
erties of the algorithms. These tests are mathematically strict but they are
often very difficult to perform and they give only asymptotic conclusions.

• Empirical tests are based on testing the algorithms and their implemen-
tations by producing the relevant output. These tests are suitable for all
algorithms, but it is often difficult to say how extensive testing is sufficient
(i.e. how many simulations should be generated) and whether variation of
some parameters of the algorithm has any influence on the results of these
tests.

• Visual tests can be used to directly locate some “deviations” from the “ran-
domness” on graphs.

1.1.5 Definition of a “good” PRNG

Taking into account the above mentioned problems with “randomness”, we in-
troduce the “working definition” following the one presented by Wieczorkowski
& Zieliński (1997).

Definition 1.3. We say that the given algorithm generates (pseudo)random val-
ues, if none of the selected statistical tests rejects the hypothesis that the generated
sequence (Xi)i=1 is an iid sample from the specified random distribution.

This definition is very useful from the practical point of view, because we
focus only on the methods of checking the “randomness”, instead of philosophical
considerations. However, there are also some problems caused by such approach.
The first one is related to the selection of the set of statistical tests. It is possible
that all the tests applied earlier did not reject the iid hypothesis, but the new,
additional test rejects it. The second one is the issue of the selection of the
sequence. As previously, it is possible that all the sequences analysed earlier did
not lead to the rejection of the iid hypothesis, but the next sequence (or sequence
generated for the new set of parameters) gives rise to rejection of this statement.

Therefore, it is necessary to select the relevant, wide set of statistical tests
(e.g. like “Diehard”, “Crypt-XS” or “DieHarder”) and to check the whole collection
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of possible sequences and parameters of the considered generator. For example,
the “Diehard” suite (see (Marsaglia 1995)) consists of the tests: birthday spac-
ings, overlapping permutations, ranks of 31x31 and 32x32 matrices, ranks of
6x8 matrices, monkey tests on 20-bit words, monkey tests OPSO, OQSO, DNA,
count the 1’s in a stream of bytes, count the 1’s in specific bytes, parking lot,
minimum distance, random spheres, squeeze, overlapping sums, runs, the craps.

The birthday spacings test is conducted as follows (see, e.g. (L’Ecuyer &
Simard 2001)):

1. Partition the interval [0, 1) into d equal segments. This determines a partition
of [0, 1)t into k = dt cubic boxes of equal size.

2. Number the boxes from 0 to k − 1 in the natural order: the box with lower
corner at (i0/d, i1/d, . . . , it−1/d) has number it−1 + dit−2 + . . .+ dt−1i0.

3. Generate nt values U0, . . . , Unt−1

4. Place the points Vi = (Uti, . . . , Uti+t−1) for i = 0, 1, . . . , n − 1 in the corre-
sponding boxes.

5. Let I1 ≤ I2 ≤ . . . ≤ In be the numbers of the boxes where these points have
fallen (sorted by increasing order).

6. Compute the spacings Sj = Ij+1 − Ij .
7. Let Y be the number of collisions between these spacings, i.e. the value of

events such that S(j+1) = S(j) where S(1), S(2), . . . , S(n−1) are the sorted
spacings.

This experiment is similar to the situation, when we have birthdays of n people
and the year has k days, therefore this procedure is called birthday spacings

or discrete spacings test. If n is large and λ = n3

4k is small, Y should follow
approximately the Poisson distribution with mean λ.

It should be mentioned that the most important PRNGs are constantly being
checked using various tests and different outputs. It is known that some of “good”
algorithms were found to lack “randomness” in the case of e.g. some seeds (like
Mersenne-Twister algorithm, see Section 1.2.6).

As mentioned earlier, the other approach requires the mathematical reason-
ing leading to the conclusion that the algorithm generates random numbers.
However, in many cases this more exact and certain way is not possible, because
the relevant theorems are not (or even could not be) proved.

1.2 Examples of software generators

As indicated in Section 1.1.3, the whole simulation procedure may be divided
into a few stages: firstly the output given by values from some subset of N,
then the output from the uniform distribution, next the transformation to the
specified probability distribution and then application of the obtained sequence
in the numerical procedure.

In further considerations (especially in case of more complicated generators
– see Chapter 4, and MC and MCMC methods – see Chapters 5 and 6) we
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will assume that we dispose of an efficient PRNG for the uniform distribution.
Therefore, in this section we discuss various simulation algorithms and present
some examples of PRNGs, keeping in mind that the output from the considered
method should be transformed into the sequence U1, U2, . . . , Un of variables from
the interval [0, 1] (e.g. via formula (1.3)).

1.2.1 Linear congruential generators

PRNG described by the function

Xn+1 = (a1Xn + a2Xn−1 + . . .+ akXn−k+1 + c) mod m (1.5)

is the generalized form of the linear congruential generator (LCG) , where con-
stants a1, a2, . . . , ak, c,m ∈ Z are parameters of this generator.

The simplest generator of this form is given by the formula

Xn+1 = (aXn + c) mod m (1.6)

and it was proposed by Lehmer in 1949 (see (Lehmer 1951)). This very sim-
ple PRNG is often used in standard compilers and programming libraries even
nowadays. If c = 0, then such generator is called multiplicative, and for c 6= 0 it
is known as mixed generator.

In the case of the generator given by the formula (1.6), the length of the
period p is equal to min{i > 0 : Xi = X0}. We always have p ≤ m, because for
the operator mod m there are only m remainders given by 0, 1, . . . ,m− 1, so p
could not be greater than m. Therefore, in practical applications m should be a
“really big” number. However, in many cases the period is actually significantly
smaller than its upper limit m.

There are various lemmas and theorems concerning the length of the period
for LCG (see (Jansson 1966, Knuth 1966, Ripley 1987, Wieczorkowski & Zieliński
1997)). We mention only some of them.

Lemma 1.4. The period of the multiplicative generator

Xn+1 = (aXn) mod m

is maximal for m = 2L (if L ≥ 4) and is equal to 2L−2, if and only if, X0 is odd
and a = 3 mod 8 (i.e. a is divided by 8 with remainder 3) or a = 5 mod 8.

The proof of this lemma may be found in (Hull & Dobel 1962).

Example 1.5. RANDU generator: a = 216 + 3,m = 231.

Lemma 1.6. The period of the mixed generator (1.6) is maximal, if and only
if, all of the following conditions are fulfilled:

1. c and m do not have common divisors,
2. a = 1 mod p for each prime factor p of m (i.e. for each prime number that

divides m exactly),
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3. a = 1 mod 4, if 4 divides m.

Example 1.7. Let a = 69069, c = 1,m = 232.

It can be easily seen that in the case of the more general formula (1.5), the
seed of such a generator is given by the whole sequence X0, X1, . . . , Xk−1, instead
of only one value, as for (1.6).

There are many ways to generalize the linear congruential generators. For
example, we may consider a multivariate function given by

Xn+1 = AXn mod m , (1.7)

where X0,X1, . . . are some vectors in Rk and A is k × k matrix. In this case,
the operation mod m is done for each term of the output vector AXn. Gen-
erators given by (1.7) are especially useful in the case of multivariate uniform
distribution on k-dimensional cube.

1.2.2 Fibonacci generators

The famous Fibonacci sequence is described by the formula

Xn = Xn−1 +Xn−2 for n ≥ 2 ,

if X0 = X1 = 1. A similar function (see (Taussky & Todd 1956))

Xn = (Xn−1 +Xn−2) mod m for n ≥ 2 (1.8)

is used to generate numbers, which are approximately “random” values (in the
sense of Definition 1.3). The statistical tests do not reject the hypothesis that
the output sequence (Xi)i=1 is derived from the uniform distribution, but some
tests reject the hypothesis that the generated variables are independent.

Therefore, the function (1.8) was generalized into the form

Xn = (Xn−s +Xn−r) mod m for n ≥ r, r > s ≥ 1 , (1.9)

which is known as Additive Lagged Fibonacci Generator (ALFG). In past, ALFG
were rarely used, because they are slower than simple LCG given by (1.6) and
they need more computer memory – more of previous values should be stored to
generate the subsequent output. Nowadays, these generators are applied more
frequently, because the formula (1.9) introduces more “randomness” than the
simple algorithm (1.6).

ALFG can have longer period than LCG (e.g., see (Wieczorkowski & Zieliński
1997)). For m = 2L the maximal period of ALFG is equal to (2r − 1)2L−1.

The generators described by (1.9) may be generalized to the form

Xn = (Xn−s ⋄Xn−r) mod m , (1.10)
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where ⋄ is some arithmetical operation (e.g. subtraction, multiplication). In
case of multiplication, this leads to Multiplicative Lagged Fibonacci Generator
(MLFG) given by the formula

Xn = (Xn−s ·Xn−r) mod m . (1.11)

Maximal period for MLFG is equal to (2r−1)2L−3. For subtraction, the maximal
period is the same as for ALFG. Proofs of the results mentioned may be found
in Marsaglia (1984) and Marsaglia & Tsay (1985).

1.2.3 Generalised Feedback Shift Register generators

Let us consider the sequence of bits described by the formula

bn = (a1bn−1 + a2bn−2 + . . .+ akbn−k) mod 2 , (1.12)

where a1, a2, . . . , ak are some binary constants (i.e. the parameters which are
equal to 0 or 1) and b0, b1, . . . , bk−1 is the binary seed for this generator. Instead
of operation modulo 2 for bits, logical xor (exclusive-or) in the formula (1.12)
can be used. The xor operator is more straightforward to implement in the case
of compilers. If only aj1 = aj2 = . . . = ajl = 1 and all other aj ’s are equal to 0,
then (1.12) may be written down as

bn = bn−j1 xor bn−j2 xor . . .xor bn−jl .

Obviously, there are only 2k various arrangements of the sequence (b1, b2, . . . , bk).
Therefore, the maximal period of the generator given by the formula (1.12) is
equal to 2k − 1 (not 2k, because if there are only zeros in the output, all of the
consecutive values are also equal to 0). There are many algebraic methods for
finding the parameters, which then give the maximal period (see e.g. (Golomb
1967)).

The simplest case of (1.12) is described by the formula

bn = bn−p xor bn−q , (1.13)

where only two parameters aj are not equal to zero. There are also some strict
results concerning the maximal period in such a case.

Example 1.8. If p = 89 and q = 38, then period of (1.13) is maximal (see
(Berdnikov, Compagner & Turtia 1996)).

Next step is the transformation of the bit sequence b1, b2, . . . into the sequence
of real numbers from the interval [0, 1]. Tausworthe (1965) proposed the formula
(known as Tausworthe generator) given by

Un =

L
∑

j=1

2−jbns+j = 0.bns+1 . . . bns+L (1.14)
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for n = 0, 1, . . ., where s and L are some constants fulfilling the inequality s ≤ L.
If s < L, then the consecutive values Un are partially based on the same bit
sequences and if s = L, there is no such overlapping. This method is easy to
implement in a computer algorithm using shift registers and xor operator.

The generated bis sequence can be also transformed into integer values. Lewis
& Payne (1973) proposed the formula

Yn = bnbn−l1 . . . bn−lL−1

to obtain L-bit words (which may be treated as integer values), where l1, . . . , lL−1

are some fixed delays. If we apply the simplest formula (1.13) for this case, we
get the Generalised Feedback Shift Register (GFSR) generator, described by

Xn = Xn−p xorXn−q . (1.15)

To obtain the maximal period of this generator the best choices for p and q are
Mersenne primes (i.e. the prime numbers of the form 2p − 1) which satisfy the
condition that p2 + q2 + 1 is also prime.

Example 1.9. In the case of R250 generator, we have p = 250 and q = 103 (see
(Kirkpatrick & Stoll 1981)). This is one of the most commonly used generators
of this class, which generates 31-bit integers. To initialize the algorithm, 250
uncorrelated seeds (random integers) are necessary. The length of its period is
equal to 2250 − 1.

1.2.4 Nonlinear generators

The generators described in the previous sections were related to linear recur-
rence formulas or they were based on generalizations of such functions. This
approach has some important advantages and disadvantages. We should men-
tion, in particular, that the linear generators are easy to implement, which was
especially important in the case of the first, slow computers, but there are prob-
lems with the spatial structure of the output. It means that generated values are
concentrated only on some hyperplanes of multidimensional cube (as discussed
in Section 1.1.4). Therefore, new kinds of generators are also considered, where
instead of the linear function – some nonlinear one is applied.

Eichenauer & Lehn (1986) introduced the generator given by the formula

Xn =
(

aX̌−1
n−1 + b

)

mod m , (1.16)

where m is a prime number and X̌−1 denotes modular multiplicative inverse.
This operator is defined as follows:

Definition 1.10. For x = 0 we have x̌−1 mod m = 0, and for x 6= 0 the value
x̌−1 is given by the condition (x · x̌−1) mod m = 1.

Lemma 1.11. The length of the period of the generator (1.16) is maximal

and is equal to m if m2 − 1 is the minimal integral, for which zm
2−1 = 1

mod
(

z2 − bz − a
)

.
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Modular multiplicative inverse is also used in the generator, proposed by
Eichenauer-Hermann (1993), given by the formula

Xn = (a(n+ n0) + b)
−1

mod m , (1.17)

where a, b, n0,m are parameters of this algorithm. It can be easily seen, in the
case of (1.17) the new value Xn may be found regardless of the previous values
X1, . . . , Xn−1. Therefore, this generator may be used for parallel simulations.

Another type of nonlinear generator was considered by Blum, Blum & Shub
(1986). In this case, the quadratic function given by the formula

Xn = X2
n−1 mod m

is applied.

1.2.5 Combination generators

Instead of applying more complex functions, the other approach to obtain the
generator with “good quality” is to combine two or more simpler PRNGs into a
new algorithm. In such a case, the output generated by the combined generators
can be “more independent”, “more uniform” and it usually has a longer period.
For example, if sequence (Xi)i=1 has period p1, sequence (Yi)i=1 has period p2,
and p1 and p2 are relatively prime, then the new sequence

Zi = Xi ⋄ Yi ,

has period p1p2 (see, e.g. (Graham, Knuth & Patashnik 1994)). The operator ⋄
may be, e.g., addition, modulo operator, xor operator, etc.

1.2.6 Mersenne Twister generator

Matsumoto & Nishimura (1998) developed a very fast and reliable PRNG called
Mersenne Twister generator (MT). As authors stressed, this generator has many
advantages. The length of the period is equal to 219937 − 1. The generated se-
quence is 623-distributed to 32 bits accuracy. This second feature is described
by the following definition:

Definition 1.12. A (pseudo)random sequence xi of w-bit integers of period p
satisfying the following condition is said to be k-distributed to v-bit accuracy: let
truncv(x) denote the number formed by the leading v bits of x, and consider p
of the kv-bit vectors

(truncv (xi) , truncv (xx+1) , . . . , truncv (xx+k−i)) ,

where 0 ≤ i ≤ p. Then, each of the 2kv possible combinations of bits occurs the
same number of times in a period, except for the all-zero combination that occurs
once less often. For each v = 1, 2, . . . , w, let k(v) denote the maximum number
such that the sequence is k(v)-distributed to v-bit accuracy.
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The equidistribution property has geometrical interpretation as the same
number of points in the cubes which are given by partitioning of the unit cube
(see e.g. (Matsumoto & Nishimura 1998)) except for the cube located next to the
origin of the axes. The MT generator has passed diehard tests, Load Tests and
Ultimate Load Tests, but there are problems with passing some of the tests from
the library TestU01 (see (L’Ecuyer & Simard 2007)) Additionally, it is known
that MT is sensitive to poor initialization and can take a long time to recover
from a zero-excess initial state.

The generator is based on idea of twisted GFSR, incomplete array and matrix
linear recurrence over a finite binary field. Now we briefly described some further
details.

The MT algorithm is using word vectors, i.e. w-dimensional row vectors of
bits. The most important part of the generator is described by the following
recurrence formula

xn+k = xm+k ⊕
(

xuk |xlk+1

)

A , (1.18)

where k = 0, 1, . . ., the integers n and 1 ≤ m ≤ n are parameters of the generator,
and A is a constant w × w binary matrix. The initial seed is given by the
word vectors of the size w, namely x0, x1, . . . , xn−1. To obtain the new values
xn, xn+1, . . ., the recurrence formula (1.18) is used for k = 0, 1, . . .. For example,
in the case of k = 0 we have

xn = xm ⊕
(

xu0 |xl1
)

A .

The operator xuk in (1.18) denotes “the most significant (the upper) w−r bits” of
xk and xlk+1 states for “the least significant (the lower) r bits” of xk+1, therefore,

for the row vector x =
(

x(w), x(w−1), . . . , x(1)
)

we get

xu =
(

x(w), x(w−1), . . . , x(r+1)
)

, xl =
(

x(r), x(r−1), . . . , x(1)
)

.

The constant r is the parameter of the generator. The operator
(

xuk |xlk+1

)

in

(1.18) is the concatenation of the vectors xuk and xlk+1, so

(

xuk |xlk+1

)

=
(

x
(w)
k , x

(w−1)
k , . . . , x

(r+1)
k , x

(r)
k+1, x

(r−1)
k+1 , . . . , x

(1)
k+1

)

.

In the next step of the algorithm, the matrix A of the form

A =















0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

0 0 0 . . . 1
aw aw−1 aw−2 . . . a1















,

where a1, a2, . . . , aw are binary constants, is multiplied from the right by the
vector

(

xuk |xlk+1

)

. Because of the special form of A, this multiplication reduces
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to shiftright and bitwise addition modulo two, denoted by operator ⊕ in (1.18).
Then, the vector xm+k is added (also via the bitwise addition modulo two) to
the previously obtained value.

The next important step in the generator, after evaluation of the output
vector x = xn+k, is known as tempering. This transformation is done by the
following formulas

y = x⊕ (x >> u)

z = y ⊕ ((y << s) AND b)

q = z ⊕ ((z << t) AND c)

v = q ⊕ (q >> l) ,

where l, s, t, u are integers, b, c are suitable bitmasks of word size, the operator
x >> u denotes the u-bit shiftright of the vector x and, similarly, x << u
denotes the u-bit shiftleft.

Because of the previously mentioned problems with the MT algorithm, the
generator was improved by Saito & Matsumoto (2008) and it is known as SIMD-
oriented Fast Mersenne Twister (abbreviated as SFMT). SFMT is a Linear Feed-
backed Shift Register (LFSR) generator that generates a 128-bit pseudorandom
integer at one step. This algorithm has also many advantages: it is roughly twice
as fast as the Mersenne Twister, it has a better equidistribution property of v-
bit accuracy than MT, it has quicker recovery from zero-excess initial state than
MT and it supports various periods from 2607 − 1 to 2216091 − 1.
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Short introduction to probability theory and
stochastic analysis in continuous time

Piotr Nowak

The methods and results, presented in this book, require application of prob-
ability theory and stochastic analysis. Especially, continuous time stochastic
processes and theory concerning equivalent change of probability measure are
applied to the catastrophe bonds pricing approach, presented in Chapter 7. The
first section of the present chapter is an exposition of basic notions used in prob-
ability theory, including probability space, random variables, their distributions
and independence. In Section 2.2 stochastic processes in continuous time are de-
fined. Section 2.3 is devoted to Lévy processes. Its two subsections are concerned
with Wiener and Poisson processes. We also describe the space of processes in-
tegrable with respect to Wiener process and define Itô processes. In the last
section of this chapter we present some facts, connected with equivalent proba-
bility measures, in particular the Girsanov theorem, which plays an important
role in financial mathematics.

2.1 Basic notions of probability theory

2.1.1 Probability space

We denote by the symbols R, R+ and N the sets of real numbers, non-negative
real numbers and positive integers, respectively. For each subset A of a set Ω
the symbol IA denotes the function defined by the equality

IA (ω) =

{

1 for ω ∈ A
0 for ω ∈ Ac ,

where Ac = Ω \A.
At the beginning, we define the notion of a σ-field.

Definition 2.1. Let X be a non-empty set. A class X of subsets of X is called
a σ-field on X if it contains X itself and is closed under the formation of com-
plements and countable unions, i.e.,

1. X ∈ X ;
2. A ∈ X implies Ac ∈ X ;
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3. A1, A2, ... ∈ X implies A1 ∪ A2 ∪ ... ∈ X .

For a given collection K of subsets of X one can consider the σ-field generated
by K, which is the intersection of all the σ-fields on X containing K.

Definition 2.2. Let X and Y be two non-empty sets and let X and Y be σ-fields
on X and Y , respectively. The product σ-field X ⊗ Y on X × Y is the σ-field
generated by measurable rectangles A×B, where A ∈ X and B ∈ Y.

We introduce the notions of measurable space and measurable mapping.

Definition 2.3. A measurable space is a pair (X,X ) consisting of a non-empty
set X and a σ-field X on X.

Definition 2.4. Let (X,X ) and (Y,Y) be two measurable spaces. A mapping
T : X → Y is measurable X/Y if T−1 (G) ∈ X for each G ∈ Y.

The subsequent important notions are measure and measure space.

Definition 2.5. We call a set function µ : X → [0,∞] a measure and a triple
(X,X , µ) a measure space if (X,X ) is a measurable space and

(1) µ (∅) = 0;
(2) if A1, A2, ... ∈ X and Ai ∩ Aj = ∅ for i 6= j, then

µ

( ∞
⋃

i=1

Ai

)

=

∞
∑

i=1

µ (Ai) .

Definition 2.6. Let (X,X , µ) be a measure space. The measure µ : X → [0,∞]
is finite if µ (X) < ∞, infinite if µ (X) = ∞ and σ-finite if there exists a

sequence {An}∞n=1 ⊂ X , such that µ (An) <∞ for each n ∈ N and X =
∞
⋃

n=1
An.

We say that a property that holds for x ∈ X outside a set of measure 0 holds
almost everywhere (a.e., for short).

For measure spaces (X,X , µ) and (Y,Y, ν) one can define the product measure
space denoted by (X × Y,X ⊗ Y, µ⊗ ν), where µ⊗ ν is the product measure on
(X × Y,X ⊗ Y) (see (Billingsley 1995) for definition).

A random experiment is an experiment, whose outcome cannot be told in
advance. A probability space is a mathematical model of such an experiment.

Definition 2.7. A measure space (Ω,F ,P) is a probability space if P is a
measure on F such that P (Ω) = 1.

In the above definition Ω stands for all possible outcomes of the random
experiment. We say that a set A ⊂ Ω occurs if the outcome of the random
experiment happens to belong to A. The σ-field F on Ω consists of such subsets
of Ω, called events, whose occurrence is decidable and noteworthy. Finally, for
each A ∈ F the value P (A) models the chance of the occurrence of the event A.
It is called the probability that the event A occurs.
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Definition 2.8. A subset N of Ω is called negligible if there exists A ∈ F such
that N ⊂ A and P (A) = 0. A probability space (Ω,F ,P) is called complete if F
contains all negligible subsets of Ω.

From the theoretical point of view, completeness of the probability space is
often required. The next important notion to introduce is the notion of indepen-
dence.

Definition 2.9. σ-fields G1,G2, ...,Gn ⊂ F are independent if for any sequence
of events A1 ∈ G1, A2 ∈ G2, ..., An ∈ Gn

P (A1 ∩A2 ∩ ... ∩ An) = P (A1) P (A2) ...P (An) .

Definition 2.10. Events A1,A2, ...,An ∈ F are independent if for each subse-
quence Ai1 ,Ai2 , ...,Aik

P (Ai1 ∩ Ai2 ∩ ... ∩ Aik) = P (Ai1) P (Ai2) ...P (Aik) .

Let us assume that A ∈ F and P (A) = 1. Then we say that the event A
occurs almost surely (a.s., for short)

2.1.2 Random variables and their distributions

Let n ∈ N and Rn be the family of bounded rectangles of the form

(a1, b1]× · · · × (an, bn] : ai, bi ∈ R, ai < bi, i = 1, 2, ..., n.

The σ-field B(Rn) of Borel subsets of Rn is the σ-field generated by Rn (i.e., the
smallest σ-field of subsets of Rn containing Rn).

In this book we will consider random variables taking values in the measurable
space (E, E) = (Rn,B(Rn)).

Definition 2.11. A function X : Ω → E, measurable F/E, is called a random
variable (or an E-valued random variable).

Definition 2.12. A (probability) distribution of a random variable X : Ω → E
is a probability measure described by formula

µX (B) = P
(

X−1 (B)
)

= P (X ∈ B) , B ∈ E.

For each random variableX : Ω → R, apart from its probability distribution,
one can define its cumulative distribution function FX .

Definition 2.13. Let X : Ω → R be a random variable with a probability
distribution µX . The cumulative distribution function FX : R → [0, 1] of X is
described by the formula

FX (t) = P (X ≤ t) = µX ((−∞, t]) , t ∈ R.
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An important property of the cumulative distribution function (CDF, for
short) is that if two random variables have the same CDF, then they have the
same distribution.

A set S ∈ B(R) is a support of the distribution µX if µX (S) = 1.

Definition 2.14. Let X : Ω → R be a random variable. If a discrete set S =
{x1, x2, ...} is a support of µX , then X and its distribution µX are called discrete.
In this case, µX is determined by the sequence

µX(x1), µX(x2), ...

Definition 2.15. A random variable X : Ω → R and its distribution µX are
called continuous if µX has a density fX with respect to the Lebesgue measure
(i.e., a non-negative function on R, which integrates to 1 on R). Then, for each
A ∈ B(R) the following equality holds:

P (X ∈ A) = µX (A) =

∫

A

fX (x) dx.

The above introduced density function fX is determined uniquely only to
within a set of Lebesgue measure zero.

Definition 2.16. The expected value of a random variable X : Ω → R is
defined as the integral with respect to the probability measure P

E
PX =

∫

Ω

XdP,

if such an integral exists, i.e. EP |X | <∞.

For the definition of the integral with respect to a probability measure
we refer the reader to (Billingsley 1995) or (Jakubowski & Sztencel 2000). If
E
P |X | <∞, then we say that the random variable X is integrable.

Definition 2.17. We identify the integrable random variables that differ only on
a set of probability 0 and denote their space by L1 (Ω,F ,P). More generally, for
each k ∈ N we denote by Lk (Ω,F ,P) the spaces of random variables X : Ω → R

identified as above, such that

E
P |X |k =

∫

Ω

|X |kdP <∞.

For X ∈ Lk (Ω,F ,P), the expected values E
P |X |k and E

PXk are called
absolute k-th moment and k-th moment of X , respectively. Moreover, variance
of each random variable X ∈ L2 (Ω,F ,P) is given by

VarPX = E
P
(

X − E
PX

)2

= E
PX2 −

(

E
PX

)2

.

For a random variable X ∈ L1 (Ω,F ,P) and a σ-field G ⊂ F one can define
the conditional expected value.
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Definition 2.18. Let X : Ω → R be an integrable random variable on (Ω,F ,P)
and let G ⊂ F be a σ-field. The conditional expected value of the random variable
X with respect to the σ-field G is a random variable E

P (X |G), satisfying the
following assumptions:

1. E
P (X |G) is G-measurable.

2. ∀A ∈ G
∫

A
XdP =

∫

A
E
P (X |G) dP .

A very important notion is the notion of characteristic function.

Definition 2.19. For a probability measure µ on (R,B(R)) the characteristic
function ϕ is defined by the equality:

ϕ (t) =

∫

R

eitxµ (dx) =

∫

R

cos (tx)µ (dx) + i

∫

R

sin (tx)µ (dx)

for t ∈ R.

Definition 2.20. The characteristic function of a random variable X : Ω → R

having distribution µX has the form:

ϕX (t) = E
P eitX =

∫

R

eitxµX (dx)

for t ∈ R.

Similarly as the cumulative distribution function FX , the characteristic func-
tion ϕX uniquely determines the distribution of X .

For n > 1 the random variable X = (X1, X2, ..., Xn) : Ω → Rn is also called
an n-dimensional random variable or a random vector. The (joint) distribution of
the random vector X : Ω → Rn is uniquely determined by the (joint) cumulative
distribution function FX : Rn → [0, 1], defined for any t = (t1, t2, ..., tn) ∈ Rn

by the equality

FX (t) = P (X1 ≤ t1, X2 ≤ t2, ..., Xn ≤ tn)

= µX ((−∞, t1]× (−∞, t2]× ...× (−∞, tn]) .

Similarly as in the one-dimensional case, the distribution µX of X may be dis-
crete (i.e., have a countable support) or continuous with a non-negative density
function fX : Rn → R with respect to n-dimensional Lebesgue measure, i.e.

P (X ∈ A) = µX (A) =

∫

A

fX (x) dx, A ∈ B(Rn).

Definition 2.21. The expected value of a random vector X = (X1, X2, ..., Xn) :
Ω → Rn is defined by the equality

E
PX =

(

E
PX1,E

PX2, ...,E
PXn

)

,

under the condition that EP |Xi| <∞ for each 1 ≤ i ≤ n.
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For a finite or infinite collection (Xi)i∈I of random vectors the σ-field
σ (Xi, i ∈ I) generated by (Xi)i∈I is the smallest σ-field with respect to which
each of the vectors is measurable.

Definition 2.22. Random vectors X1, X2, ..., Xk are independent if the σ-fields
σ (X1) , σ (X2) , ..., σ (Xk), which they generate, are independent. An infinite
collection of random vectors is independent if each of its finite subcollections is.

If random variables X1, X2, ..., Xk are independent and integrable, then also
X1X2...Xk is integrable and

E
P (X1X2...Xk) = E

PX1 E
PX2...E

PXk.

Moreover, variances add for sums of independent random variables belonging to
L2 (Ω,F ,P) (see, e.g., (Billingsley 1995)).

Further basic notions and facts from probability theory, including conditional
distributions can be found in (Billingsley 1995) and (Jakubowski & Sztencel
2000). To shorten notation, in cases where the probability measure is known
from the context, we will write E and Var in place of the symbols EP and VarP,
respectively.

2.1.3 Examples of one-dimensional distributions

We focus on several examples of known discrete and continuous one-dimensional
distributions. Some other probability distributions will be defined in the subse-
quent chapters.

Bernoulli distribution

Bernoulli distribution with parameter p, 0 < p < 1, has a simple discrete form.
For a random variable X having this distribution

P (X = 0) = 1− p, P (X = 1) = p.

Moreover,
EX = p, VarX = p (1− p) .

Binomial distribution

Binomial distribution (denoted Bin (n, p)) is a discrete distribution with two
parameters: n ∈ N and p ∈ (0, 1). For a random variableX with this distribution
(we use the notation X ∼ Bin (n, p)) µX has support S of the form

S = {0, 1, 2, ..., n}
and for each i ∈ S

P (X = i) =

(

n

i

)

pi (1− p)
n−i

.

Furthermore, EX = np and VarX = np(1− p).
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Poisson distribution

Poisson distribution with parameter λ > 0 is a distribution with the infinite
support S = {0, 1, 2, ...}. For a random variable X having Poisson distribution
with parameter λ (we also use notation X ∼ Poiss (λ)), there is

P (X = i) = e−λλ
i

i!
.

Moreover, EX = VarX = λ.

Uniform distribution

Uniform distribution U [a, b], a < b, is a continuous distribution with density
function described by

f (x) =

{

1
b−a for x ∈ [a, b] ;

0 for x /∈ [a, b]
.

For a random variable X with distribution U [a, b] (further on, we use notation

X ∼ U [a, b]), EX = a+b
2 , VarX = (b−a)2

12 .

Exponential distribution

Exponential distribution Exp (λ), λ > 0, is a continuous distribution with density
function of the form

f (x) =

{

λe−λx for x ≥ 0;
0 for x < 0.

If a random variable X has distribution Exp (λ) (we will also write X ∼ Exp (λ)
for short), then EX = 1

λ , VarX = 1
λ2 .

Normal distribution

Normal distribution N(µ, σ2) is a continuous distribution with density function

f (x) =
1

σ
√
2π
e−(x−µ)2/2σ2

.

If X ∼ N(µ, σ2) (i.e., X is normally distributed with parameters µ ∈ R, σ2,
where σ > 0), then EX = µ and VarX = σ2. If X ∼ N(0, 1), then we say that
X is a random variable from the standard normal distribution.
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2.2 Basic notions of stochastic analysis in continuous time

Continuous time stochastic processes describe random phenomena that change
as time continuously progresses. They are used, inter alia, in economics, finance,
mathematical biology and physics.

In this chapter we assume that the time set under consideration, T , has the
form R+ = [0,∞) or [0, T ′] for T ′ < ∞. At the beginning we define a filtered
probability space.

Definition 2.23. A filtered probability space (also called a stochastic basis) is
a probability space (Ω,F ,P) equipped with a filtration F = (Ft)t∈T , which is an
increasing family of sub-σ-fields of F . In other words, for any s ≤ t, Fs ⊂ Ft.
We denote the filtered probability space by (Ω,F ,F,P). We say that (Ω,F ,F,P)
satisfies the usual conditions if, additionally,

i) the σ-field F is P-complete,
ii) F0 contains all the P-null sets of F ,
iii) the filtration F is right-continuous, i.e., Ft+ = Ft for each t ∈ T , where

Ft+ =
⋂

s>t

Fs.

We can now define a stochastic process and related notions.

Definition 2.24. Let (Ω,F ,P) be a probability space. A stochastic process X =
(Xt)t∈T on (Ω,F ,P) is a collection of (R-valued) random variables on (Ω,F ,P).
X is called F-adapted (or adapted to the filtration F = (Ft)t∈T or, for short,
adapted) if for each t ∈ T Xt is Ft-measurable. The functions t 7−→ Xt (ω),
where ω ∈ Ω, are called sample paths (or trajectories) of X. The stochastic
process X is called càdlàg 1 if it has a.s. sample paths, which are right-continuous
with left limits. It is called càglàd1, if its sample paths are left-continuous with
right limits.

Remark 2.25. Any stochastic process X is adapted to its natural filtration
F

X =
(

FX
t

)

t∈T
, where for each t ∈ T the σ-field FX

t has the form

FX
t = σ (Xs, s ≤ t) .

We will assume that the processes considered in this section are defined on
(Ω,F ,P) and the stochastic basis (Ω,F ,F,P) satisfies the usual conditions.

For two stochastic processes the notions of indistinguishability and modifi-
cation are defined.

Definition 2.26. Two stochastic processes X and Y are modifications if for
each t ∈ T Xt = Yt a.s. X and Y are indistinguishable if the sample paths
t 7−→ Xt (ω) and t 7−→ Yt (ω) are equal a.s.

1 From the French expressions, respectively, “continue à droite, limité à gauche” and
“continue à gauche, limité à droite”.
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It is clear that if the processes X and Y are indistinguishable, then Y is
a modification of X . The converse implication holds for right-continuous (in
particular, for càdlàg) processes, see (Jacod & Shiryaev 2003)).

Theorem 2.27. Let X and Y be stochastic processes with right-continuous sam-
ple paths. If Y is a modification of X, then they are indistinguishable.

The notion of stopping time plays very important role in stochastic analysis.

Definition 2.28. A random variable τ : Ω → T ∪ {∞} is a stopping time with
respect to filtration F = (Ft)t∈T if {ω ∈ Ω : τ (ω) ≤ t} ∈ Ft for each t ∈ T .

Stochastic processes can be also treated as mappings on Ω×T . Optional and
predictable σ-fields on Ω ×T and stochastic processes connected with them are
used in many financial applications.

Definition 2.29. A σ-field O on Ω × T is called optional if it is generated by
all the càdlàg adapted processes (understood in the way we mentioned above). A
σ-field P on Ω × T is called predictable, if it is generated by all the càg (i.e.,
left-continuous) adapted processes.

Definition 2.30. A stochastic process X is optional (predictable) if the process,
regarded as a function of (t, ω), is O-measurable (resp. P-measurable).

An important class of stochastic processes is the class of martingales.

Definition 2.31. A stochastic process (Xt)t∈T , which is integrable (i.e., Xt ∈
L1 (Ω,F ,P) for t ∈ T ) and adapted to filtration F = (Ft)t∈T is a martingale
with respect to F, if for any 0 ≤ s < t, t ∈ T , E (Xt|Fs) = Xs.

Stochastic processes that are widely used are semimartingales. They form a
broad class of processes containing local martingales and processes of bounded
variation. A detailed exposition concerning local martingales, processes of boun-
ded variation, semimartingales and their theory can be found in the book of
Jacod & Shiryaev (2003).

2.3 Lévy processes

The term ”Lévy process” honours the French mathematician Paul Lévy, who
played a very important role in the study of processes with stationary indepen-
dent increments. Lévy processes are important examples of Markov processes
and semimartingales. Wiener process (Brownian motion) and Poisson process
are two commonly known processes belonging to this class.

Let us assume that a filtered probability space
(

Ω,F ,F = (Ft)t∈T ,P
)

satis-
fies the usual conditions.

Definition 2.32. A continuous time F-adapted stochastic process X, defined
on the probability space (Ω,F ,P), is called a Lévy process (with respect to the
filtration F) if it satisfies the following assumptions:
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i) X0 = 0 a.s.
ii) (increments independent of the past) For any 0 ≤ s < t, t ∈ T , Xt −Xs is

independent of Fs.
iii) (stationary increments) The distribution of Xt − Xs for any 0 ≤ s < t,

t ∈ T , depends only on the difference t− s.
iv) (stochastic continuity) For any t ∈ T and ε > 0

lim
s→t

P (|Xs −Xt| > ε) = 0.

(v) (regularity of sample paths) The sample paths are almost surely càdlàg.

As it was noted by Protter (2005), for the definition of a Lévy process it is
not necessary to involve filtration. In such a case we obtain the definition of an
intrinsic Lévy process presented below, which is a Lévy process with respect to
its minimal (completed) filtration.

Definition 2.33. A continuous time stochastic process X defined on the prob-
ability space (Ω,F ,P) is called an intrinsic Lévy process if it fulfils the following
assumptions:

i) X0 = 0 a.s.
ii) (independent increments) For any t0 < t1 < ... < tn, t0, t1, ..., tn ∈ T

Xt1 −Xt0 , Xt2 −Xt1 , ..., Xtn −Xtn−1

are independent.
iii) (stationary increments) The distribution of Xt − Xs for any 0 ≤ s < t

depends only on the difference t− s.
iv) (stochastic continuity) For any t ∈ T and ε > 0

lim
s→t

P (|Xs −Xt| > ε) = 0.

(v) (regularity of sample paths) The sample paths are almost surely càdlàg.

The following theorem was proved in (Protter 2005).

Theorem 2.34. Each adapted stochastic process satisfying conditions i)-iv) has
a unique modification, which is a càdlàg Lévy process.

Moreover, Protter (2005) proved the following useful theorem concerning
Lévy processes and filtrations.

Theorem 2.35. Let X be a Lévy process with natural filtration F
0 =

(

F0
t

)

t∈T
and let N be the set of the P-null sets of F . Then the filtration G

0 = (Gt)t∈T ,

where Gt = σ
(

F0
t ∪ N

)

, t ∈ T , is right-continuous.

Jacod–Grigelionis characteristic triple (B,C, ν) for semimartingales is widely
applied in stochastic analysis. The semimartingale characteristics (also called
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local characteristics) have, in addition, a great importance for mathematical fi-
nance. For the general definition of the stochastic processes B, C and ν for real-
valued semimartingales the interested reader is referred, e.g., to (Shiryaev 1999,
Jacod & Shiryaev 2003), and to (Nowak 2002), where Jacod–Grigelionis char-
acteristics for quasi-left continuous Hilbert space-valued semimartingales were
introduced and their existence was proved.

For a Lévy process X , the local characteristics have a simple form. Let us
assume that a truncation function hd is defined by the formula hd (x) = xI|x|≤d

for a constant d > 0. Let us denote by M(R) the space of non-negative measures
on R. For X , the characteristics (B,C, ν) are described by the following version
of the Lévy–Khintchine formula

ϕt(θ) = E
P eiθXt = exp

{

iθBt −
1

2
θ2Ct +

∫

R

(

eiθx − 1− iθhd (x)
)

νt(dx)

}

,

where ϕt(θ) is the characteristic function of Xt,

Bt : [0, T ] → R, Bt = bt, (2.1)

Ct : [0, T ] → R, Ct = ct, (2.2)

νt : [0, T ] → M(R), νt (dx) = ν (dx) t, (2.3)

ν ({0}) = 0,

∫

R

(

|x|2 ∧ 1
)

ν (dx) <∞ ,

b ∈ R, c = σ2 ≥ 0 and ν ∈ M(R). The triple
(

b, σ2, ν
)

is often called the
characteristic triple of a Lévy processX (or Lévy characteristics) and it uniquely
represents (B,C, ν). In particular, ν is called Lévy measure of a Lévy process
X . Moreover, only the constant b depends on the value of the parameter d,
describing the truncation function hd.

Using measure ν one can distinguish between two types of Lévy processes,
finitely active and infinitely active. For the processes of the first type ν (R) <∞,
while the equality ν (R) = ∞ characterizes the processes of the second type.

We focus our attention on two important examples of Lévy processes, i.e. the
Wiener process and the Poisson process, together with certain notions related
to them.

2.3.1 The Wiener process

Let (Ω,F ,F,P) be a stochastic basis. Let T = T ′ for T = [0, T ′] and T = ∞ in

the case of T = [0,∞). We denote by F∞ the σ-field F∞ = σ

(

⋃

t∈[0,∞)

Ft

)

.

Definition 2.36. A standard Wiener process (or a Wiener process, for short)
on (Ω,F ,P) is a Lévy process (with respect to F) W = (Wt)t∈T such that

i) W is almost surely continuous.
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ii) For each t ∈ T Wt is normally distributed with mean 0 and variance t.

A Wiener process, also called a Brownian motion, is a continuous martingale.
The sample paths of W are almost surely nowhere differentiable and they have
infinite variation on any interval. The theory of Wiener processes is presented,
e.g., in (Revuz & Yor 1999).

For a standard Wiener process the Itô integral and Itô processes are defined.

Definition 2.37. A stochastic process X = (Xt)t∈T on (Ω,F ,P) is called mea-
surable if it is measurable with respect to the product σ-field B(T )⊗ FT , where
B(T ) is the Borel σ-field on T .

We denote by J1 the class of measurable and F-adapted processes X such
that

P

(

∫ T

0

X2
t dt <∞

)

= 1.

Stochastic processes from the class J1 are integrable with respect to W and for
each X ∈ J1 the integral

∫ T

0

XtdWt

is called Itô integral. The Itô integral
(

∫ t

0 XsdWs

)

t∈T
for X ∈ J1 is a local

martingale with respect to F (which has a continuous modification) and is a
linear mapping.

Let us assume that two F-adapted and measurable processes Y = (Yt)t∈T
and Z = (Zt)t∈T fulfil the following two conditions:

P

(

∫ T

0

|Yt| dt <∞
)

= 1

and

P

(

∫ T

0

Z2
t dt <∞

)

= 1.

Then the following process is well defined:

Xt = X0 +

∫ t

0

Ysds+

∫ t

0

ZsdWs, t ∈ T . (2.4)

One can write (2.4) in the differential form:

dXt = Ytdt+ ZtdWt.

We call a process X = (Xt)t∈T of the above form an Itô processes.
More details concerning Itô integrals, Itô processes and their properties can

be found, e.g., in (Shiryaev 1999). A general approach to stochastic integration
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with respect to semimartingales is presented in (Jacod & Shiryaev 2003). Sim-
ilarly as in the case of Itô integrals, it is possible to describe analytically the
space of processes, which are integrable with respect to a semimartingale (see
(Kwapień & Woyczyński 1991, Nowak 2003)).

2.3.2 The Poisson process and the compound Poisson process

The homogeneous Poisson process is the next important example of a (finitely
active) Lévy process.

Let (Ω,F ,F,P) be a stochastic basis.

Definition 2.38. A Poisson process N = (Nt)t∈T with a positive constant
intensity λ on (Ω,F ,P) is a Lévy process (with respect to F) such that for each
t ∈ T the random variable Nt is Poisson distributed with mean λt.

The Poisson process with a positive constant intensity λ is also called ho-
mogeneous Poisson process (HPP). If λ = 1, the process N is called standard
homogeneous Poisson process.

We denote by (Tn)n∈N the sequence of arrival times (i.e., jump times) of N ,
where

Tn = inf {t ∈ T : Nt ≥ n} = inf {t ∈ T : Nt = n} .

Let L1, L2, ... be a sequence of independent exponentially distributed random
variables with a constant parameter λ > 0.
Let (Sn)n∈N be a sequence, described for each positive integer n by the equality

Sn = L1 + L2 + ...+ Ln. (2.5)

Finally, let for t ∈ T
N (t) = # {n ≥ 1 : Sn ≤ t} . (2.6)

We present a theorem proved in (Mikosch 2009).

Theorem 2.39. The following statements hold:

1. The process (N (t))t∈T , given by formula (2.6), is a homogeneous Poisson
process with intensity λ.

2. Let N = (Nt)t∈T be a homogeneous Poisson process with intensity λ > 0
and arrival times 0 ≤ S1 ≤ S2 ≤ .... Then N has representation (2.6) and
(Sn)n∈N has representation (2.5) for an iid (exponentially distributed with
parameter λ) sequence (Ln)n∈N.

Definition 2.40. Let N = (Nt)t∈T be a Poisson process on (Ω,F ,P) with a
constant intensity λ > 0. Let {Ui}∞i=1 be a sequence of iid random variables
independent of N , having a distribution ρ. A compound Poisson process on

(Ω,F ,P) is a stochastic process Ñ =
(

Ñt

)

t∈T
, described by the formula
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Ñt =

Nt
∑

i=0

Ui, t ∈ T ,

where we use the convention
1
∑

i=0

Ui = 0.

From the fact thatN is a Poisson process, it easily follows that the compound
process Ñ is a Lévy process.

Poisson processes have their generalizations, called non-homogeneous Poisson
processes (NHPP), which are stochastic processes with independent increments.

Let Λ : T → [0,∞) be a right-continuous non-decreasing function with
Λ (0) = 0.

Definition 2.41. A càdlàg F-adapted stochastic process N(Λ) = (N(Λ)t)t∈T
with independent increments on (Ω,F ,P) is called a non-homogeneous Poisson
process with the mean value function Λ if the following conditions are fulfilled:

1. N0 = 0 a.s.,
2. for each 0 ≤ s < t, t ∈ T , we have Nt −Ns ∼ Poiss(Λ(t)− Λ(s)).

We say that N(Λ) has the intensity function λ : T → [0,∞) (also called the
rate function) if Λ is absolutely continuous and has the representation

Λ(s, t) = Λ(t)− Λ(s) =

∫ t

s

λ(u)du

for each 0 ≤ s < t, t ∈ T . The intensity function λ is measurable and non-
negative.

It is worth noting that in many applications also generalizations of the com-
pound Poisson processes with jumps (arrival times) modelled by NHPP are con-
sidered.

2.4 Equivalent change of probability measure and the
Girsanov theorem

The notion of an equivalent probability measure plays a very important role in
mathematical finance.

Definition 2.42. A probability measure P is equivalent to a probability measure
Q on a measurable space (Ω,F) if for each A ∈ F P (A) = 0 if and only if
Q(A) = 0.

Similarly as in Subsection 2.3.1, we assume that (Ω,F ,F,P) is a stochastic
basis, T = T ′ for T = [0, T ′] and T = ∞ in the case of T = [0,∞). Moreover,
F∞ = σ(

⋃

t∈[0,∞)

Ft).
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Let W = (Wt)t∈T be a Wiener process on (Ω,F ,P) with respect to F.
We present theorems and facts concerning the equivalent change of probabil-

ity measure, basing on (Jakubowski, Palczewski, Rutkowski & Stettner 2004).

Theorem 2.43. Assume that two probability measures P and Q are equiva-
lent on (Ω,FT ). Then there exists the Radon-Nikodym derivative g = dQ

dP , i.e.
Q(A) =

∫

A
gdP for A ∈ FT and g is an FT -measurable positive random vari-

able.

Let us denote by F
W=

(

FW
t

)

t∈T the natural filtration of the Wiener process

W = (Wt)t∈T .

Theorem 2.44. If P is equivalent to Q on
(

Ω,FW
T

)

, then there exists a stochas-

tic process γ ∈ J1, such that dQ
dP = ET , where

Et = exp

(∫ t

0

γsdWs −
1

2

∫ t

0

γ2sds

)

for each t ∈ T .

In turn, let us assume that

dQ

dP
= ET

for a stochastic process γ ∈ J1. Then, Q is equivalent to P if and only if EP ET = 1
(i.e., E is a martingale).

A sufficient condition for the equality E
P ET = 1 is provided by the Novikov

criterion, given below.

Corollary 2.45. If process γ satisfies the inequality

E
P exp

(

1

2

∫ T

0

γ2sds

)

<∞,

then E
P ET = 1.

The following version of the Girsanov theorem (see (Jacod & Shiryaev 2003)
for its generalization and proof) describes the behaviour of the Wiener process
W after an equivalent change of probability measure.

Theorem 2.46. Let Q be a probability measure equivalent to P on (Ω,FT ),
such that

dQ

dP
= ET

for a stochastic process γ ∈ J1. If W = (Wt)t∈T is a Wiener process with respect
to P and filtration F, then

W̃t =Wt −
∫ t

0

γsds, t ∈ T ,

is a Wiener process with respect to Q and filtration F.
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Foundations of theory of Markov chains

Maciej Romaniuk

In this chapter we consider the most important properties and theorems, con-
cerning theory of Markov chains, which are necessary for introducing the MCMC
methods (see Chapter 6). Additional details concerning these stochastic pro-
cesses can be found in, e.g. (Brémaud 1999, Robert & Casella 2004, Doyle 2006,
Jakubowski & Sztencel 2000).

3.1 Countable state space

A stochastic process (Xi)i∈T is called a discrete-time stochastic process if T is
some subset of N. In this chapter we assume that T = {n ∈ N : n ≥ 0}.
Definition 3.1. Let (Xi)i=0 be a discrete-time stochastic process with countable
state space S. If for all k > 0 and all A ⊂ S

P (Xk ∈ A|Xk−1, . . . , X0) = P (Xk ∈ A|Xk−1) , (3.1)

whenever both sides are well-defined, this process is called a Markov chain (ab-
breviated further as MC).

Condition (3.1) is known as the Markov property. It means that the prob-
abilistic dependence of the new state Xk on the past behaviour of the whole
random sequence takes place only through the value of the preceding state Xk−1

and the complete information about previous history is therefore unnecessary.
The value x0 is referred to as the starting value (or the initial state) of

the chain. If this value is not set deterministically, but X0 ∼ πX0 for some
distribution πX0 , then such distribution is called the initial distribution.

Let s be the power of the state space S. Because in Definition 3.1 it is
assumed that S is a countable set, then the relevant Markov chain for such a
space is called countable-state MC .

Example 3.2. The simplest case of a countable-state MC is given by a sequence
of iid random variables defined on the same countable state space S. A more
sophisticated example is an MC with two states, which are denoted by {1, 2}.
The transition probabilities between these states are given by
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P(Xk = 1|Xk−1 = 1) = p11 , P(Xk = 2|Xk−1 = 1) = p12 = 1− p11 , (3.2)

P(Xk = 1|Xk−1 = 2) = p21 , P(Xk = 2|Xk−1 = 2) = p22 = 1− p21 , (3.3)

where p11, p21 ∈ [0, 1].

With this example in mind, an important definition for the theory of Markov
chains may be introduced:

Definition 3.3. We say that a Markov chain is a homogeneous Markov chain
(HMC) if the right-hand side of the Markov property (3.1) does not depend on
k. In this case, there exists a matrix

PX = (P (Xk+1 = j|Xk = i))
s
i,j=1 = (pij)

s
i,j=1 ,

which is independent of k. This matrix is a stochastic matrix, i.e. it fulfils the
conditions

pij ≥ 0 ,

s
∑

l=1

pil = 1

for all states i, j. Such matrix PX is called a transition matrix.

In the case of HMC, the transition probabilities among the states are inde-
pendent of the step k, meaning that they are independent of time. Because the
transition probabilities remain constant in time, they are explicitly described by
the entries of the transition matrix PX . From now on, all the Markov chains
considered in this chapter will be homogeneous chains.

Example 3.4. For the MC described by the transition probabilities (3.2) and
(3.3), the transition matrix is given by

PX =

(

p11 p12
p21 p22

)

.

The following theorem has an important significance for the evaluation of
random behaviour of Markov chains:

Theorem 3.5. The distribution of MC at the step k > 0 is determined by the
initial distribution πX0 of this chain and its transition matrix PX .

Proof of this theorem can be found in (Jakubowski & Sztencel 2000).
This theorem leads to the formula for the random distribution of the MC at

the step k as a vector πXk
, where

πXk
(i) = P(Xk = i) . (3.4)

From Theorem 3.5 and the Bayes’ rule, using this probability vector πXk
, we get

the equality
πT
Xk

= πT
X0

P
k
X , (3.5)

where Pk
X is the k-step transition matrix with the i, j-th term given by

pij(k) = P (Xk+m = j|Xm = i) .
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Definition 3.6. A probability distribution πX satisfying

πT
X = πT

XPX , (3.6)

is called a stationary distribution of the transition matrix PX , or (equivalently)
of the corresponding MC.

If πX is the stationary distribution, then πT
X = πT

XPm
X for all m ≥ 1. There-

fore, if the initial distribution is the same as the stationary distribution i.e.
πX0 = πX , then πXm

= πX for all steps m ≥ 1. It means that if the chain
is started from the stationary distribution, the same distribution describes the
entire behaviour of such a MC.

The following definitions concern the so called communication features of the
MC.

Definition 3.7. State b ∈ S is said to be accessible from state a ∈ S if there
exists n ∈ N such that P(Xn = b|X0 = a) > 0. States a and b are said to
communicate if a is accessible from b and b is accessible from a. Such feature is
denoted by a↔ b.

Clearly, the communication relation ↔ is an equivalence relation, because it
fulfils reflexivity, symmetry and transivity conditions. Therefore, it generates a
partition of the state space S into disjoint equivalence classes, called communi-
cation classes .

Definition 3.8. If for the given MC there exists only one communication class,
then this chain and its transition matrix are said to be irreducible.

Example 3.9. Let us consider the chain with states {1, 2, 3}, determined by the
transition matrix

PX =





0.2 0.3 0.5
0.4 0.3 0.3
0 0 1



 . (3.7)

In this case, the states {1, 2} communicate. The state {3} is accessible from the
states {1, 2}, but {1, 2} are not accessible from {3}, therefore, this chain is not
irreducible.

There is yet another classification of the states of MC, which is based on
their periodicity feature, that should be considered.

Definition 3.10. The period o(i) of the state i ∈ S is given by

o(i) = gcd {n ≥ 1 : pii(n) > 0} , (3.8)

with the convention o(i) = +∞ if there is no n ≥ 1 with pii(n) > 0. If o(i) = 1,
then the state i is called aperiodic.

Example 3.11. Let us consider a “jumping” two-state MC given by the transi-
tion matrix
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PX =

(

0 1
1 0

)

.

As it can be easily seen, the period of each of the states of this chain is equal to
2. For example

p11(1) = 0, p11(2) = 1, p11(3) = 0, p11(4) = 1, . . . ,

which leads to o(1) = 2.

Theorem 3.12. If states a and b communicate, they have the same period. If
MC is irreducible, then all the states of this chain have the same period or they
are aperiodic.

Proof of this theorem may be found in, e.g. (Brémaud 1999).
Therefore, we can speak of the period (or aperiodicity) of a communication

class, or of the whole chain if this chain is irreducible.
Another classification of states is based on the probability of returns to a

specified state.

Definition 3.13. Let a ∈ X . The state a is called recurrent if

P

( ∞
⋃

k=1

{Xk = a}
∣

∣

∣

∣

∣

X0 = a

)

= 1 , (3.9)

and transient if

P

( ∞
⋃

k=1

{Xk = a}
∣

∣

∣

∣

∣

X0 = a

)

< 1 . (3.10)

It should be noted that every state in a Markov chain must be either transient
or recurrent. If the state a is recurrent, it means that starting from a, the chain
will almost surely visit this state an infinite number of times. These features can
be also stated using an equivalent notation. Let

ηa =

∞
∑

k=0

11(Xk = a) (3.11)

be a function, which counts the number of visits in the state a. Then we have
the following theorem:

Theorem 3.14. The state a ∈ S is recurrent if and only if

P (ηa = ∞|X0 = a) = 1 ⇔ E (ηa|X0 = a) = ∞ . (3.12)

The state a ∈ X is transient if and only if

P (ηa <∞|X0 = a) = 1 ⇔ P (ηa = ∞|X0 = a) = 0 ⇔ E (ηa|X0 = a) <∞ .

Proof of this theorem may be found in, e.g. (Jakubowski & Sztencel 2000).
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Theorem 3.15. If MC is irreducible, then all of the states have the same type
– if one of them is recurrent, all of the states are also recurrent, if one of them
is transient, the rest of them is also transient.

Proof of this theorem may be found in, e.g. (Jakubowski & Sztencel 2000).
Taking into account Theorems 3.12 and 3.15, the terms “aperiodic” and “re-

current” may be used as a description of the whole Markov chain if such chain
is irreducible.

3.2 Uncountable state space

The definitions and theorems considered in Section 3.1 for the case of the count-
able state space S will be discussed further for uncountable (continuous) state
space setting. Some important differences between these two instances will be
also highlighted.

Definition 3.16. Let (Xi)i=0 = (X0 = x0, X1, . . . , Xn, . . .) be a discrete-time
stochastic process, where the state space S is some subset of Rp for some given
p ∈ N. If for all k > 0 and all A ∈ B (S)

P (Xk ∈ A|Xk−1, . . . , X0) = P (Xk ∈ A|Xk−1) ,

whenever both sides are well-defined, this process is called a Markov chain (MC).

Because in Definition 3.16 of the Markov chain the state space S is some
uncountable set, then for simplicity we say that such Markov chain is an
uncountable-state MC .

Instead of the transition matrix, in the case of the continuous state space S
a transition kernel is considered.

Definition 3.17. A transition kernel is a function KX : S×B(S)×N → R such
that

1. for all x ∈ S, KX(x, ., .) is probability measure,
2. for all A ∈ B(S), KX(.,A, .) is measurable.

The transition kernel KX(x, y, k) may be identified with the set of densities
describing distributions for the transitions between the state x and the state y
at the step k. Then, we can define the relation between the transition kernel
KX(., ., .) and the transition probability for the considered MC as

P(Xk+1 ∈ B|Xk = x) =

∫

B
KX(x, y, k) dy (3.13)

for all B ∈ B(S).
Definition 3.18. The Markov Chain (Xi)i=0 is called homogeneous (or time
homogeneous) if the transition kernel does not depend on the step k. In this
case the transition kernel KX(x, y, k) is simply denoted by KX(x, y), where KX :
S × B(S) → R.
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From now on only homogeneous MCs (HMCs) will be considered.

Example 3.19 (Wiener process with discrete time). A Wiener process with
discrete time (Wi)i=0 = (W0 = 0,W1, . . . ,Wn, . . .) is an example of a MC with
uncountable state space. In such a case, for all x, y ∈ R the transition kernel is
given by

KX(x, y) = fN(x,1)(y) , (3.14)

where fN(x,1)(y) is the density of N(x, 1). Then from (3.13) we obtain the tran-
sition probability

P(Xk+1 ∈ B|Xk = x) =

∫

B
fN(x,1)(y)dy .

In the case of the discrete state space, MC is irreducible if all of its states
communicate. In the uncountable state space setting, it is necessary to introduce
an auxiliary measure ρ in order to correctly define the notion of irreducibility.

Definition 3.20. A Markov chain (Xi)i=0 with the transition kernel KX(x, y)
is ρ-irreducible if there exists a measure ρ such that for every A ∈ B(S) with
ρ(A) > 0 there exists an n such that

Kn
X(x0,A) = P(Xn ∈ A|x0) > 0 (3.15)

for all x0 ∈ S. The chain is strongly ρ-irreducible if n = 1 for all measurable
sets A.

It should be noted that a specific form of the measure ρ in Definition 3.20 of
ρ-irreducibility plays no crucial role – the irreducibility is an intrinsic property of
the considered MC and does not rely on the choice of this measure (see (Robert
& Casella 2004) for additional details).

Example 3.21. The chain considered in Example 3.19 is irreducible.

Definition 3.22. A σ-finite measure πX is invariant for the transition kernel
KX(., .) and the associated MC, if

πX(A) =

∫

A

∫

S
KX(x, y) dπX(x) dy (3.16)

for all A ∈ B(S). If this measure πX is a probability measure, then such distri-
bution is called stationary distribution. When there exists a stationary measure
for a ρ-irreducible MC, such chain is positive.

In order to properly define the periodicity in the case of the continuous state
space S, it is necessary to introduce an auxiliary definition of a small set .

Definition 3.23. A set C is small if there exists m ∈ N and a measure νm such
that

P(Xm ∈ A|X0 = x) ≥ νm(A) > 0 (3.17)

for all x ∈ C and A ∈ B(S).
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The condition (3.17) in the above definition means that for the small set C
there exists some fixed number of steps m and the measure νm, for which the
probability of transition between any state x ∈ C and the event A has some
lower limit given by νm > 0. It should be noted that this value m is independent
of the selected set A. The small sets are a common feature of Markov chains. For
example, if MC is irreducible, then the state space S may be decomposed into a
denumerable partition of small sets, as it is discussed in (Robert & Casella 2004).

Definition 3.24. A ρ-irreducible MC has a cycle of length d if there exists a
small set C, M ∈ N and a probability distribution νM such that d is gcd of

{m ≥ 1 : ∃ δm > 0 such that C is small for νm ≥ δmνM} . (3.18)

It should be noted that the value d in the above definition is independent of
the small set C and it intrinsically characterizes the considered Markov chain.
Then, this leads to the following definition:

Definition 3.25. The period of MC is the largest integer d satisfying Definition
3.24. If d = 1 then MC is aperiodic.

Let A ∈ B(S). Then, in an analogy to the function described by the formula
(3.11), let ηA be

ηA =

∞
∑

k=0

11(Xk ∈ A) ,

i.e. ηA is the function counting the number of visits in the set A. The notions of
transience and recurrence are more complicated in the case of the uncountable
state space than in the discrete setting, discussed in Section 3.1.

Definition 3.26. A set A is called recurrent if

ExηA = E (ηA|X0 = x) = ∞ (3.19)

for every x ∈ A. The set A is uniformly transient if there exists a constant M
such that

ExηA < M

for every x ∈ A. This set is transient if there exists a countable collection of
uniformly transient sets Bi such that

A =
⋃

i

Bi . (3.20)

A Markov chain is recurrent if this chain is ρ-irreducible and for every A ∈ B(S)
such that ρ(A) > 0, this set A is recurrent. The chain is transient if it is ρ-
irreducible and if S is transient.

Theorem 3.27. A ρ-irreducible MC is either recurrent or transient.

This theorem is proved in (Robert & Casella 2004).
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Theorem 3.28. A ρ-irreducible MC is recurrent if there exists a small set C
such that ρ(C) > 0 and

Px

(

inf
k
{Xk ∈ C} <∞

)

= P

(

inf
k
{Xk ∈ C} <∞

∣

∣

∣

∣

X0 = x

)

= 1 , (3.21)

for every x ∈ C.

This theorem is proved in (Robert & Casella 2004).
A more important property in the application of MCMC methods for the

case of the continuous state space is known as Harris recurrence:

Definition 3.29. A set A is Harris recurrent if

P(ηA = ∞|X0 = x) = 1 (3.22)

for all x ∈ A. The chain is Harris recurrent if there exists a measure ρ such that
MC is ρ-irreducible and for every set A, such that ρ(A) > 0, the set A is Harris
recurrent.

Theorem 3.30. If for every A ∈ B(X )

Px

(

inf
k
{Xk ∈ A} <∞

)

= 1 (3.23)

for every x ∈ A, then Px (ηA = ∞) = 1 for all x ∈ S and this chain is Harris
recurrent.

This theorem is proved in (Robert & Casella 2004).
There is an important difference between recurrence and Harris recurrence of

MC for the uncountable state space. In the case of recurrence, an infinite average
number of visits only for a small set is required (see Theorem 3.28). But in the
case of Harris recurrence, this condition is related to infinite number of visits for
every path of MC, as it can be seen from Definition 3.29 and Theorem 3.30.

3.3 Ergodicity theorems

When applying Markov Chain Monte Carlo methods we are interested in condi-
tions which guarantee that the empirical average

1

n

n
∑

i=1

h(Xi) ,

where the generated sequence (Xi)i=0 forms a Markov chain, converges to the
relevant expected value in a similar way as in the iid case, i.e. for the Monte
Carlo methods described in Section 5.2.3.

The following theorems are related to this issue:
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Theorem 3.31 (Countable state space). Let (Xi)i=0 be an irreducible, recurrent
countable-state MC with the stationary distribution πX , and let h : S → R be
such that

EπX
|h(X)| =

∑

x∈S
|h(x)|πX(x) <∞ .

Then for any initial distribution πX0

1

n

n
∑

k=1

h(Xk)
a.s.−−−−→

n→∞

∑

x∈S
h(x)πX(x) .

Proof of this theorem can be found in (Jakubowski & Sztencel 2000).

Theorem 3.32 (Uncountable state space). Let (Xi)i=0 be a positive, ρ-irre-
ducible, Harris recurrent uncountable-state MC with the stationary distribution
πX , and let h : S → R be such that

EπX
|h(X)| =

∫

S
|h(x)|dπX(x) <∞ .

Then for any initial distribution πX0

1

n

n
∑

k=1

h(Xk)
a.s.−−−−→

n→∞

∫

S
h(x) dπX(x) .

If an MC fulfils the assumptions required in the above theorems, then such
chain is called ergodic MC . Therefore the outcomes mentioned are known as
ergodicity theorems. A more detailed discussion and the proofs can be found in
(Robert & Casella 2004).

Apart from the convergence of the mean to the expected value, which is
guaranteed by the ergodicity theorems, the distance between the stationary dis-
tribution and the distribution of MC after n steps is measured. In order to do
this, the total variation norm in the form of

‖µ1 − µ2‖TV = sup
A

|µ1(A)− µ2(A)|

is sometimes applied, where supremum is taken for the considered probability
measures µ1 and µ2 and for all sets A ∈ B(S). Such measure is especially im-
portant in the case of convergence analysis of MCMC output, which will be
discussed in Section 6.7 in a more detailed way.
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Generation of random variables and stochastic
processes

Maciej Romaniuk

In this chapter we discuss methods, which are necessary for transforming the
output from (pseudo)random number generator (i.e. the sequence, which may
be treated as the iid random variables from the uniform distribution) into the
random variables from various, more complex probability distributions, like nor-
mal distribution.

The relevant methods may be dived into two groups: the general methods
and the more specific, particular algorithms. The set of the general methods is
related to algorithms and theorems, which may be used for various probability
distributions. Usually only some general assumptions should be satisfied in order
be able to apply these algorithms. The second group of generation methods
consists of theorems and lemmas, which are applicable only for some, certain
distributions, e.g. beta distribution. They are related, as a rule, to very specific
transformations of random variables based on probability theory.

In this chapter we also consider some algorithms which are useful in obtaining
the output (i.e. the trajectories) of the widely used stochastic processes, like the
Poisson process.

4.1 General methods of (pseudo)random number
generation

As it was noted in Section 1.1.3, generation of (pseudo)random numbers usually
consists of two phases:

1. During the first stage, the PRNG is used to generate iid output from the
U [0, 1] distribution.

2. Then, the obtained sequence is transformed into another one which consti-
tutes a sample from some other probability distribution (e.g. normal distri-
bution).

In the case of the first step, various examples of the relevant algorithms
were discussed in Section 1.1.3. Therefore, now we assume that the function (i.e.
the algorithm) GenerateU, which generates iid random variables from U [0, 1]
distribution can be directly used in our considerations. Keeping this in mind,
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we focus only on the second phase. In this section, we describe some general
methods, which are used to obtain random variables from various probability
distributions. For additional details about the relevant algorithms, see, e.g., (Law
2007, Ripley 1987, Robert & Casella 2004, Wieczorkowski & Zieliński 1997).

4.1.1 The inversion method

One of the most important algorithms, the inversion method (also known as the
inverse-transform method) is based on the following theorem:

Theorem 4.1 (Inversion method). Let U be a random variable distributed ac-
cording to U [0, 1] distribution and FX(.) be a continuous and increasing cdf (cu-
mulative distribution function) of some probability distribution. Then, the vari-
able X, given by the formula

X = F−1
X (U) (4.1)

is a sample from FX(.) (i.e. X ∼ FX(.)).

Proof. As assumed, FX(.) is a continuous and increasing cdf. Therefore, the
inverse function F−1

X (.) exists and from (4.1) we have

P(X ≤ x) = P
(

F−1
X (U) ≤ x

)

= P(U ≤ FX(x)) = FX(x)

which concludes the proof. ⊓⊔

If we apply Theorem 4.1, then we obtain the following algorithm:

Algorithm 4.2 (Inversion method).

U = GenerateU;

X = F^(-1) (U);

return X.

In the above pseudocode F^(-1) (.) denotes F−1
X (.).

It can be easily seen that the inversion method is a rather universal ap-
proach, because if F−1

X (.) exists, the algorithm can be straightforwardly applied.
However, this method may be too slow or numerically unstable for certain distri-
butions. We now present two important examples of applications of Algorithm
4.2, which are widely used in practice and frequently mentioned in literature.

Example 4.3. Let us suppose that X ∼ U [a, b]. Then, the cdf of X is given by

F (x) =
x− a

b− a
.
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This function is continuous and increasing, therefore the inverse function exists
and is given by

F−1(y) = y(b− a) + a .

Then, by applying Theorem 4.1 we conclude that

X = U(b− a) + a

is a sample from U [a, b]. The corresponding algorithm is given by the source code

Algorithm 4.4 (Inversion method for the uniform distribution).

U = GenerateU;

X = U * (b-a) + a;

return X.

Example 4.5. Let us suppose that X ∼ Exp(λ). Then the inverse function of
cdf of the exponential distribution is given by

F−1(y) = − 1

λ
ln(1− y) , (4.2)

therefore the variable

X = − 1

λ
lnU (4.3)

is a sample from Exp(λ).

Theorem 4.1 may be generalized to the case of a non-continuous and non-
decreasing cdf. To obtain this result, we introduce the generalized definition of
the inverse function, given by the formula

F−
X (t) = inf{x : t ≤ F (x)}

meaning that F−
X (t) is a minimum value of FX(x) which is higher than or equal

to t.

Theorem 4.6 (Generalization of the inversion method). Let U be a random
variable distributed according to U [0, 1] distribution and FX(.) be a cdf of some
probability distribution. Then, the variable given by the formula

X = F−
X (U) (4.4)

is a sample from FX(.) (i.e. X ∼ FX(.)).

Proof of this theorem may be found, e.g., in (Ripley 1987).
The generalized inversion method implied by Theorem 4.6, may be easily

applied also for discrete distributions. Such distribution is considered in the
following example:
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Example 4.7. If we want to generate X according to some discrete distribution
given by the probabilities pi, where P(X = xi) = pi for i = 1, 2, . . ., then the
transformation

X = min

{

k : U ≤
k
∑

i=1

pi

}

should be applied.

Even the generalized inverse method may be not adequate for some distri-
butions, because of numerical problems with calculation of F−1

X (.) or F−
X (.). In

many cases, finding of the relevant inverse function is not a trivial problem. There
are other methods, which may be easier to implement for such distributions. We
present some of them in our further considerations and examples.

The normal distribution is an illustration of problems which may be encoun-
tered if we apply the inverse method. Obviously, there is no inverse function
given by an analytical formula for the cdf of the normal distribution. Therefore,
we should use some approximation. One of such approaches is described by the
following example:

Example 4.8. For the inverse function of the cdf of the standard normal dis-
tribution the approximation

F−1
X (t) =

{

g(t) if 10−20 < t < 0.5

−g(1− t) if 0.5 ≤ t < 1− 1020

could be used, where

g(t) =
√
−2 ln t− L(

√
−2 ln t)

M(
√
−2 ln t)

and L(.) and M(.) are some predetermined fourth degree polynomials (for addi-
tional details see (Odeh & Evans 1974)).

It should be emphasized that the inverse method has some important ad-
vantages when compare to other general methods. Firstly, as assured by the

probability theory, if U1, U2, . . .
iid∼ U [0, 1], then also X1, X2, . . . are iid ran-

dom variables. Moreover, in order to obtain one output (i.e. one value Xi) we
should generate only one variable Ui. Therefore, this method is numerically very
fast, without the unnecessary burden of additional invocation of the function
GenerateU.

4.1.2 The rejection method

The rejection method, sometimes called the acceptance method or the acceptance-
rejection method, was proposed by von Neumann (1951). We discuss three cases
of this approach.
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We start from the particular, specific case, which is simpler to introduce than
the more general approach. Let us suppose that we need a sample from variable
X described by pdf (probability density function) fX(t) which is defined only on
the interval [0, 1] and is equal to zero elsewhere. Let fX(t) ≤ M for some fixed
constant M , if t ∈ [0, 1] (compare with Figure 4.1). Then the following algorithm

Algorithm 4.9 (Rejection method – a particular case).

repeat

{

U1 = GenerateU;

U2 = GenerateU;

}

until M * U2 <= f_X (U1);

X = U1;

return X.

generates the values of random variable X from the density fX(.).

fX

M

1

Fig. 4.1. Rejection method – a particular case

This approach could be described by the following steps:

1. Generate the point (U1,MU2). This point is sampled uniformly from the
rectangle [0, 1]×[0,M ] and the two coordinates of this point are independent.

2. If the point lies below the graph of the function fX(.), then it is accepted
and its coordinate U1 becomes the output X .

3. Otherwise, the point is rejected and the algorithm returns to the step 1.

In order to consider a more general approach, let us suppose that we could
generate variable Y from some fixed pdf gY (t), called the majorizing density or
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the envelope, and
fX(t) ≤MgY (t) (4.5)

for some given constant M for every t for which fX(t) > 0 (see Figure 4.2 for
illustration of this assumption).

As in the previous case, described by Algorithm 4.9, we are interested in
sampling X from pdf fX(t). Then we could apply the following algorithm:

Algorithm 4.10 (Rejection method – the general case).

repeat

{

U = GenerateU;

Y = GenerateG;

}

until M * U * g (Y) <= f (Y);

X = Y;

return X.

fX

MgY

Fig. 4.2. Rejection method – the general case

And this approach could be described by the following steps:

1. Generate U ∼ U [0, 1].
2. Use some already available algorithm GenerateG to obtain Y ∼ gY (.).
3. These two variables establish the coordinates of the point (Y,M*U*g (Y)).

If this point lies below the graph of the function fX(.), then it is accepted
and its coordinate Y becomes the output X .

4. Otherwise, the point is rejected and the algorithm returns to the step 1.
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The general case of the rejection method is based on the following lemma:

Lemma 4.11. If the previously mentioned assumptions for the rejection method
in the general case are fulfilled, then we have

P(Y ≤ x|Y is accepted) =

∫ x

−∞ fX(t)dt
∫∞
−∞ fX(t)dt

. (4.6)

Proof. We have

P(Y ≤ x ∧ Y is accepted) =

∫ x

−∞

fX(t)

MgY (t)
gY (t) dt =

∫ x

−∞

fX(t)

M
dt .

Then

P(Y is accepted) =

∫ ∞

−∞

fX(t)

M
dt

and from the definition of the conditional probability

P(Y ≤ x|Y is accepted) =
P(Y ≤ x ∧ Y is accepted)

P(Y is accepted)
,

we obtain (4.6). ⊓⊔
From the right hand side of (4.6) we can see that the normalizing constant

of the density fX(t), which is given by

1
∫∞
−∞ fX(t)dt

is not necessarily taken into account in the rejection method. Therefore, the
described algorithm always generates X ∼ fX(.), even if fX(t) is merely a non-
negative function, and not some “real” density. The appropriate normalizing
constant is always “automatically calculated and taken into account” by the
rejection method.

The constant M plays an important role in the rejection method. Easily seen,
if the condition fX(t) ≤MgY (t) is fulfilled for someM , then for anyM1 ≥M the
condition fX(t) ≤ M1gY (t) is also satisfied. The probability that the generated
point is accepted, depends on M . For higher values of M , the probability that
the acceptance condition

MUgY (Y ) ≤ fX(Y ) (4.7)

is fulfilled for some Y , is lower, because

P(MUg(Y ) ≤ f(Y )) =

∫

Y

∫ f(y)/Mg(y)

0

g(y) du dy =
1

M
.

Then the optimal value of M is given by

M∗ = min{M : fX(.) ≤MgY (.)} .

Our considerations concerning the normalizing constant and finding the ap-
propriate value of the constant M can be illustrated by the following example:



68 Generation of random variables and stochastic processes

Example 4.12 (Normal distribution). We will sample X from the standard
normal distribution in two stages:

1. We focus only on the right half of the distribution N(0, 1). Therefore, we
generate variable X1 from pdf fX1(t) =

√

2/π exp(−t2/2) for t ≥ 0. In this
step we apply the rejection method for the exponential distribution Exp(1) as
the majorizing density to generate the variable X1.

2. We transform the output to variable X2, by adding “+” or “-” to X1 with
equal probabilities 0.5.

The algorithm for sampling from the exponential distribution was described
in Example 4.5. Then, for gY (t) = e−t and fX1(t) =

√

2/π exp(−t2/2), the

optimal value of the constant M is equal to
√

2e/π. Therefore, the algorithm for
the first step is as follows:

Algorithm 4.13 (Rejection method for the normal distribution (part 1)).

repeat

{

U = GenerateU;

Y = GenerateExponential;

}

until Sqrt(2e /pi) * U * exp(-Y)

<= Sqrt(2/pi) * exp(-Y^2 / 2);

X_1 = Y;

return X_1.

In the second step some additional, independent random variable from the
Bernoulli distribution (see Example 4.7) is used. The relevant transformation of
X1 into the final output X2 is done using the following method:

Algorithm 4.14 (Rejection method for the normal distribution (part 2)).

U = GenerateU;

if U <= 0.5 then X_2 = - X_1

else X_2 = X_1;

return X_2.

As it is easily seen, the acceptance condition in Algorithm 4.13 (which is
responsible for the first step in Example 4.12) has the form

√

2e/πU exp(−Y ) ≤
√

2/π exp(−Y 2/2) ,
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which could be simplified to

√
eU exp(−Y ) ≤ exp(−Y 2/2) . (4.8)

In (4.8) the function fX1(t) is without its normalizing constant, as indicated by
Lemma 4.11.

It should be emphasized that the rejection method has some important ad-
vantages. First, as stressed by Lemma 4.11, the normalizing constant of fX(t) is
unnecessary for the calculations. Additionally, we do not need to know the cdf
of fX(t). It may be helpful in the cases, which are not suitable for the inversion
method. There is also some flexibility in the selection of the pdf as the majoriz-
ing density and in the application of the relevant algorithm for sampling from
this density.

However, compared with the inversion method, the rejection algorithm dis-
plays also some disadvantages of the rejection algorithm. The most important
one is that in order to obtain one output (i.e. one valueXi) we should generate at
least two (or even more) random variables. Of course, the previously mentioned
assumptions of this approach should be also satisfied. Then, the relevant algo-
rithm for sampling from the majorizing density should be known and it should
be sufficiently numerically fast. But there may appear problems with finding the
appropriate envelope for some classes of densities fX(t), especially for tails of
fX(t), i.e. when t→ +∞ or t→ −∞.

The rejection method can be generalized to more complex approaches if we
are interested in the speed of the algorithm. In Algorithm 4.10, in order to check
the acceptance condition

MUgY (Y ) ≤ fX(Y ) (4.9)

the functions fX(.) and gY (.) have to be evaluated for some given value Y .
This could be numerically inconvenient. Therefore, it may be easier to find some
numerically simpler functions which fulfil the inequality

α1(t) ≤
fX(t)

MgY (t)
≤ β1(t) (4.10)

for all t. In this case, if the generated random variables U ∼ U [0, 1] and Y ∼ gY (.)
satisfy the condition (known as the fast acceptance condition)

U ≤ α1(Y ) ,

then also the “standard” acceptance condition (4.9) is fulfilled and the value
Y should be accepted. Otherwise, if U and Y satisfy the condition (the fast
rejection condition)

U ≥ β1(Y ) ,

then the “usual” acceptance condition (4.9) is not fulfilled and the variable Y
should be rejected.

It can be easily seen that for checking the fast acceptance condition and the
fast rejection condition we do not need to evaluate the exact value of fX(.)/gY (.).
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The approach introduced is known as pretesting or squeezing (see (Marsaglia
1977)) and it may be described by the following algorithm:

Algorithm 4.15 (Pretesting).

flag = 0;

repeat

{

U = GenerateU;

Y = GenerateG;

if U <= alpha (Y) then

{

flag = 1:

}

else

{

if U <= beta (Y) then

{

if M * U * g (Y) <= f (Y) then

{

flag = 1;

}

}

}

}

until flag = 1;

X = Y;

return X.

The if-else conditions are nested in the above algorithm in order that the
evaluation of fX(.)/gY (.) is done as rarely as possible.

The squeezing method can be also straightforwardly generalized. Instead of
the only one fast acceptance / rejection condition, the whole set of limits and
the relevant functions can be considered. Let us suppose that

αk(t) ≤ . . . ≤ α1(t) ≤
fX(t)

MgY (t)
≤ β1(t) ≤ . . . βl(t) (4.11)

for all t. Then the conditions are checked in the natural order

U ≤ αk(Y ), U ≥ βl(Y ), U ≤ αk−1(Y ), . . . , U ≤ fX(Y )

MgY (Y )

until one of them is fulfilled.
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4.1.3 The series method

The generalization of the rejection method described by the conditions (4.11)
leads to the algorithm known as the series method. In this case, instead of the
set of conditions (4.11), other methods of approximation of the target density
fX(.) are considered. Let us suppose that for all t we have

f
n
(t) ≤ f

n−1
(t) ≤ . . . f

1
(t) ≤ fX(t) ≤ f1(t) ≤ . . . fn−1(t) ≤ fn(t) , (4.12)

so that the relevant density fX(.) is approximated by the whole sequence of
functions f

i
(.) and f i(.). Then the following algorithm can be applied:

Algorithm 4.16 (Series method).

repeat

{

U = GenerateU;

Y = GenerateG;

i = n + 1;

repeat

{

i = i - 1;

if M * U * g (Y) <= f_i (Y) then return Y;

}

until M * U * g (Y) > f^i (Y);

}

until false.

It can be easily seen that in the consecutive steps of the above algorithm the
pdf fX(x) is approximated by f

n
(x), fn(x), fn−1

(x), . . ..

This approach can be also applied in the case of the convergent series. Let
us suppose that the density fX(.) is given as a limit of the convergent series

fX(t) =
∞
∑

i=1

Si(t) (4.13)

and that the remainder of this series could be numerically approximated by the
condition

∣

∣

∣

∣

∣

∞
∑

i=n

Si(t)

∣

∣

∣

∣

∣

≤ Rn(t)

for all t. Then the following algorithm can be applied:
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Algorithm 4.17 (Convergent series method).

repeat

{

U = GenerateU;

Y = GenerateG;

S = 0;

n = 0;

repeat

{

n = n + 1;

S = S + S_n (Y);

}

until | S - M * U * g (Y) | > R_{n+1} (Y);

}

until M * U * g (Y) <= S;

X = Y;

return X.

The internal loop “repeat. . . until. . . ” evaluates relevant approximations of
fX(.) by summing up functions S1(.), S2(.), . . . , Sn(.), as in (4.13). This operation
is finished when the difference between the obtained approximation and the value
MUgY (.) is lower than the remainder Rn+1(.). In such a case the value of Sn(.)
plus the additional error Rn+1(.) is lower or greater than MUgY (.). Then the
acceptance condition is checked.

In some cases a particular functional form of the target density fX(.) may
be considered. Such instance is described by the following lemma:

Lemma 4.18. Let us suppose that

fX(t) =MgY (t) (1− a1(t) + a2(t)− . . .) (4.14)

and
a1(t) ≥ a2(t) ≥ . . . ≥ 0

for all t, and an(t) → 0 for n → ∞. Then the acceptance condition (4.7) in the
rejection method is given by

U ≥ a1(Y )− a2(Y ) + . . . (4.15)

Proof. The acceptance condition in the general case of the rejection method is
given by

MUgY (t) ≤ fX(t) ,

which is equivalent to
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(1− U)MgY (t) ≤ fX(t)

or
UMgY (t) ≥MgY (t)− fX(t) . (4.16)

From the assumption (4.14) we have

MgY (t)− fX(t) =MgY (t) (a1(t)− a2(t) + . . .) . (4.17)

Combining (4.16) and (4.17), we get the condition (4.15). ⊓⊔

4.1.4 The ratio-of-uniforms method

When applying the ratio-of-uniforms method (abbreviated as ROU, see, e.g.
(Kinderman & Monahan 1977)) we assume that a random point is uniformly
distributed over some multidimensional set. This statement is more strictly ex-
plained by the following definition:

Definition 4.19. A random point X is uniformly distributed over the set A ⊂
Rp, if for any subset B ⊂ A we have

P(X ∈ B) = lp(B)
lp(A)

,

where lp(.) is a p-dimensional measure of this set.

The ROU method is based on the following theorem:

Theorem 4.20. Let fX(.) be a non-negative and finite integrable function and
let

Cf =

{

(u, v) : 0 ≤ u ≤
√

fX

(v

u

)

}

. (4.18)

If the point (U, V ) is uniformly distributed over the set Cf , then variable X = V
U

has pdf equal to fX (.)∫
fX (t) dt

.

Proof. If (U, V ) is the random point uniformly distributed over the set Cf , then
the joint pdf of this point is equal to

f(U,V )(u, v) =
1

l2(Cf )
11Cf

(u, v) .

If the transformation

X =
V

U
, Y = U

is applied, then the Jacobian of this function is given by

∣

∣

∣

∣

det

(

0 1
y x

)∣

∣

∣

∣

= y .
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Therefore, the joint pdf of the new variables (X,Y ) is equal to

f(X,Y )(x, y) =
1

l2(Cf )
y11Cf

(y, xy) =
y

l2(Cf )
11
[0,
√

f(x)]
(y) ,

which leads to

fX(x) =

∫

f(X,Y )(x, y) dy =
1

l2(Cf )

∫

√
f(x)

0

y dy =
1

2l2(Cf )
f(x) ,

where 1
2l2(Cf )

is the relevant normalizing constant. ⊓⊔

Theorem 4.20 leads directly to the following algorithm, which constitutes the
ROU method:

Algorithm 4.21 (ROU method).

repeat

{

(U,V) = GenerateCf;

X = V / U;

}

until U^2 <= f(X);

return X.

The function GenerateCf in the above algorithm generates the random point
(U, V ), distributed uniformly over the set Cf . Of course, the form of such function
depends on the shape of Cf .

It should be noted that according to Theorem 4.20, we do not have to know
the normalizing constant for the function fX(.). As in the case of the rejection
method, this constant is automatically taken into account during sampling.

The Algorithm 4.21 can be described by the following steps:

1. Generate the point (U, V ) uniformly distributed over the set Cf .
2. Calculate X = V

U .
3. If the point (U, V ) is inside the set Cf (compare the acceptance condition in

Algorithm 4.21 with the description of the set Cf given by (4.18)), return X .
Otherwise, the algorithm returns to step 1.

As can be easily seen, the most crucial point for this method is application
of the function GenerateCf – in other words, finding the procedure of sampling
from the set Cf . But the relevant method is straightforward, if Cf is inside some
rectangle and then the rejection sampling could be used to check the condition
U2 ≤ f(X) in Algorithm 4.21.

Some properties of Cf may be directly observed, as stated by the following
remark:
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Remark 4.22. The set Cf can be described by the following conditions:

• From the definition of the set (4.18) we get u ≥ 0 (i.e. we should take into
account only the right hand part of the coordinate system),

• If fX(.) is symmetrical around zero, then the set Cf is symmetrical with
respect to axis u,

• If fX(t) ≥ 0 only for t ≥ 0, then we have

fX

( v

u

)

≥ 0 ⇒ v

u
≥ 0 ⇒ v ≥ 0 ,

which leads to u ≥ 0, v ≥ 0 (i.e. only the upper right part of the coordinate
system should be taken into account).

The standard approach to describe the set Cf in a more precise way is to
apply

z =
v

u
(4.19)

which characterizes the boundaries of Cf in a parametric way. From the definition
of Cf , given by (4.18) and the formula (4.19) we get

u(z) =
√

f(z) , v(z) = z
√

f(z) ,

so that
0 ≤ u ≤ sup

z

√

f(z) , inf
z
z
√

f(z) ≤ v ≤ sup
z
z
√

f(z) .

The above conditions describe the method for enclosing the set Cf in some given
rectangle. We illustrate this approach in the two following examples:

Example 4.23. Let X ∼ Exp(λ). Because the normalizing constant of pdf is
unnecessary in the case of the ROU method, then fX(t) = exp(−λt). Therefore

sup
t

√
e−λt = 1 , inf

t
t
√
e−λt = 0 , sup

t
t
√
e−λt =

2

λe
,

and

0 ≤ u ≤ 1 , 0 ≤ v ≤ 2

λe
. (4.20)

Then, the set Cf is contained in the rectangle [0, 1] × [0, 2
λe ] and the pdf of the

uniform distribution over this rectangle is given by

gCf
(t) =

λe

2
.

Example 4.24. Let X ∼ N(0, 1). Then

fX(t) = e−
t2

2 ,

therefore
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sup
t

√

e−
t2

2 = 1 , inf
t
t

√

e−
t2

2 = −
√

2

e
, sup

t
t

√

e−
t2

2 =

√

2

e
,

which gives

0 ≤ u ≤ 1 , −
√

2

e
≤ v ≤

√

2

e
. (4.21)

4.1.5 The composition method

We discuss here three cases of the composition method, which enables sampling
of the random variable.

Let us start from the series form, when the considered pdf fX(.) could be
written as

fX(t) =

∞
∑

i=1

pifi(t) , (4.22)

where pi > 0,
∑∞

i=1 pi = 1 and f1(.), f2(.), . . . are densities of some distributions.
In such a case, fX(.) is said to be a mixture or composition of other distributions.

The formula (4.22) and the mentioned assumptions about pi and fi(.) lead
directly to the following steps of the variable generation:

1. Generate random variable K according to the probabilities p1, p2, . . ..
2. Sample from the density fK(.) specified by the value K from the previous

step.

Then the method described above is directly equivalent to the following al-
gorithm:

Algorithm 4.25 (Composition method I).

K = GenerateK;

X = GenerateF (K);

return X.

In the above description, the function GenerateK generates the variable accord-
ing to the probabilities p1, p2, . . ., and GenerateF (K) generates a sample from
the density fK(.).

Usually, the form (4.22) is simplified into the case with finite discrete distri-
bution of pi, i.e.

fX(t) =

m
∑

i=1

pifi(t) . (4.23)

For some instances, the whole support of fX(.) may be divided into separate
intervals A1,A2, . . . ,Am (or A1,A2, . . . in infinite case) in order that sampling
from each pdf fi(.) be more straightforward. A similar method was used in
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Example 4.12, where the whole set R was divided into subsets R− and R+.
Then, we applied the rejection sampling for the right tail of the distribution
N(0, 1) with the exponential distribution as its envelope.

If the intervals A1,A2, . . ., mentioned before, are used, then from (4.22) we
get

pi =

∫

Ai

fX(t) dt , fi(t) =
fX(t)

pi
11Ai

(t) .

Therefore, knowledge about the probabilities pi, determined by pdf fX(.) for
each subset Ai, is necessary to apply this approach.

The composition method is particularly useful if it is mixed with the rejection
approach (as in Example 4.12). For intervals smaller than the whole support of
fX(t) it is easier to find the envelopes gi(.) for the relevant parts fi(.) of the
target density fX(.).

Instead of (4.22), we could apply a more general, integral form, given by

fX(t) =

∫

Z
fz(t)h(z) dz , (4.24)

where fz(.) is some pdf for any value of z and h(z) is a density for some set Z
(e.g. Z ⊂ R).

The integral (4.24) has important interpretation, related to the concept of
conditional density. The density fz(.) may be seen as a conditional pdf f(.|z) and
h(z) may be then identified with the density describing the distribution of the
parameter z. Therefore, fX(.) is the unconditional density for such setting. This
approach is close to the method known as Gibbs sampler, which will be discussed
in Section 6.3. Obviously, if we know the appropriate conditional densities, the
form (4.24) may be used to sample from the unconditional pdf.

The formula (4.24) leads to the following algorithm:

Algorithm 4.26 (Composition method II).

Z = GenerateH;

X = GenerateF (Z);

return X.

Another approach to the composition method is related to the polynomial
form of the target density fX(t). Let us assume that the relevant pdf may be
written as

fX(t) =
m
∑

i=0

cit
i , (4.25)

where ci ≥ 0 and t ∈ [0, 1]. Then we get

m
∑

i=0

ci
i+ 1

= 1 , (4.26)
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because from (4.25) we have

∫ 1

0

m
∑

i=0

cit
i =

m
∑

i=0

(

ci
i+ 1

ti+1

)∣

∣

∣

∣

1

0

=

m
∑

i=0

ci
i+ 1

and fX(t) is some density.
Using the conclusion (4.26), the following steps of the procedure of sampling

from the density fX(t) of the form (4.25) can be applied:

Algorithm 4.27 (Composition method for the polynomials).

1. Generate variable I ∈ {0, 1, 2, . . . ,m} according to the discrete distribu-
tion, given by the probabilities P(I = i) = ci

i+1 .
2. For the fixed value I, generate random variable according to the density

(i+1)ti. In order to do this, e.g. the inversion method could be applied.

When not all of ci ≥ 0, we may introduce c+i > 0 and c−i > 0 such that
ci = c+i − c−i . Then we have

m
∑

i=1

cit
i ≤

m
∑

i=1

c+i t
i

and the function

g(t) =

m
∑

i=1

c+i t
i ,

after adding the necessary normalizing constant, could be used as the majorizing
density for the fX(t) in the rejection sampling.

4.2 Methods for discrete distributions

The discrete distributions, given by the probabilities P(X = i) = pi for
i = 1, 2, . . . constitute an important class of distributions appearing in various
practical applications. Therefore, we discuss some special sampling methods,
which are suitable for this type of distributions.

4.2.1 The generalized inverse method

The most straightforward approach to generate X from a discrete distribution
p1, p2, . . . is to apply the generalized inverse method (compare with Example
4.7), which leads to the following algorithm:
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Algorithm 4.28 (Generalized inverse method for the discrete distribution).

S = 0;

U = GenerateU;

I = 0;

do

{

I = I + 1;

S = S + p_I;

}

while (S <= U);

X = I;

return X.

This algorithm can be described by the following steps:

1. Divide the whole interval [0, 1] into parts, which are equivalent to the prob-
abilities p1, p2, . . ..

2. Generate U ∼ U [0, 1].
3. Comparing the cumulative sums S = p1+p2+ . . .+pI with U , find the rele-

vant value I, for which the random point U belongs to the interval [pI−1, pI ].

The expected number of comparisons of the cumulated sums S with the
sampled value U is equal to EX . Therefore, it may be numerically profitable
to increase the speed of this algorithm, which can be done in many ways. For
example, the whole table of cumulative sums S1 = p1, S2 = p1 + p2, . . . may
be prepared during the set-up phase of the algorithm. Another approach is to
reorder the probabilities pi into decreasing order, also during the set-up phase.
Additionally, the algorithm can be started in “another place”. If the considered
discrete distribution is unimodal, we could start the search to the left or to the
right of this mode.

4.2.2 The Alias method

Walker (1977) proposed a more efficient method, which is known as the Alias
method, which is valid for the finite discrete distributions given by the probabil-
ities

P(X = 1) = p1,P(X = 2) = p2, . . . ,P(X = m) = pm .

Let us assume that we have a sequence q1, q2, . . . , qm, 0 ≤ qi ≤ 1 for i =
1, 2, . . . ,m and A(1), A(2), . . . , A(m) ∈ {1, 2, . . . ,m}. These two sequences are
depend on each other via the condition
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pi =



qi +
∑

j:A(j)=i

(1− qj)





1

m

for i = 1, 2, . . . ,m.
Then the sampling algorithm may be written down as

Algorithm 4.29 (Alias method).

I = GenerateU[m];

U = GenerateU;

if U <= q_I then

{

X = I;

}

else

{

X = A (I);

}

return X.

The function GenerateU[m] in the above algorithm samples the variable I ∈
{1, 2, . . . ,m} from the uniform discrete distribution, given by the probabilities
P(I = 1) = P(I = 2) = . . . = P(I = m) = 1

m .
The sequence q1, q2, . . . , qm has the interpretation of the set of “cutting

points”, for which the final output value is changed from the previously sampled
value I to its alias given by A(I). Then, the Algorithm 4.29 may be described
by the following steps:

1. Generate I uniformly over the set {1, 2, . . . ,m}.
2. Generate U ∼ U [0, 1].
3. If U ≤ qI (i.e. U is not greater than the relevant “cutting point” for the fixed
I), then this value I is returned. Otherwise, A(I) (i.e. the alias of the value
I) is returned.

As it can be easily seen, the main problem in the case of the Alias algorithm
is to find the sequences qi and A(i) for the given probabilities pi. These sequences
(which may be also seen as tables or allocations) are not unique (see Figures 4.3
and 4.4 for an example of such allocation). However, they can be found if, e.g.,
the following algorithm is applied (see (Devroye 1986) for additional details):

Algorithm 4.30 (Evaluation of the sequences qi and A(i)).
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wTable = Table[m];

n = 0;

p = m + 1;

for i = 1 to m do

{

q_i = m * p_i;

if q_i < 1 then

{

n = n + 1;

wTable [n] = i;

}

else

{

p = p - 1;

wTable [p] = i;

}

}

for k = 1 to m - 1 do

{

i = wTable [k];

j = wTable [p];

A (i) = j;

q_j = q_j + q_i - 1;

if q_i < 1 then

{

p = p + 1;

}

}

In this algorithm, wTable is a working table of the length m.

4.3 Algorithms for the normal distribution

As we know, normal distribution is one of the most important distributions in
statistics and in statistical modelling. Therefore, there is a need for numerically
fast and stable algorithms to sample from this distribution. However, only the
algorithms for sampling from the standard normal distribution N(0, 1) should
be considered, because if X ∼ N(0, 1), then

Y = µ+ σX ∼ N(µ, σ2) (4.27)

as stated by the probability theory.
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Fig. 4.3. Example of the Alias method – before allocation

Fig. 4.4. Example of the Alias method – after allocation

4.3.1 A simple algorithm

One of the simplest and most primitive algorithms for sampling from N(0, 1) is
given by the following pseudocode:

Algorithm 4.31 (Simple algorithm for the normal distribution).

for i = 1 to 12 do

{

X(i) = GenerateU;

}

X = X(1) + X(2) + ... + X(12) - 6;

return X.
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The approximation, ensured by the Central Limit Theorem is fairly good in this
case, but the usefulness of this approach is rather limited because of the burden
of sampling of additional random variables. To generate only one output value,
twelve values Ui ∼ U [0, 1] are necessary.

4.3.2 The Box–Muller algorithm

Box & Muller (1958) introduced the following algorithm, which generates two
independent standard normal variables:

Algorithm 4.32 (Box–Muller algorithm).

U1 = GenerateU;

U2 = GenerateU;

Phi = 2 * Pi * U1

R = Sqrt ( - 2 * ln ( U2 ));

X1 = R * cos ( Phi );

X2 = R * sin ( Phi );

return (X1, X2).

This algorithm can be described by the following steps:

1. Generate two independent variables U1, U2 ∼ U [0, 1].
2. Multiply U1 by 2π, which gives the angle coordinate Φ.
3. Transform U2 into variable R, where R2 ∼ Exp(1/2) (as in the case described

in Example 4.5), which gives the length of the radius in polar coordinates.
4. Calculate X1, X2 based on the polar coordinates Φ and R.

This algorithm is practically very useful, if we have numerically fast procedures
for calculation of sin(x), cos(x) and ln(x). Additionally, two iid standard normal
samples are generated from only two variables Ui ∼ U [0, 1].

To verify the approach described in Algorithm 4.32, let us consider the joint
pdf of the pair (X1, X2) of independent standard normal variables

f(X1,X2)(t1, t2) =
1

2π
exp

(

−1

2

(

t21 + t22
)

)

.

If we transform (X1, X2) into (R,Φ) in polar coordinates, the relevant joint pdf
is given by

f(R,Φ)(t1, t2) =

(

1

2π
exp

(

−1

2
r2
)) ∣

∣

∣

∣

cosφ sinφ
−r sinφ r cosφ

∣

∣

∣

∣

=
1

2π
re−r2/2

for R ∈ (0,∞) and Φ ∈ [0, 2π), where R and Φ are independent. Additionally,
R2 = X2

1 +X2
2 has a χ2 distribution with two degrees of freedom, which is also

Exp(1/2) distribution. To obtain Algorithm 4.32, the above transformation to
polar coordinates is inverted in the next step.
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4.3.3 The Marsaglia’s polar method

The method described by Marsaglia & Bray (1964) is very similar to the Box–
Muller approach, given by Algorithm 4.32. In this case we have the following
algorithm:

Algorithm 4.33 (Marsaglia’s polar method).

repeat

{

U1 = GenerateU;

U2 = GenerateU;

U1 = 2 * U1 - 1;

U2 = 2 * U2 - 1;

W = U1^2 + U2^2;

}

until W < 1;

C = sqrt ( - 2 * W^(-1) * ln ( W ) );

X1 = C * U1;

X2 = C * U2;

return (X1, X2).

The above procedure can be described by the following steps:

1. Generate two independent variables U1, U2 ∼ U [0, 1].
2. Transform these variables into U1, U2 ∼ U [−1, 1].
3. Calculate W = U2

1 + U2
2 . If the point (U1, U2) is outside of the unit disc,

reject this point and return to the step 1. Otherwise, go to the next step.
4. The point (U1, U2) specifies the angle uniformly distributed on the inter-

val [0, 2π). Calculate C, which gives value of the shift on the straight line,
determined by this angle.

5. Find a new point (X1, X2), based on the calculated angle and shift C.

Let (R,Φ) denote polar coordinates, as previously. Then

R2 = C2
(

U2
1 + U2

2

)

= C2W =

(

− 2

W
lnW

)

W = −2 lnW ,

and

X1 =
√
−2 lnW cosΦ =

√
−2 lnW

U1√
W

= CU1 , X2 =
√
−2 lnW sinΦ = CU2 ,

which shows the similarities between the Algorithms 4.32 and 4.33.
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4.3.4 The Marsaglia–Bray algorithm

Marsaglia & Bray (1964) introduced also a more complex method for sampling
from N(0, 1) distribution. This approach constitutes also an interesting example,
which may be related to a special case of the composition method, discussed in
Section 4.1.5.

In this approach, the standard normal distribution is decomposed into sep-
arate parts. In the first step, we focus on the tails of this distribution over the
intervals (−∞,−3] ∪ [3,∞). It is possible to sample from these tails by apply-
ing other methods of random values generation, e.g. the rejection method with
the exponential distribution as the majorizing density. The probability that the
N(0, 1) variable is sampled from the mentioned intervals, is equal to

p4 = P(|X | > 3) ≈ 0.0027 .

Therefore, we may focus next only on the interval [−3, 3].
For the interval [−3, 3] the normal pdf may be approximated by the mixture

of parabolas, given by

f1(t) =











3−t2

8 if |t| < 1
(3−|t|)2

16 if 1 ≤ |t| ≤ 3

0 otherwise

.

For this approximation we find the maximal value of p1, fulfilling the condition

fN(0,1)(t)− p1f1(t) ≥ 0 ,

which gives p1 ≈ 0.86. Therefore, with this (rather high) probability the output
could be sampled from pdf f1(.), which is also the density of U1 + U2 + U3 for

U1, U2, U3
iid∼ U [−1, 1].

The “remnant” of the density, i.e. fN(0,1)(.) − p1f1(.), is decomposed once
again. In order to do this, the density given by

f2(t) =

{

4
9

(

3
2 − |t|

)

if |t| ≤ 3
2

0 otherwise

is applied, which is the pdf for

3(U1 + U2 − 1)

2
,

where U1, U2
iid∼ U [0, 1]. As previously, the maximum value of p2, fulfilling the

condition
fN(0,1)(t)− p1f1(t)− p2f2(t) ≥ 0

should be found, which leads to p2 ≈ 0.111.
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During the last step, the appropriate density, related to the “remaining” prob-
ability p3 = 1 − p1 − p2 − p4 ≈ 0.0226 is used. It means that we should sample
from the density

f3(t) =
1

p3

(

fN(0,1)(t)− p1f1(t)− p2f2(t)− p4f4(t)
)

if t ∈ [−3, 3], with very low probability p3. In order to generate random variable
according to the pdf f3(.) other methods can be used, like the rejection sampling,
because f3(.) is bounded on the interval [−3, 3].

4.4 Example of sampling from other distributions

There are also various special algorithms for other random distributions, not
only for the normal one, as described in Section 4.3. Usually they are stated in
the form of mathematical theorems, which could be then directly transformed
into numerical recipes. The example of such an approach is presented for the
beta distribution.

Definition 4.34 (Beta distribution). A distribution of the random variable X is
given by a beta distribution (further we use notation X ∼ B(α, β)) if the density
of this distribution is equal to

fX(t) =
Γ (α+ β)

Γ (α)Γ (β)
tα−1(1− t)β−1

for t ∈ (0, 1). If X ∼ B(α, β), then EX = α
α+β , VarX = αβ

(α+β)2(α+β+1)
.

To sample from beta distribution, the following theorem can be used (see,
e.g. (Wieczorkowski & Zieliński 1997)):

Theorem 4.35. If U, V ∼ U [0, 1] are independent, then conditional distribution
of the variable

X =
U

1
α

U
1
α + V

1
β

(4.28)

under the condition
U

1
α + V

1
β ≤ 1 (4.29)

is given by the beta distribution with parameters (α, β).

As it can be easily seen, the above theorem is equivalent to the following
algorithm:
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Algorithm 4.36 (Beta distribution).

repeat

{

U = GenerateU;

V = GenerateU;

}

until U^(1/alpha) + V^(1/beta) <= 1;

X = U^(1/alpha) / (U^(1/alpha) + V^(1/beta));

return X.

4.5 Multivariate generation – general remarks

Before discussion of the methods, which are useful for the multivariate number
generation, we introduce the necessary notation. Denote by X the p-dimensional
vector, given by the coordinates

(

X(1), X(2), . . .X(p)
)

. In this case, the upper
index indicates the running number of the coordinate of this vector, and the
lower index – as previously – indicates the number of the variable in a sequence
of vectors. Then we have

Xi =
(

X
(1)
i , X

(2)
i , . . . , X

(p)
i

)

.

If each of the coordinates of the random vector is independent, then to gener-
ate the whole sequence of random vectors X1,X2,X3, . . ., p independent random
variables should be sampled for each vector. In this case, the methods discussed
in the previous sections can be directly applied. It can be easily seen that some of
these algorithms (like the Box–Muller algorithm, described in Section 4.3.2) gen-
erate multivariate independent variables without any additional modification. In
the case of the Box–Muller algorithm we obtain two iid variables sampled from
the standard normal distribution after one realization of this algorithm.

However, if the relevant coordinates of the multivariate random number are
not independent, then to generate such variable the methods described in Section
4.1 could be also applied, especially the rejection method and the composition
method. But in the case of the rejection approach, selection of the appropriate
envelope might be problematic. This problem is related to the effect known as
the curse of dimensionality, which will be discussed in Section 4.6.1 in a more
detailed way.

4.6 Multivariate uniform distribution on the unit ball

In this section we focus on selected methods which can be applied to sample from
the multivariate uniform distribution on the p-dimensional closed unit ball Bp =
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{

(x1, . . . , xp) :
∑p

i=1 x
2
i ≤ 1

}

. The most naive approach is based on the rejection
method (see also (Wieczorkowski & Zieliński 1997) for additional details):

Example 4.37. Let us assume that the vector X is sampled from multivariate
uniform distribution on the p-dimensional cube Cp = {(x1, . . . , xp) : ∀i |xi| ≤ 1}.
In such a case

X = (U1, U2, . . . , Up)

and the relevant coordinates U1, . . . , Up can be generated independently according
to U [−1, 1] distribution. If the sampled point X is inside the unit ball Bp, i.e. its
coordinates fulfil the condition

U2
1 + U2

2 + . . .+ U2
p ≤ 1 ,

then this point should be accepted. Otherwise, a new variable X from Cp should
be generated again.

Obviously, the approach described in Example 4.37 is the rejection method.
In this case the multivariate uniform distribution on Cp plays the role of the
envelope.

The method from Example 4.37 leads to the following algorithm:

Algorithm 4.38 (Rejection method for the uniform distribution on Bp).

repeat

{

for i=1 to p do

{

U[i] = 2 * GenerateU - 1;

}

}

until U[1]^2 + U[2]^2 + ... + U[p]^2 <= 1;

X = (U[1], U[2],..., U[p]);

return X.

4.6.1 Curse of dimensionality

As it is stated by its name, during the rejection method some of the generated
values are rejected. The problem arises when the number of the rejected points
increases faster than linearly in relation to the number of dimensions of the
considered multivariate distribution. Such phenomenon is known as the curse of
dimensionality and it could be observed also in the case of Algorithm 4.38.

The probability P(p) that the generated point is accepted is equal to the
ratio of p-dimensional volume of Bp
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lp (B
p) =

2π
p
2

pΓ
(

p
2

)

to p-dimensional volume of Cp, which gives

P(p) =
lp (B

p)

lp (Cp)
=

π
p
2

p2p−1Γ
(

p
2

) . (4.30)

Additionally, we have

lim
p→+∞

lp (B
p)

lp (Cp)
= 0 .

From the geometrical distribution, the expected number ENp of the points
generated before the first output is accepted, is equal to the inverse of the proba-
bility (4.30). Therefore, the numerical effectiveness of Algorithm 4.38 is relatively
low for the higher dimensions, as indicated by Table 4.1.

p P(p) ENp

2 0.7853981634 1.273239545

5 0.1644934067 6.079271019

10 0.002490394570 401.5427965

20 2.461136950 · 10−8 4.063162758 · 107

50 1.536743396 · 10−28 6.507267270 · 1027

Table 4.1. Probability of acceptance and the expected number of generated points for
the naive approach

4.6.2 The method based on polar coordinates

In the case of p = 2 (i.e. the two-dimensional ball), the following algorithm,
based on polar coordinates, can be applied:

Algorithm 4.39 (Polar coordinates for the uniform distribution on B2).

Phi = 2 * Pi * GenerateU;

X1 = cos (Phi);

X2 = sin (Phi);

U = GenerateU;

Y1 = sqrt (U) * X1;

Y2 = sqrt (U) * X2;

return (Y1, Y2).

This algorithm can be described by the following steps:
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1. Generate Φ ∼ U [0, 1], which gives the angle coordinate after multiplication
by 2π.

2. Apply trigonometric functions cos(.) and sin(.) for the sampled value Φ to
obtain the point (X1, X2), which lies on the unit circle S2.

3. Transform the output (X1, X2) into the new point (Y1, Y2), which lies inside
the ball B2.

The transformation mentioned in the third step is done via the formula

Y1 =
√
UX1 , Y2 =

√
UX2 , (4.31)

where U ∼ U [0, 1], instead of the (more “intuitive”) function

Y1 = UX1 , Y2 = UX2 . (4.32)

If the transformation (4.32) is applied, then the generated variables are not uni-
formly distributed on B2. On the contrary, the obtained variables are clustered
near the point (0, 0) (as shown by Figure 4.5).

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Fig. 4.5. Incorrect sampling from uniform distribution on B2

Therefore, other kind of transformation, instead of the linear one (given by
(4.32)), should be used. In the case of Bp, the length of the radius r is distributed
according to pdf given by

h(r) = prp−1 (4.33)

for 0 ≤ r ≤ 1 (see (Wieczorkowski & Zieliński 1997)). Therefore, the relevant cdf
is given by H(r) = rp, which leads to the formula (4.31) if the inversion method
for p = 2 is applied.
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But Algorithm 4.39 cannot be generalized for the higher number of dimen-
sions, i.e. p ≥ 3. Application of a similar transformation leads to the incorrect
algorithms for these cases.

4.6.3 Reduction of dimension

Instead of using the previously described methods, in order to sample from the
uniform distribution on Bp, we may reduce the dimension of the problem. This
may be done via the following lemma (see (Wieczorkowski & Zieliński 1997)):

Lemma 4.40. If Z =
(

Z(1), Z(2), . . . , Z(p)
)

is sampled uniformly on p-dimensio-

nal sphere Sp =
{

(x1, . . . , xp) :
∑p

i=1 x
2
i = 1

}

, R is a random variable distributed
according to the pdf given by

g(t) =

{

ctp−1
√
1−t2

if 0 ≤ t ≤ 1

0 otherwise
, (4.34)

where c is the relevant normalizing constant, and S is a “random sign” given by
the probabilities

P(S = 1) = P(S = −1) =
1

2
, (4.35)

then the (p+ 1)-dimensional random variable

(

RZ(1), RZ(2), . . . , RZ(p), S
√

1−R2
)

(4.36)

is sampled uniformly on Sp+1.

Lemma 4.40 leads to the following inductive algorithm:

Algorithm 4.41 (Reduction of dimension for the uniform distribution on
Bp).

1. Generate Z(1) uniformly on S1, where such a sphere is equivalent to two
points -1 and 1, i.e. use the probabilities P(Z(1) = −1) = P(Z(1) = 1) =
1
2 .

2. Sample R according to the pdf given by (4.34) for p = 2 and generate S
described by the probabilities (4.35). Then calculate

(

Z(1), Z(2)
)

given
by the formula (4.36).

3. . . .
p-1. SampleR according to the pdf given by (4.34) for p−1 and generate S de-

scribed by the probabilities (4.35). Then calculate
(

Z(1), Z(2), . . . , Z(p)
)

given by the formula (4.36).
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It should be noted that, in order to sample R from the relevant density (4.34),
the variable R is obtained as a square root from the random variable generated
according to B(p2 ,

1
2 ). It means that we should calculate

√

Y1/(Y1 + Y2), where
Y ∼ Γ (p/2, 1) and Y2 ∼ Γ (1/2, 1) (see (Wieczorkowski & Zieliński 1997) for
additional details).

4.6.4 The method based on normal distribution

A more direct method for sampling from the uniform distribution on Bp is
based on the multivariate standard normal distribution, but with the relevant
transformation of the obtained output.

Definition 4.42. We say that p-dimensional random variable

X =
(

X(1), X(2), . . . , X(p)
)

has spherically contoured distribution, if its pdf gX(t1, t2, . . . , tp) depends only
on
∑p

i=1 t
2
i .

The multivariate distribution, given by p independent standard normal vari-
ables, is an example of the spherically contoured distribution. It is easy to see
that spherically contoured distribution is invariant for each turn in Rp (see
(Wieczorkowski & Zieliński 1997) for additional discussion). Therefore, the rel-
evant multivariate normal distribution can be directly applied:

Algorithm 4.43 (Spherically contoured distribution for the uniform distri-
bution on Bp).

for i = 1 to p do

{

Z[i] = GenerateNormStd;

}

R^2 = Z[1]^2 + ... + Z[p]^2;

for i = 1 to p do

{

Y[i] = Z[i] / R;

}

U = GenerateU;

R1 = U^(1/p);

for i = 1 to p do

{

X[i] = Y[i] * R1;

}

return (X[1], ..., X[p]).
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This algorithm can be described by the following steps:

1. Sample p independent variables Zi from the standard normal distribution,
applying the function GenerateNormStd.

2. To obtain a new point (Y1, . . . , Yp), normalize the generated variables Zi

using the distance R. The obtained point is distributed according to the
uniform distribution on the sphere Sp.

3. Shift the point (Y1, . . . , Yp) to the new position (X1, . . . , Xp) using the trans-
formed variable U ∼ U [0, 1] (compare with transformation (4.31) and the
distribution of the radius given by (4.33)). Then the output (X1, . . . , Xp) is
sampled from the uniform distribution on Bp.

4.7 Other approaches to multivariate generation

Apart from the general methods, mentioned in Section 4.5, there are more spe-
cific approaches which utilize the multivariate structure of the problem in a more
direct way. The multivariate joint pdf considered is also a product of the relevant
conditional densities

fX

(

x(1), x(2), . . . , x(p)
)

= f1

(

x(1)
)

f2

(

x(2)
∣

∣

∣
x(1)

)

. . . fp

(

x(p)
∣

∣

∣
x(1), . . . , x(p−1)

)

.

(4.37)
This formula leads to the following algorithm:

Algorithm 4.44 (Multivariate generation using the conditional densities).

1. Generate X(1) ∼ f1
(

x(1)
)

.

2. For the fixed value of x(1), generate X(2) ∼ f2
(

x(2)
∣

∣x(1)
)

.
3. . . .
p. For the fixed values of x(1), . . . , x(p−1), generate X(p) ∼

fp
(

x(p)
∣

∣x(1), . . . , x(p−1)
)

.

However, calculation of the formula (4.37) or sampling from the conditional
distributions, necessary in this approach, may be numerically problematic in
some practical cases.

Multivariate random variables can be also generated as some transformation
of other random variables for which the relevant sampling algorithms are known.
For example, if a multivariate random variable Y is given by the density fY(.)
and the function h : Rp → Rp is of C1 class and its inversion h−1 is also of C1

class, then the variable
X = h(Y)

has the density given by
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gX(x) = fY
(

h−1(x)
)

∣

∣

∣det
(

h−1
)
′

(x)
∣

∣

∣ .

Another method is to apply simulations for some relevant copula (see also,
e.g. (Schmidt 2006)):

Definition 4.45. A d-dimensional copula C : [0, 1]d → [0, 1] is a function, which
is a cumulative distribution function with uniform marginals.

Then the following useful theorem may be applied:

Theorem 4.46 (Sklar). Let H(., .) be a two-dimensional joint cdf and Fx(.),
Gy(.) – the relevant marginal cumulative distribution functions. There exists a
copula C such that

H(x, y) = C (Fx(x), Gy(y)) .

If Fx(.) and Gy(.) are continuous, then C is unique.

As it may be seen from this theorem, the copula is a direct tool of modelling
the dependence between the variables. Therefore, it may be also considered as the
method to generate bivariate random variables with a fixed kind of dependency
between them.

4.8 Multivariate normal distribution

If X is a multivariate random variable, then we have EX =
(

EX(1), . . . ,EX(p)
)T

,
i.e. its expected value is a vector of the corresponding expected values for each
random component, where T denotes transpose of a vector–column.

Definition 4.47. Covariance matrix (or dispersion matrix or variance–cova-
riance matrix) of the multivariate variable X is given by

VARX =









VarX(1) Cov
(

X(1), X(2)
)

. . . Cov
(

X(1), X(k)
)

Cov
(

X(2), X(1)
)

VarX(2) . . . Cov
(

X(2), X(k)
)

. . .

Cov
(

X(k), X(1)
)

Cov
(

X(k), X(2)
)

. . . VarX(k)









,

i.e. the element of this matrix on the i, j-th position is the covariance between
the i-th and j-th components of the random vector X.

Additionally, we have

VARX = E(X− EX)(X− EX)T , (4.38)

i.e. the formula (4.38) is a straightforward generalization of the one-dimensional
expected value. It is known from the probability theory, that the covariance
matrix is symmetric and positive definite.

As in the one-dimensional case, the multi-dimensional normal distribution
is one of the most important distributions in practical applications. Therefore,
sampling methods for such distribution are much needed. Let us start from the
relevant definition.
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Definition 4.48 (Multivariate normal distribution). A distribution of the ran-
dom variable X is given by a multivariate normal distribution (further on we use
notation X ∼ N(µ,W)) if the density of this distribution is given by

fX(t) = (2π)−p/2 det
(

W
−1
)

exp

[

−1

2
(t− µ)TW−1(t− µ)

]

,

where µ is a p-dimensional vector and W is p×p-dimensional covariance matrix.
If X ∼ N(µ,W), then EX = µ , VARX = W.

We start our discussion of the methods of sampling from the multivariate
normal distribution from the independent, standard normal case (i.e. when X ∼
N(0, I)). Then, the more general case (i.e. if X ∼ N(µ,W)) will be considered.

If X =
(

X(1), X(2), . . . , X(p)
)

and X ∼ N(0, I), where I is the identity matrix
(i.e. I is a p × p-dimensional matrix with ones on the main diagonal and zeros
elsewhere), then from the probability theory we know that

X(1), X(2), . . . , X(p) iid∼ N(0, 1) .

Therefore, in order to generate X, we should sample p independent values
from the standard normal distribution (see Section 4.3 for the discussion of
the relevant methods). In the same way we generate the whole iid sequence
X1, . . . ,Xn ∼ N(0, I).

In a more general case, if X ∼ N(µ,W), then the covariance matrix may be
factored uniquely (which is called Cholesky decomposition) as

W = CC
T , (4.39)

where C is lower triangular p× p matrix. Then, for Y ∼ N(0, I) we should apply
the transformation

X = µ+ CY , (4.40)

which gives X ∼ N(µ,W) (compare with the formula (4.27) in the one-
dimensional case).

There are many numerical algorithms to compute C, defined by the condition
(4.39) (see, e.g., (Fishman 1973)). The direct calculations based on the formulas

cii =

√

√

√

√wii −
i−1
∑

k=1

c2ik (4.41)

cji =
wji −

∑i−1
k=1 cjkcik
cii

, (4.42)

where wij and cij are the respective elements of W and C, can be also applied.
When the matrix C is calculated, then the following algorithm based on

transformation (4.40) may be used:
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Algorithm 4.49 (Multivariate normal distribution).

1. Generate Y1, Y2, . . . , Yp
iid∼ N(0, 1).

2. For i = 1, 2, . . . , p, let Xi = µi +
∑i

j=1 cijYj .
3. Return X = (X1, X2, . . . , Xp).

4.9 Generation of selected stochastic processes

We discuss here some methods for generation of trajectories of the most im-
portant stochastic processes, like homogeneous and non-homogeneous Poisson
process, and Wiener process. The necessary definitions, concerning the the-
ory of stochastic processes may be found in Chapter 2 or, e.g., in (Capasso &
Bakstein 2012). Therefore, we refer the reader to these sources for the relevant
details and notation.

In our considerations, we set T = [0,+∞), so that the parameter t may be
identified with time and the state space is some subset of R. Then, the stochastic
process may be seen as the evolution of a phenomenon, e.g. sequence of some
events, which occur at corresponding time moments, like arrivals of buses at the
bus stop or values of share prices for subsequent days or necessary repairs of the
water distribution system (see, e.g., (Romaniuk 2015)).

4.9.1 The homogeneous Poisson process

We start from the necessary definitions, which describe the simplest case of the
Poisson process, known as the homogeneous Poisson process (see also Section
2.3.2 for additional definitions).

The homogeneous Poisson process is characterized by its rate parameter
(known also as the intensity) λ, which is equal to the expected number of events
(“jumps” of trajectory of this process, see example given by Figure 4.6) that
occur per unit time. In this part we use notation Nt(λ) for this HPP.

The most straightforward method for sampling of the trajectory of homoge-
neous Poisson process is to use the relation between the exponential distribution
Exp(λ) and the homogeneous Poisson process Nt(λ). It is known from the prob-
ability theory that for a fixed t ∈ T , Nt ∼ Poiss(λt) and the intervals between
consecutive events (between the previously mentioned “jumps” of the trajectory)
are exponentially distributed with the parameter λ (see Theorem 2.39).

Therefore, for a fixed time t, we have the following algorithm (see, e.g. (Law
2007)):
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Fig. 4.6. Example of Poisson process trajectory

Algorithm 4.50 (Homogeneous Poisson process I).

N = 0;

S = 0;

while S < t do

{

L = GenerateExp (lambda);

S = S + L;

N = N + 1;

}

return N.

The above algorithm can be described as follows:

1. At the beginning of the procedure, the value of the process N and the con-
sidered time moment S are both equal to 0.

2. Generate the length of the interval L ∼ Exp(λ) by applying the function
GenerateExp (lambda).

3. Increase the value of the process (number of “jumps” of its trajectory) N by
one and add the random variable L to the considered time moment S.

4. If S < t, return to step 2, otherwise, return the final output N .

As it can be easily seen, a sequence L1, L2, . . . of iid exponentially distributed
random variables is generated via this approach. They may be identified with
the intervals between the subsequent events, caused by the process Nt. Then,
the cumulated sums of lengths of these intervals

S1 = L1, S2 = L1 + L2, S3 = L1 + L2 + L3, . . .
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are calculated. These sums are also the moments of the subsequent jumps (or
arrival times) of the process Nt. This algorithm stops, when the value of the last
cumulated sum Sk is greater than the fixed time t.

This approach, however, has some important disadvantage – it is numerically
inefficient for greater values of λ (i.e. shorter intervals between the events) or
of t. In such a case the following theorem can be useful (see, e.g. (Karlin &
Taylor 1975)):

Theorem 4.51. For the fixed value of the process Nt = n, the conditional
distribution of the vector of the cumulated sums of the intervals (S1, S2, . . . , Sn)
is the same as the distribution of vector of order statistics (X1:n, X2:n, . . . , Xn:n)

obtained for X1, . . . , Xn
iid∼ U [0, t].

This theorem leads directly to the respective algorithm:

Algorithm 4.52 (Homogeneous Poisson process II).

n = GeneratePoiss (lambda * t);

for i = 1 to n do

{

U_i = GenerateU;

}

(X_{1:n}, X_{2:n}, ..., X_{n:n})

= OrderStatistics (U_1, U_2, ..., U_n);

for i = 1 to n do

{

S_i = t * X_{i:n};

}

return (S_1, S_2, ..., S_n).

The working of this algorithm can by subsumed by the following steps:

1. Generate the value n ∼ Poiss(λ ∗ t) of the process Nt(λ) for the fixed time t,
applying the function GeneratePoiss (lambda * t) (as indicated in Defi-
nition 2.38).

2. Sample n iid random variables U1, . . . , Un from U [0, 1].
3. Calculate the order statistics (X1:n, X2:n, . . . , Xn:n) based on U1, . . . , Un.
4. Multiply these order statistics by t, obtaining the vector of the cumulated

sums of the lengths of the intervals (S1, S2, . . . , Sn).

4.9.2 The non-homogeneous Poisson process

In the case of non-homogeneous Poisson process, the rate parameter λ is not a
constant value. Instead, we assume that λ(t) ≥ 0 for all t ≥ 0. As discussed in
Section 2.3.2, this function is called the rate function (or the intensity function).
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Non-homogeneous Poisson processes model many real-world systems. For ex-
ample, road traffic in a central part of the city is heavier during the morning
and evening rush hours. Also, the number of arrivals of buses at the bus stop
depends on hour.

We discuss two methods of non-homogeneous Poisson process generation,
namely the thinning method and the inversion of cumulative rate function.

The thinning method was proposed by Lewis & Shedler (1979) and, in some
way, is similar to the rejection method (see Section 4.1.2). Let us suppose that

λ∗ = max
t

{λ(t)} <∞ .

Then we have the following algorithm:

Algorithm 4.53 (Thinning method I).

1. Generate the cumulative sums (S1, S2, . . .) for the homogeneous Poisson
process Nt(λ

∗).
2. For each Si, i = 1, 2, . . ., accept this value as a new arrival time S

′

i with
the probability given by λ(Si)/λ

∗.

3. Return the obtained sequence
(

S
′

1, S
′

2, . . .
)

.

In this method, after sampling from teh homogeneous Poisson process, some of
the obtained arrival times Si are rejected (with probability 1 − λ(Si)/λ

∗) or
accepted (with the remaining probability λ(Si)/λ

∗). Therefore, the mentioned
similarity to the rejection method is easily seen.

Algorithm 4.53 can be also described in another, more convenient recursive
form, for some fixed value T (see, e.g. (Law 2007)):

Algorithm 4.54 (Thinning method II).

1. Set S = 0, N = 0, i = 0.
2. Generate U ∼ U [0, 1], then calculate S = S + (−1/λ∗) lnU .
3. Generate U ∼ U [0, 1]. If U ≤ λ(S)/λ∗, then accept this value and set
N = N + 1, i = i+ 1, S

′

i = S.
4. If S > T , then stop the algorithm and return the obtained sequence
(

S
′

1, S
′

2, . . .
)

, otherwise return to the step 2.

The thinning method is simple, but it may be numerically inefficient in some
cases. If the rate function λ(t) has relatively low values, except for a few high
and narrow peaks, λ∗ is not comparable with λ(t) most of the time. In such a
case, most of the points generated for the homogeneous Poisson process Nt(λ

∗)
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will be rejected. Then, a more general thinning algorithm with nonconstant λ∗

may be applied (see, e.g. (Lewis & Shedler 1979) for further details).
The other approach, the inversion of cumulative rate function, is similar to

the inversion method (see Section 4.1.1). Denote by

Λ(t) = Λ(0, t) =

∫ t

0

λ(y)dy (4.43)

the expectation function (or the cumulative rate function). This function is a
continuous function of t and it is equal to the expected number of events between
time instants 0 and t. Let Λ−1(t) be the inverse function of Λ(t). Then, we have
the following algorithm (see, e.g. (Law 2007)):

Algorithm 4.55 (Inversion of cumulative rate function).

1. Generate the arrival times (S1, S2, . . .) for the homogeneous Poisson pro-
cess Nt(1), i.e. for λ = 1.

2. For each Si, i = 1, 2, . . ., apply S
′

i = Λ−1(Si).

3. Return the obtained sequence
(

S
′

1, S
′

2, . . .
)

.

Contrary to the thinning method, all of the Si’s are used in Algorithm 4.55.
But this approach requires calculation and then inversion of Λ(t), which can be
numerically difficult in some cases.

4.9.3 The Wiener process

Generation of trajectory of the Wiener process is based on its features, described
in Section 2.3.1. Let us assume that we are interested only in values of this process
for some fixed moments t1 < t2 < . . . < tn, i.e. Wt1 ,Wt2 , . . . ,Wtn . Then, the
following algorithm can be applied:

Algorithm 4.56 (Wiener process).

W_0 = 0;

t_0 = 0;

for i = 1 to n do

{

N = GenerateNorm (0, t_i - t_{i-1});

W_{t_i} = W_{t_{i-1}} + N;

};

return (W_{t_1},...,W_{t_n}).
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This algorithm is described by the following steps:

1. Set W0 = 0 and t0 = 0.

2. For the successive moments t1, t2, . . . , tn, generateN1, N2, . . . , Nn
iid∼ N(0, ti−

ti−1) applying the function GenerateNorm (0, t_i - t_{i-1}).
3. Calculate the values Wt1 ,Wt2 , . . . ,Wtn , based on the successive increases
N1, N2, . . . , Nn, where

Wt1 = N1,Wt2 =Wt1 +N2, . . . ,Wtn =Wtn−1 +Nn .
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Foundations of Monte Carlo methods

Maciej Romaniuk

5.1 Historical context

Computational techniques, known as Monte Carlo (abbreviated usually as MC)
methods, were proposed by Metropolis & Ulam (1949). The name of this ap-
proach was suggested by Nicolas Metropolis because of the similarity of MC
methods to games of chance, and Monaco is a famous centre of gambling. In their
beginning, MC simulations were used during the famous Manhattan project.
MC method was applied as a numerical technique for the approximation of inte-
grals which could not be solved by other approaches. And integrals over poorly-
behaved functions, as well as multidimensional integrals have been and still are
convenient subjects of the MC method. Nowadays, because of advances in com-
puter hardware, especially because of lower costs of computer memory and faster
processors, MC methods can be found in various areas of applications, namely
integration and optimization problems, generation of random samples from com-
plicated distributions, actuarial sciences, financial mathematics, Bayesian infer-
ence etc. Some of these areas are discussed in a more detailed way in Chapters 7
and 8.

Stanisław Ulam described the moment of invention of MC methods (see
(Eckhardt 1987)) in this way:

The first thoughts and attempts I made to practice [the Monte Carlo
Method] were suggested by a question which occurred to me in 1946 as
I was convalescing from an illness and playing solitaires. The question
was what are the chances that a Canfield solitaire laid out with 52 cards
will come out successfully? After spending a lot of time trying to es-
timate them by pure combinatorial calculations, I wondered whether a
more practical method than “abstract thinking” might not be to lay it out
say one hundred times and simply observe and count the number of suc-
cessful plays. This was already possible to envisage with the beginning of
the new era of fast computers, and I immediately thought of problems of
neutron diffusion and other questions of mathematical physics, and more
generally how to change processes described by certain differential equa-
tions into an equivalent form interpretable as a succession of random
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operations. Later [in 1946, I] described the idea to John von Neumann,
and we began to plan actual calculations.

As it can be seen from the above description, the main idea of Ulam’s was
to apply random calculations based on statistics and probability theory to ap-
proximation of solutions of real-life problems. Earlier, this idea was thought to
be rather some statistical “curiosity”, not the useful, practical tool. This seems
obvious now for modern scientists, but it is a very subtle idea that some entirely
physical problem could be approximately solved by a related random process.
Nowadays, the name of Monte Carlo is used as a general term for various simu-
lation techniques.

In this chapter, the main ideas of Monte Carlo approach to integration and
optimization problems, will be considered. Additional details about MC methods
may be found in, e.g. (Robert & Casella 2004), (Law 2007).

5.2 Monte Carlo integration

It is commonly known that many integrals are very difficult to calculate, be-
cause of problems with lack of the relevant analytical form of antiderivative. Of
course, there are many numerical, strictly deterministic (i.e. without necessity
of generation of any random numbers) approaches, like the trapezoidal rule or
Simpson’s rule (see, e.g. (Atkinson 1989)). But in the case of some integrals, es-
pecially multidimensional integrals, these approaches are computationally very
expensive and thus less effective than the MC method, based on simulation ap-
proach. This advantage of Monte Carlo integration will be explained in a more
detailed way in Section 5.2.3.

5.2.1 The simple approach

The simplest case of the MC approach can be considered when the definite
integral

∫ b

a

h∗(x)dx (5.1)

for some fixed interval [a, b] is evaluated. This kind of problems is illustrated by
a few following examples.

Example 5.1. As it is known, cdf of the standard normal distribution can not
be written in an explicit, analytical form. Therefore, in order to calculate the
relevant probabilities, simulations can be directly applied. Let

Φ(y) =

∫ y

−∞

1√
2π
e

x2

2 dx . (5.2)

Then, for X1, X2, . . . , Xn
iid∼ N(0, 1), the integral (5.2) can be approximated by

the simple estimator
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Φ̂(y) =
1

n

n
∑

i=1

11(Xi ≤ y) .

The correctness of such estimation will be proved in Section 5.2.3. In order to

generate the sample X1, X2, . . . , Xn
iid∼ N(0, 1) the relevant algorithm for the

standard normal distribution should be used. The examples of such algorithms
were discussed in Section 4.3.

Example 5.2. Let us suppose that we would like to calculate

∫ 1

0

(sin(20x) + cos(10x))
2
dx . (5.3)

This integral is rather complicated for direct, numerical evaluation, because of
high fluctuations of the integrated function, as illustrated by Figure 5.1. There-

fore, for the sample U1, U2, . . . , Un
iid∼ U [0, 1], the integral (5.3) can be approxi-

mated by

ĥ∗(X) =

∑n
i=1 (sin(20Ui) + cos(10Ui))

2

n
.

The example of the trajectory of such an estimator, based on various numbers of
simulations n is illustrated with Figure 5.2.
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Fig. 5.1. Graph of the function h∗(x) = (sin(20x) + cos(10x))2 from Example 5.2

5.2.2 Hit-or-miss method

In the so-called hit-or-miss Monte Carlo integration (which is also described as
geometrical Monte Carlo), the definite integral of the form (5.1) is estimated by
drawing a rectangle A, which contains the graph of the function h∗(x), i.e.
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Fig. 5.2. Graph of the estimator ĥ∗(X) from Example 5.2

A = {(x, y) : x ∈ [a, b], 0 ≤ y ≤ max
t∈[a,b]

h∗(t)} .

Then, n points are sampled uniformly over the rectangle A, so the integral (5.1)
is approximated via the estimator

ĥ∗(X) =
n0

n
l2(A) ,

where n0 is the number of points which fall under the graph of the function
h∗(x) and l2(A) is the area of A.

Example 5.3. In order to approximate the value of π, we uniformly generate n
points from the square C2 = [−1, 1]× [−1, 1]. Then, the number of points, which
are inside the 2-dimensional unit ball B2 = {(x, y) : x2 + y2 ≤ 1}, is calculated
(as illustrated by Figure 5.3). Because the ratio of B2 to C2 is equal to

l2(B
2)

l2(C2)
=
π

4
,

which could be approximated by n0

n , then the relevant estimator of π is given by

π̂ =
4n0

n
.

5.2.3 Crude Monte Carlo

Instead of the simple formula (5.1), the more general form of the definite integral

∫

X
h∗(x)dx (5.4)
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Fig. 5.3. Application of the hit-or-miss method from Example 5.3

may be considered for some fixed set X . Then for the crude Monte Carlo method
(also known as sample-mean method), the integral (5.4) is written in other form,
where two specially selected functions h(x) and f(x) are used, i.e.

∫

X
h∗(x)dx =

∫

X
h(x)f(x)dx . (5.5)

If f(x) is pdf of some random distribution with the support X , then this integral
is also the expected value of h(x) with the density f(x), i.e.

Efh(X) =

∫

X
h(x)f(x)dx . (5.6)

Because of practical reasons, we assume that X ⊂ Rp for some fixed value p.
Additionally, the value of the integral (5.6) should exist in numerical sense and
has to be finite, i.e. Ef |h(x)| <∞.

The derived formula (5.6) is a very general form for the integration problem.
For example, if X is a compact set, then we have

∫

X
h(x)dx =

∫

X
lp(X )h(x)

1

lp(X )
dx = lp(X )Elp(X )h(X) , (5.7)

where lp(X ) is the p-dimensional volume of X . In this case, the density f(x) is
given by the uniform distribution over the set X .

In order to calculate the expected value (5.6) via the crude Monte Carlo
method, the sample X1, X2, . . . , Xn of iid variables according to pdf f(x) should
be generated. Then, the empirical average
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ĥf (X) =
1

n

n
∑

i=1

h(Xi) (5.8)

approximates the value of the considered integral (5.6), since ĥf (X) converges
almost surely to Efh(X) by the Strong Law of Large Numbers (abbreviated
usually as SLLN, see, e.g. (Feller 1968)):

Theorem 5.4 (Strong Law of Large Numbers). Let Y1, Y2, . . . , Yn be iid random
variables with E|Yi| <∞ and EYi = µ. Then

∑n
i=1 Yi
n

a.s.−−−−→
n→∞

µ .

Moreover, if Efh
2(X) < ∞ (i.e. h2 has a finite expectation under f), then

we may assess the speed of convergence of the estimator ĥf (X). The variance
σ2
h of the function h(X) for the density f is approximated by

σ̂2
h = V̂ar (hf (X)) =

1

n

n
∑

i=1

(

h(Xi)− ĥf (X)
)2

.

And variance of the estimator ĥf (X), which is given by

σ2
ĥ
= Var

(

ĥf (X)
)

=
1

n

∫

X
(h(x)− Efh(X))

2
f(x)dx ,

can be estimated from the sequence X1, X2, . . . , Xn via the sample variance

σ̂2
ĥ
= V̂ar(ĥf (X)) =

1

n2

n
∑

i=1

(h(Xi)− ĥf (X))2 .

This leads to the equality

σ̂2
ĥ
=
σ̂2
h

n
. (5.9)

For large n, from the Central Limit Theorem,

ĥf (X)− Efh(X)

σ̂ĥ

is approximately distributed as the N(0, 1) variable. Therefore, the relevant con-
vergence tests and confidence bounds for the approximation of Efh(X) can be
constructed.

From the equality (5.9), the statistical error of the MC methods, measured by
the standard deviation σĥ, is roughly proportional to 1/

√
n = n−1/2 for large n,

regardless of the dimension of the evaluated integral. Therefore, teh MC methods
become particularly attractive if we consider integration in higher dimensions,
when numerical, deterministic approaches have higher errors. For example, in the
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case of the trapezoid rule, its error decreases as n−2/d, where d is the number of
dimensions and n denotes the number of subintervals per dimension. Generally,
in “standard”, i.e. deterministic approaches, their error is proportional to n−a/d

for some constant a depending on the algorithm considered. As it can be easily
seen, the MC method for some sufficiently high number of dimensions d has
lower error than any deterministic method.

If the assumption that Efh
2(X) <∞ is not fulfilled, then some problems with

numerical stability of the estimator ĥf (X) can arise. For example, unexpected
fluctuations of values of the estimators calculated for various runs of simulations
are observed.

Our considerations, concerning the crude MC approach are illustrated by the
following examples:

Example 5.5. Let us consider the integral

I =

∫ ∞

0

(1 + sin(x)) e−
x2

2 dx .

It leads to

I =

∫ ∞

0

√
2π (1 + sin(x))

1√
2π
e−

x2

2 dx .

Then, h(x) =
√
2π (1 + sin(x)), and f(x) is pdf of the standard normal distribu-

tion. Therefore, for X1, X2, . . . , Xn
iid∼ N(0, 1), the crude MC estimator of the

integral I is given by

ĥf (X) =
√
2π

1

n

n
∑

i=1

(1 + sin(Xi)) 11(Xi ≥ 0) . (5.10)

Example 5.6. Let us consider the two-dimensional integral

I =

∫ ∞

0

∫ ∞

0

xy2e−2x−ydx dy .

Quite obviously,

I =

∫ ∞

0

∫ ∞

0

1

2
xy22e−2xe−ydx dy ,

therefore h(x, y) = 1
2xy

2 and the joint two-dimensional pdf f(x, y) = f(x)f(y) =
2e−2xe−y is the product of two densities f(x) and f(y) of the independent random

variables X ∼ Exp(2) and Y ∼ Exp(1). For X1, X2, . . . , Xn
iid∼ Exp(2) and

Y1, Y2, . . . , Yn
iid∼ Exp(1), the relevant estimator of I is given by

ĥf (X,Y ) =
1

2

1

n

n
∑

i=1

XiY
2
i .
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5.2.4 Riemann approximation

One of the deterministic methods to evaluate one-dimensional integrals of the
form (5.1) is to apply the widely known analytical definition of the integral,
where the integral is given by the limit of Riemann sums. For every sequence
ai,n (where 0 ≤ i ≤ n, a0,n = a, an,n = b, ai,n ≤ ai+1,n) the Riemann sum

n−1
∑

i=0

h(ai,n)f(ai,n) (ai+1,n − ai,n)

converges to
∫ b

a

h(x)f(x)dx (5.11)

as n→ ∞ if ai+1,n − ai,n goes to 0 (in n).
This approach could be combined with Monte Carlo simulations, which leads

to Riemann sum with random steps. Such method is known as weighted Monte
Carlo integration or simulation by Riemann sums (Riemannian simulation) (see
(Philippe 1997)). In this case the one-dimensional integral (5.11) is approximated
by the estimator

ĥRf (X) =

n−1
∑

i=0

h (Xi:n) f (Xi:n) (Xi+1:n −Xi:n) , (5.12)

where X0, X1, . . . , Xn
iid∼ f(x) and X0:n, X1:n, . . . , Xn:n are order statistics of

such a sample.
This method has practical significance, because the variance of the estima-

tor ĥRf (X) decreases proportionally to n−2 compared to only n−1 for the crude
MC approach. However, this dominance fails to extend to the case of multidi-
mensional integrals because of the curse of dimensionality, considered in Section
4.6.1. Additionally, the simulation by Riemann sums requires storing and order-
ing of all values of the sample X0, X1, . . . , Xn, which increases the numerical
burden of this algorithm.

5.3 Variance reduction methods

As emphasized by the equality (5.9), the statistical error of MC methods depends
on the number of simulations (changing as n−1/2 for the standard deviation)
and on the variance σ2

h itself. The lower the value of σ2
h, the lower the number

of simulations necessary to assess the fixed level of this error. The described
dependency can be illustrated using the following, classical example (see, e.g.
(Robert & Casella 2004)):
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Example 5.7. Let us assume that we would like to calculate the integral

I =

∫ ∞

2

1

π(1 + x2)
dx . (5.13)

The general form of pdf for the Cauchy distribution (denoted further by C(µ, γ))
is given by

f(t) =
1

πγ(1 +
(

t−µ
γ

)2

)

for the scale parameter γ > 0 and the location parameter µ ∈ R. Then, the
integral (5.13) is similar to the density of the standard Cauchy (i.e. C(0, 1))
distribution

f(t) =
1

π(1 + t2)
.

Therefore, if the algorithm for sampling from C(0, 1) is known (it is available
e.g. using the inversion method), then the relevant crude MC estimator is equal
to

Î1 =
1

n

n
∑

i=1

11 (Xi > 2) , (5.14)

where X1, X2, . . . , Xn
iid∼ C(0, 1). In this case we have, from the binomial distri-

bution,

Var Î1 =
I(1− I)

n
≈ 0, 127

n
. (5.15)

Because the density of the Cauchy distribution is symmetrical around zero, then
the relevant MC estimator of the integral I is also given by

Î2 =
1

2n

n
∑

i=1

11 (|Xi| > 2) .

In this case the error of estimation is lower, because

Var Î2 =
I(1 − 2I)

2n
≈ 0, 052

n
.

This result may be further improved – the inefficiency of the previously described
approaches is due to the generation of values outside the domain of interest, i.e.
only from the tails of the Cauchy distribution. But the “main mass of probability”
of this distribution is located around zero. Knowing this, the integral (5.13) may
be written as

I =
1

2
−
∫ 2

0

1

π(1 + x2)
dx =

1

2
−
∫ 2

0

2

π(1 + x2)

1

2
dx . (5.16)

And an alternative method of evaluation of I, based on the formula (5.16), is
therefore
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Î3 =
1

2
− 1

n

n
∑

i=1

2

π(1 + U2
i )

,

where U1, U2, . . . , Un
iid∼ U [0, 2]. From integration by parts, we obtain the approx-

imation of variance for this estimator

Var Î3 ≈ 0, 0092

n
.

Applying y = x−1, we can write down the considered integral (5.13) also as

I =

∫ 1
2

0

1

π(1 + 1
y2 )y2

dy =

∫ 1
2

0

1

2π(1 + y2)
2dy ,

which gives a completely different estimator

Î4 =
1

n

n
∑

i=1

1

2π(1 + U2
i )

, (5.17)

where U1, U2, . . . , Un
iid∼ U [0, 12 ]. In this case, the same integration by parts shows

that

Var Î4 ≈ 0, 00095

n
. (5.18)

Comparing the variance of the first estimator, given by (5.15) with the variance of
the last approximation, which is equal to (5.18), it can be seen that the reduction
in variance is of the order of 1000. This means that the evaluation of the last
estimator Î4 requires

√
1000 ≈ 33 times fewer simulations to achieve the same

precision as in the case of the first approach Î1. However, to the contrary, more
knowledge about the properties of the integral and additional “contemplation”
time are also necessary.

As illustrated by the previous example, it is possible to lower the error of the
MC estimator if its variance is reduced. Therefore, special methods of variance
reduction (such as importance sampling, antithetic variables, control variates)
were developed. Some examples of these approaches and the relevant algorithms
are discussed in the sequel.

5.3.1 Importance sampling

The evaluated integral (5.6) has an alternative representation (called importance
sampling fundamental identity), namely

Efh(X) =

∫

X
h(x)

f(x)

g(x)
g(x)dx ,

which leads to another formula for the estimator
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ĥg(X) =
1

n

n
∑

i=1

f(Xi)

g(Xi)
h(Xi) , (5.19)

where X1, . . . , Xn are iid samples from the new density g(x).
The estimator (5.19) converges to Efh(X) for the same reason as the crude

MC estimator (5.8) does, with the additional assumption that the support of
g(x) includes the support of f(x).

This method puts very little restrictions on the choice of the so called instru-
mental density g(x). But some densities give rise to better results than others.
The variance of the importance sampling estimator is finite only if

Eg

(

h2(X)
f2(X)

g2(X)

)

=

∫

X
h2(x)

f2(x)

g2(x)
g(x)dx =

∫

X
h2(x)

f2(x)

g(x)
dx <∞ .

It means that the instrumental density g(x) with its tails lighter than those of
f(x) (i.e. with unbounded ratio f/g) is not an appropriate choice in the case of
this method. In such an instance, the value of the importance sampling estimator
(5.19) can vary from one iteration of simulations to the next one.

It is possible, though, to find “the best” instrumental density g(x), which
minimizes the variance of the estimator (5.19) and which is the optimal choice
for the given function h(x) and the fixed density f(x):

Theorem 5.8. The variance of the importance sampling estimator (5.19) is
minimal for the density g(x) given by the formula

g∗(x) =
|h(x)|f(x)

∫

X |h(z)|f(z)dz . (5.20)

Proof of this theorem can be found in (Robert & Casella 2004).
This theorem provides for the constructive approach in the sense that it

gives the exact formula for the optimal density g∗(x). But this optimal choice
requires some additional knowledge of the considered integral – there is the factor
∫

h(x)f(x)dx in the denominator of (5.20). Therefore, from the practical point
of view, we should choose the instrumental density g(x) ∝ |h(x)|f(x), i.e. the
one, for which |h(x)|f(x)/g(x) is almost constant with finite variance.

Definition 5.9 (Student’s t distribution). A distribution of the random variable
X is given by Student’s t distribution (further on we use the notation X ∼ t(ν))
if the density of this distribution is equal to

f(t) =
Γ
(

ν+1
2

)

√
νπ Γ

(

ν
2

)

(

1 +
t2

ν

)− ν+1
2

for ν > 0 degrees of freedom. If X ∼ t(ν) and ν > 1, then EX = 0 , if ν > 2,
then VarX = ν

ν−2 .
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Example 5.10. Let us consider the integral Efh(X), where f(x) is equal to pdf
of Student’s t distribution with ν degrees of freedom and

h(x) =
x5

1 + (x− 3)2
11 (x ≥ 0) .

In this case there are many possible instrumental densities (e.g. normal distri-
bution, Cauchy distribution – see (Robert & Casella 2004) for a more detailed
discussion). An important candidate for the instrumental density g(x) is the ex-
ponential distribution. Then, g(x) = e−x for x ≥ 0 and the considered integral
can be written as

Efh(X) =

∫ ∞

0

x5

1 + (x− 3)2
f(x)dx =

∫ ∞

0

x5ex

1 + (x− 3)2
f(x)g(x)dx ,

which leads to the importance sampling estimator

ĥg(X) =
1

n

n
∑

i=1

X5
i e

Xi

1 + (Xi − 3)2
f(Xi) ,

where X1, X2, . . . , Xn
iid∼ Exp(1).

5.3.2 Antithetic variables

Usually, during simulations, iid samples are used to calculate the estimator of
the considered integral Efh(X). But there may be situations, when it may be
preferable to generate correlated variables instead of the independent ones. For
example, if we wish to compare two quantities

I1 =

∫

g1(x)f1(x)dx , I2 =

∫

g2(x)f2(x)dx ,

which are close in value, then the estimator Î1 − Î2 has variance Var
(

Î1

)

+

Var
(

Î2

)

, and so its error can be too high for the appropriate estimation of

the difference I1 − I2. But if both of the estimators, Î1 and Î2, are positively

correlated, then the variance of Î1−Î2 is reduced by the factor of −2Cov
(

Î1, Î2

)

.

The antithetic variables method is based on a similar idea. In this case,
instead of the classical, crude MC estimator (5.8), another approximation,

ĥf (X) =
1

2n

n
∑

i=1

(h(Xi) + h(Yi)) , (5.21)

where pairs (X1, Y1), . . . (Xn, Yn) are iid variables, is applied. Both of the random
sequences, X1, . . . , Xn and Y1, . . . , Yn, are sampled from the density f(x). The
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antithetic estimator (5.21) is more efficient than the estimator (5.8), based on
an iid sample of size 2n, if the variables h(Xi) and h(Yi) for each pair (Xi, Yi)
are negatively correlated. Then, the variables Yi are called antithetic variables.

It should be noted that the correlation between h(Xi) and h(Yi) depends
both on the pair (Xi, Yi) and the function h(.) itself. Therefore, there is no gen-
eral method for the construction of the relevant dependent sampling algorithm.
Rubinstein (1981) proposed to apply the uniform variables Ui to generate the
sequence of Xi and then the transformed variables 1 − Ui to generate sequence
of Yi. As it was mentioned in Section 4.1, the uniform variables are the common
source of input for the more complex algorithms for sampling from other dis-
tributions. But the approach mentioned requires additional assumptions about
the function h(.) and special methods of sampling from the uniform random
variables.

5.3.3 Control variates

In the case of the control variates method, the additional knowledge about some
integral of the function h0(x) for the density f(x) is necessary. Let us assume that
two estimators are available, the first one approximates the considered integral

Efh(X) =

∫

X
h(x)f(x)dx ,

and is given by the classical, crude MC formula

ĥf (X) =
1

n

n
∑

i=1

h(Xi) ,

the second estimator approximates another integral

Efh0(X) =

∫

X
h0(x)f(x)dx

and is also given by the crude MC formula

ĥ0f (X) =
1

n

n
∑

i=1

h0(Xi) .

Because
Efh(X) = (Efh(X) + cEfh0(X))− cEfh0(X) ,

for some constant c, then this integral can be also estimated by another formula,
which “combines” both ĥf (X) and ĥ0f (X), i.e.

ĥf (X)∗ =
1

n

n
∑

i=1

(h(Xi) + ch0(Xi))− cEfh0(X) . (5.22)
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As it is emphasized by the form of the estimator (5.22), in order to use this new

approximation ĥf (X)∗, it is necessary to know the exact value of Efh0(X).
The variance of the obtained approximation, known as the control variate

estimator ĥf (X)∗, is equal to

Var(ĥ∗f (X)) = Var
(

ĥf (X)
)

+ c2 Var
(

ĥ0f (X)
)

+ 2cCov
(

ĥf (X), ĥ0f (X)
)

.

(5.23)
For the optimal choice of the parameter c, given by

c∗ = −
Cov

(

ĥf (X), ĥ0f (X)
)

Var
(

ĥ0f (X)
) ,

we have

Var(ĥ∗f (X)) =
(

1− ρ2
(

ĥf (X), ĥ0f (X)
))

Var
(

ĥf (X)
)

,

where ρ2
(

ĥf (X), ĥ0f (X)
)

is the correlation coefficient between ĥf (X) and

ĥ0f (X). In this case, the overall variance is reduced. Once again, as in the
case of the importance sampling estimator, there are numerical problems with
calculation of c∗, because this optimal value depends on the evaluated integral
Efh(X). An incorrect choice of c may increase the variance of the control variate
estimator.

Example 5.11. Let us suppose that for some density f(x) we would like to
calculate the probability

I = P(X > a) =

∫ ∞

a

f(x)dx .

In this case the crude MC estimator is given by

Î =
1

n

n
∑

i=1

11 (Xi > a) ,

where X1, X2, . . . , Xn
iid∼ f(x). If for some parameter b < a we know the exact

value of the probability P(X > b), then the additional estimator

Î0 =
1

n

n
∑

i=1

11 (Xi > b)

is available (for deeper details see (Robert & Casella 2004)). Then, the control
variate estimator is given by

Î∗ =
1

n

n
∑

i=1

11 (Xi > a) + c

(

1

n

n
∑

i=1

11 (Xi > b)− P(X > b)

)

.
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Since Var Î∗ = Var Î + c2 Var Î0 + 2cCov
(

Î , Î0

)

and

Cov
(

Î , Î0

)

=
1

n
P(X > a) (1− P(X > b)) ,

Var Î0 =
1

n
P(X > b) (1− P(X > b)) ,

then the control variate estimator Î∗ will have lower variance compared to the
“standard” approximation Î, if c < 0 and

|c| < 2
Cov

(

Î , Î0

)

Var Î0
= 2

P(X > a)

P(X > b)
.

5.4 Monte Carlo optimization

Apart from the integration problem, discussed in Section 5.2, also the optimiza-
tion problem

max
x∈X

h(x) (5.24)

for some function h(x) and a set X ⊂ Rp is an area of application of Monte
Carlo methods. If the deterministic numerical methods are used in this area,
then checking the analytical properties of the target function, like convexity,
boundedness, smoothness, constitutes usually the most important issue. There-
fore, some preliminary steps for verifying the regularity conditions of h(x) and
devising a “special” algorithm for such case becomes necessary. Additionally, it
is possible that the considered deterministic approach would find only the first,
local maximum of h(x), instead of the correct, global maximum of the target
function.

Simulation methods do not rely on special analytical properties of the target
function h(x). And for some approaches there is probability equal to one that the
algorithm will find the correct global maximum. In this section, some of these
methods will be considered in a more detailed way. Additional discussion can be
also found in, e.g., (Robert & Casella 2004).

The simulation methods for the optimization problem may be divided into
two groups. The first group is related to the exploratory approach (e.g. the “naive
approach”, simulated annealing), where we are interested in fast exploration of
the space X . The second one is based on stochastic approximation (e.g. the
EM algorithm), which is related to a probabilistic approximation of the target
function h(x).

5.4.1 A simple approach

If the set X is bounded, then the straightforward approach to solve the opti-
mization problem (5.24) is to generate a sampleX1, X2, . . . , Xn from the uniform
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distribution on X and then approximate the exact solution via the simple esti-
mator

ĥmax = max
i=1,...,n

{h(Xi)} . (5.25)

This method converges (for n→ ∞), but it may be very slow, since it does not
take into account any specific feature of the target function h(x). However, there
is no possibility for such algorithm to “get stuck” in some local maximum, as this
is the case of the deterministic, numerical method. This “naive” approach will
be illustrated with the following example:

Example 5.12. Let us consider the function

h(x) = (cos(50x) + sin(20x))
2

(5.26)

for x ∈ [0, 1]. This function (see Figure 5.4) has many local maxima and minima,
therefore a deterministic algorithm (e.g. Newton-Raphson algorithm, see (Robert
& Casella 2004)) might go towards the nearest mode. Such behaviour does not
allow to escape later from the local maximum to find the global one. Therefore,
the possibility of finding the correct answer to the optimization problem depends
on the appropriate starting condition in such a case. To the contrary, the “naive”
estimator (5.25) performs the search in the whole domain [0, 1] as it is empha-
sized by Figure 5.5.

0.2 0.4 0.6 0.8 1.0

0.5

1.0
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3.5

Fig. 5.4. Function h(x) from Example 5.12

If h(x) is positive, and if
∫

X
h(x)dx <∞ ,

then such function could be identified with some density without its normalizing
constant. In this case, the optimization problem (5.25) may be seen as the one of
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Fig. 5.5. Simulations for the function h(x) from Example 5.12

finding the modes of the density h(x). This approach may be also generalized for
the cases when the assumptions mentioned above are not fulfilled (see (Robert
& Casella 2004) for additional details).

5.4.2 Simulated annealing

A more sophisticated approach than the simple method, described in Section
5.4.1, is known as the simulated annealing algorithm. This method was intro-
duced by Metropolis, Rosenbluth, Rosenbluth, Teller & Teller (1953) and it is
based on changing the special parameter, referred to as temperature T > 0,
which allows to partially avoid the traps of local maxima.

For the fixed starting value x0, the consecutive values Xn are sampled ac-
cording to the following algorithm:

Algorithm 5.13 (Simulated annealing).

1. Sample the proposed value Yn from some distribution in a neighbourhood
of the previous value Xn−1 = xn−1 (e.g. from some uniform distribu-
tion). In a more general setting, this sampling could be done from the
density given by g(|xn−1 − Yn|).

2. The next value Xn in the algorithm is generated as follows

Xn =

{

Yn with probability p = min {exp(∆h/T ), 1}
xn−1 with probability 1− p

, (5.27)

where ∆h = h(Yn)− h(xn−1).
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As it can be seen from the condition (5.27), if h(Yn) > h(xn−1) (i.e. value of
the function h(x) is higher for the new, proposed point Yn than for the previous
point xn−1), then this proposed point is always accepted and Xn = Yn. Other-
wise, if h(Yn) ≤ h(xn−1), then the new, proposed point may still be accepted
with probability p 6= 0. And in this case Xn = Yn is also set. This property al-
lows the algorithm to escape the attraction of some local maximum of h(x). Of
course, the described behaviour depends on the probability p, which is related
to the choice of the temperature T . As T decreases toward 0, the values sam-
pled in the simulated annealing algorithm become concentrated in a narrower
neighbourhood of the local maxima of h(x), because for h(Yn) ≤ h(xn−1) we get
p→ 0 if T → 0.

Usually, the temperature T is modified at each iteration of the algorithm,
i.e. the whole sequence T1, T2, . . . is set. But the convergence to global maximum
depends on the rate of decrease of the temperature. In the case of finite spaces,
the logarithmic rate Ti = Γ/ log i or the geometric rate Ti = αiT0 (for some
parameter 0 < α < 1) of decrease are advised by some authors (see, e.g. (Robert
& Casella 2004) for additional details).

Because in this algorithm the next value Xn depends on the previous value
Xn−1, then the simulated annealing method is closer to MCMC (Markov Chain
Monte Carlo) methods (see Chapter 6) than to the “standard” MC approach,
where independent samples are usually generated.

5.4.3 The EM algorithm

Abbreviation EM originates from the two steps used in this approach: the ex-
pectation step (E-step) and the maximization step (M-step).

The EM method was introduced by Dempster, Laird & Rubin (1977) and is
usually related to missing data models. In these models the target function h(x),
which should be optimized, is given by

h(x) = EZ (H(x, Z)) , (5.28)

i.e. the expected value of some additional variable Z. This formulation is ob-
served in practice, e.g. for censored data models (the data is censored by some
unobservable variable), mixture models (indicator of the component, generating
the observation, cannot be observed) or logistic regression. Additionally, artificial
extensions which gives the formula (5.28) are also possible.

From the statistical point of view, in the missing data models the likelihood
can be expressed as demarginalization

g(x|θ) =
∫

Z
f (x, z|θ) dz (5.29)

and the variable Z only simplifies calculations. The way Z is selected in order
to satisfy (5.28), should not affect the value of the estimator. In this setting, the
target function is expressed as some integral of a more manageable quantity.
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For missing data models, the function

Lc (θ|x, z) = f (x, z|θ) = fθ (x, z) (5.30)

is called complete-model (or complete-data) likelihood for observations of the
complete data (X,Z). In (5.30), f (x, z|θ) is the joint density of variables X and
Z for the fixed value of parameter of the statistical model θ. Let us suppose that
we observe X1, X2, . . . , Xn – the iid sample from the density g(x|θ) = gθ(x).
Then we are interested in maximum likelihood estimation, i.e. in finding

θ̂ = sup
θ
L(θ) = sup

θ
L(θ|x1, x2, . . . , xn) = sup

θ
L(θ|x) , (5.31)

where x denotes the vector of observations x1, x2, . . . , xn. In a similar way, let z =
z1, z2, . . . , zn be a vector of observations of additional variables Z1, Z2, . . . , Zn.
Let f(x, z|θ) = fθ(x, z) be a joint density of variables X1, . . . , Xn and Z1, . . . , Zn

for the fixed value of the parameter θ.
From the definition of conditional density, we get the basic identity for the

EM algorithm

k(z|θ, x) = f(x, z|θ)
g(x|θ) , (5.32)

where k(z|θ,x) is the conditional density of the missing data z for the fixed
observed data x and the value θ. This identity leads to the relationship between
the complete-data likelihood Lc (θ|x, z) and the observed-data likelihood L(θ|x),
which is given by

logL(θ|x) = Ek,θ0 (logL
c (θ|x, z))− Ek,θ0 (log k(z|θ,x)) (5.33)

for any value θ0. On the right hand side of (5.33), the expected value is calculated
with respect to θ0 and the relevant density k(z|θ0,x). It should be noted that in
the case of the EM algorithm, to maximize logL(θ|x), only the first term on the
right hand side of (5.33) should be taken into account, as the other term can be
ignored (see also (Robert & Casella 2004) for additional details).

Let us denote the expected log-likelihood, as it is done usually in the case of
EM algorithm, by

Q (θ|θ0,x) = Ek,θ0 (logL
c (θ|x, z)) .

Then, Q (θ|θ0,x) can be maximized, and if θ1 is the value of θ maximizing
Q (θ|θ0,x), then this value θ1 can replace θ0 in next step and the whole procedure
can be repeated. Therefore, in the subsequent steps of the algorithm we calculate

θn+1 = max
θ
Q (θ|θn,x) .

This leads to the following method, which is started for some value θ0:
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Algorithm 5.14 (EM algorithm).

1. (the E-step) For the given value θn, calculate

Q (θ|θn,x) = Ek,θn (logLc (θ|x, z)) (5.34)

2. (the M-step) Find

θn+1 = argmax
θ
Q (θ|θn,x) .

The iterations are conducted until a fixed point of Q is obtained.
Convergence of the EM algorithm is based on the following theorem, estab-

lished by Dempster et al. (1977):

Theorem 5.15. The sequence θ0, θ1, . . ., generated by the EM algorithm, satis-
fies the inequality

L(θn+1|x) ≥ L(θn|x) ,

with equality holding if and only if

Q (θn+1|θn,x) = Q (θn|θn,x) .

Proof of this theorem can be found in (Robert & Casella 2004).
Theorem 5.15 guarantees that the likelihood will increase at each iteration

of the EM algorithm, but it does not guarantee that the obtained sequence
θ0, θ1, . . . converges to a maximum likelihood estimator. The next theorem gives
the conditions for the sequence to converge to a stationary point, which may be
a local maximum or saddle-point.

Theorem 5.16. If the expected complete-data likelihood Q (θ|θ0,x) is continu-
ous in both θ and θ0, then every limit point of the EM sequence θ0, θ1, . . . is a
stationary point of L(θ|x), and the sequence L(θ0|x), L(θ1|x), . . . convergences
monotonically to L(θ∗|x) for some stationary point θ∗.

Because this convergence is guaranteed only for some stationary point, then
additional conditions or techniques are necessary for finding the global maxi-
mum, i.e. to obtain the estimator in the main problem (5.31). Then, for example,
the EM algorithm can be run a number of times with different (e.g. random)
starting points.

Additionally, the MC method may be applied for the EM algorithm, this
amounting to MCEM method (Monte Carlo EM ). Each E-step in Algorithm
5.14 requires the computation of the expected log likelihood Q (θ|θn,x). Because
this can be numerically difficult, the sample Z1, Z2, . . . , Zm from the conditional
density k(z|θn,x) is generated and the approximation of the complete-data log-
likelihood
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Q̂ (θ|θn,x) =
1

m

m
∑

i=1

logLc (θ|x, Z1, Z2, . . . , Zm)

is maximized.





6

Introduction to Markov Chain Monte Carlo
methods

Maciej Romaniuk

Markov Chain Monte Carlo methods (abbreviated usually as MCMC ), intro-
duced by Metropolis et al. (1953) may be considered as a direct extension of
teh MC methods. Generally speaking, instead of an independent, identically
distributed sample as in the case of the Monte Carlo methods, the sequence of
dependent random variables is generated during the MCMC approach. This spe-
cially selected sequence forms a stochastic process with discrete time, known as
Markov chain. In this chapter the necessary definitions and theorems, concerning
theory of MCMC methods, as well as some examples of MCMC algorithms will
be considered.

In practice, MCMC methods are applied using various software libraries and
special programs (like BUGS, see (Thomas, Spiegelhalter & Gilks 1992)). These
simulation methods are used in many areas, e.g., in physics, biology, statistics
etc. Some examples of applications will also be further provided.

6.1 MCMC as a generalization of MC

As it was mentioned, MCMC methods may be seen as a generalization of Monte
Carlo methods. The main aim of introducing the Markov chain instead of the
independent sample is to eliminate one of the most important disadvantages of
Monte Carlo approach – the necessity of sampling iid random variables directly
from the specified density f(x) as this was presented in Chapter 5. Such pdf
could be a numerically complex function or its normalizing constant is sometimes
unknown or difficult to evaluate. Also the relevant sampling algorithm for f(x)
could be numerically inadequate for practical use.

In the case of MCMC methods, instead of sampling iid random sequence from
the specified density f(x), a Markov chain (Xi)i=0 with an appropriate station-
ary distribution f(x) is generated. If such Markov chain fulfils the assumptions of
the ergodicity theorems, considered in Section 3.3 (i.e. we use the ergodic chain),
then the empirical average converges to the relevant expected value. Therefore,
in this setting there is no necessity for sampling directly from the density f(x),
only the sequence approximately distributed from f(x) is generated. This idea
leads to the following definition:
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Definition 6.1. A Markov Chain Monte Carlo method for simulation of the
density f(x) is any method producing an ergodic Markov chain, whose stationary
distribution is given by this pdf f(x).

To apply the MCMC approach and to generate the Markov chain with the
fixed stationary distribution in order to solve, e.g., the integration problem stated
in (5.6), two general algorithms can be applied. The first one is the Metropolis–
Hastings (MH) algorithm. The similarities between the MH algorithm and the
simulated annealing approach will be discussed further on. The second method
is known as the Gibbs sampler. This algorithm is especially useful in the multi-
dimensional setting.

6.2 The Metropolis–Hastings algorithm

In order to generate the sequenceX1, X2, . . . , Xn, . . . via the Metropolis–Hastings
algorithm (abbreviated further as MH), the conditional density g(y|x), known
as the instrumental or the proposal density, is selected by an experimenter. To
implement the MH approach, almost any density g(y|x) can be chosen, but from
the practical point of view the following necessary conditions should be fulfilled:

1. It should be numerically easy to simulate from the density g(y|x).
2. It should be possible to evaluate the ratio f(y)/g(y|x) (up to a constant

independent of x) or the instrumental density is symmetric, i.e. it fulfils the
condition g(x|y) = g(y|x).

3. The set of supports of g(.|x) should include the whole support of the target
density f(.).

4. The constructed MC should be ergodic. The necessary conditions for fulfilling
this requirement will be considered later on as relevant theorems.

For the fixed starting point x0, the subsequent steps of the MH algorithm
are given by:

Algorithm 6.2 (Metropolis–Hastings algorithm).

1. Sample variable Yi−1 from the instrumental density g(.|xi−1).
2. Generate new value Xi according to the formula:

Xi =

{

Yi−1 with probability p(xi−1, Yi−1)

xi−1 with probability 1− p(xi−1, Yi−1)
, (6.1)

where

p(x, y) = min

{

f(y)

g(y|x)
g(x|y)
f(x)

, 1

}

. (6.2)
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The probability p(x, y), given by the condition (6.2), is known as the
Metropolis–Hastings acceptance probability. It is used to decide if the new gen-
erated value Yi−1 is accepted as Xi.

6.2.1 Convergence properties

As it was previously noted, the chain produced via the MCMC method should
be ergodic. Only in such case the ergodic theorems can be applied and then the
necessary convergence of the empirical average to the expected value is achieved.

The first theorem specifies the minimal necessary condition for the instru-
mental density g(.|x):
Theorem 6.3. Let (Xi)i=0 be the chain produced by MH approach described by
Algorithm 6.2. For every conditional distribution g(.|.), whose support includes
the support of f(.), f(.) is the stationary distribution of this Markov chain.

The proof of this theorem can be found in (Robert & Casella 2004).
As it was pointed out in Chapter 3, irreducibility and Harris recurrence

are the most important properties of the considered Markov chain. Also the
aperiodicity of the chain should be taken into account from the practical point
of view. If the chain is not aperiodic, then the relevant mean, based on this
chain, significantly changes from step to step. Such behaviour can increase the
estimation error.

Then, the following theorems can be applied to check the above requirements:

Theorem 6.4. If for all x, y ∈ S ×S the positivity condition of the conditional
density

g(y|x) > 0 (6.3)

is fulfilled, then the chain produced by Algorithm 6.2 is irreducible and Harris
recurrent. If, additionally, the events such that Xi+1 = Xi are allowed, i.e.

P

(

f(y)

g(y|x)
g(y|x)
f(x)

< 1

)

> 0 , (6.4)

then this MC is aperiodic.

The proof of this theorem can be found in (Robert & Casella 2004).
The inequality (6.3) in the positivity condition is equivalent to the condition

that every set can be reached in a single step. And the inequality (6.4) leads
directly to the conclusion that

P (Xi+1 = Xi) > 0 ,

i.e. the probability that MC remains in some state for the next step is not equal
to zero.

There is also another theorem that can be applied:
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Theorem 6.5. Assume that the density f(x) is bounded and positive on every
compact set of its support S. If there exist positive numbers ǫ, δ > 0 such that

g(y|x) > ǫ for |x− y| < δ , (6.5)

then the MC produced by Algorithm 6.2 is irreducible and aperiodic. Additionally,
every nonempty compact set is a small set. If h : S → R is such that

Ef |h(X)| <∞ ,

then, for every initial distribution πX0 there is

1

n

n
∑

k=1

h(Xk)
a.s.−−−−→

n→∞

∫

S
h(x)f(x)dx (6.6)

and

lim
n→∞

∥

∥

∥

∥

∫

S
Kn(x, .)dπX0 (x) − f(.)

∥

∥

∥

∥

TV

= 0 . (6.7)

The proof of this theorem can be found in (Robert & Casella 2004). The
limits (6.6) and (6.7) mean that the empirical average, based on the chain con-
structed by the MH algorithm, converges to the appropriate expected value and
the limit distribution of this Markov chain is the same as the target, stationary
distribution f(.).

The condition (6.5) can be identified with the conclusion that the instrumen-
tal density of transitions in a neighbourhood of x is bounded from below.

6.2.2 Selection of the instrumental distribution

Because of the previously mentioned universality in the selection of the instru-
mental density, there are many ways to choose this function. Some kinds of
densities are common choices for the experimenters, and therefore they will be
discussed in a more detailed way.

One of the simplest approaches is the independent MH algorithm. In this
case, the sampling density g(y|x) is independent of the variable x, i.e. it is given
by the function g(y). This leads to the following algorithm:

Algorithm 6.6 (Independent MH).

1. Sample Yi−1 from the density g(.).
2. Generate new value Xi according to the formula:

Xi =

{

Yi−1 with probability p(xi−1, Yi−1)

xi−1 with probability 1− p(xi−1, Yi−1)
, (6.8)

where

p(x, y) = min

{

f(y)

g(y)

g(x)

f(x)
, 1

}

. (6.9)
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This method may be seen as a straightforward generalization of the rejection
algorithm (see Section 4.1.2), because sampling from the instrumental density
g(.) is independent of the previous value xi−1. In this case, the following conver-
gence theorem can be additionally applied:

Theorem 6.7. The independent MH approach, described by Algorithm 6.6, pro-
duces an ergodic chain if there exists a constant M such that

f(x) ≤Mg(x)

for all x ∈ S.

This theorem is proved in (Robert & Casella 2004).
Another candidate for the instrumental density is given by the symmetrical

function g(y|x), i.e. the density satisfying g(x|y) = g(y|x). In this case, the rele-
vant algorithm is similar to the simulated annealing method (see Section 5.4.2),
especially because the obtained acceptance probability is equal to

p(x, y) = min

{

f(y)

f(x)
, 1

}

. (6.10)

Therefore, in order to evaluate p(x, y), information about the value of g(y|x) is
unnecessary. Only the ratio f(y)/f(x) should be calculated, which is especially
helpful if the normalizing constant for the density f(.) is unknown.

The next approach is related to a local exploration of the neighbourhood of
the current value of the chain. Once again, this idea is similar to the one of the
simulated annealing algorithm. In this case, the first choice for the instrumental
distribution is some random perturbation of Xi, i.e. application of the formula

Yi = Xi + εi , (6.11)

where εi is some random variable independent of Xi. The chain, constructed by
applying the transformation (6.11), is known as random walk.

Then, the uniform distribution on some ball or the normal distribution cen-
tred at Xi can also be applied as the instrumental density. If the respective pdf
is also a symmetric function, then g depends only on the distance between y
and x, i.e. it has the form g(|y − x|). This assumption leads to the following
algorithm:

Algorithm 6.8 (Symmetric random walk MH).

1. Sample Yi−1 from the density g(|y − xi−1|).
2. Generate new value Xi according to the formula:

Xi =

{

Yi−1 with probability p(xi−1, Yi−1)

xi−1 with probability 1− p(xi−1, Yi−1)
,
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where

p(x, y) = min

{

f(y)

f(x)
, 1

}

.

It should be noted that selection of the instrumental density can be crucial
for the convergence speed of the MH algorithm. In the case of the independent
MH algorithm, the choice of g should maximize the average acceptance rate,
which implies the similarity between the instrumental density and the target
density f(.). To the contrary, in the case of the random walk MH algorithm,
the higher acceptance rate corresponds to a slower convergence as the moves on
the support of f are more limited (because the new, sampled point is close to
the previous one). However, these conclusions are rather general ideas than the
direct solutions for the convergence problem (see (Robert & Casella 2004) for
additional details).

6.2.3 The Rao–Blackwellized estimator

Apart from the classical form of the estimator for the expected value, given by
the “standard” average (5.8), other approximations of Efh(X) are possible in the
case of the MH algorithm. As in the rejection method, the Metropolis–Hastings
approach does not take advantage of the entire set of random variables, which
are generated. Because some of the sampled variables are rejected, it could be ex-
pected that these values bring (indirectly) some additional information about the
density f(.). Then the Rao–Blackwellization approach may be applied, leading

to a special, conditional (known as Rao–Blackwellized) estimator ĥRB
f (X). This

estimator ĥRB
f (X) dominates the standard estimator ĥf (X) under the quadratic

loss function.
It should be noted that the sequence X1, X2, . . ., generated by the MH algo-

rithm is based on two samples: Y1, Y2, . . . and U1, U2, . . ., where Yi ∼ g(.|xi) and
Ui ∼ U . This second sequence is used to reject or accept the sampled points Yi
according to the acceptance probability p(xi, Yi). Based on this observation, we
have

ĥf (X) =
1

n

n
∑

i=1

h(Xi) =
1

n

n
∑

i=1

h(Yi)

n
∑

j=i

11(Xj = Yi) ,

which leads to the formula, referring to conditional expectation

ĥf (X) =
1

n

n
∑

i=1

h(Yi)E





n
∑

j=i

11(Xj = Yi)|Y1, Y2, . . . , Yn



 =

=
1

n

n
∑

i=1

h(Yi)





n
∑

j=i

P(Xj = Yi |Y1, Y2, . . . , Yn )



 . (6.12)
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From the practical point of view, it is an important feature of this method
that the probabilities P(Xj = Yi |Y1, Y2, . . . , Yn ), introduced in the conditional
formula (6.12), can be explicitly computed (see, e.g. (Casella & Robert 1996)).
For example, suppose that the independent MH algorithm (see Algorithm 6.6) is
applied and that X0 ∼ f , i.e. the starting distribution, is the same as the target
density f(.). If we denote

wi =
f(yi)

g(yi)
, vij = min

(

wi

wj
, 1

)

for 0 ≤ i < j , (6.13)

zii = 1 , zij =

j
∏

k=i+1

(1− vij) for i < j , (6.14)

then we have the following theorem:

Theorem 6.9. The Rao–Blackwellized estimator can be written as

ĥRB
f (X) =

1

n+ 1

n
∑

i=0

ϕih(Yi) , (6.15)

where

ϕi = τi

n
∑

j=i

zij

and τi = P(Xi = Yi |Y0, Y1, . . . , Yn ) is given by

τ0 = 1 , τi =

i−1
∑

j=0

τjzj(i−1)vji for i > 0 .

This theorem is proved in (Robert & Casella 2004).

6.3 The Gibbs sampler

The next MCMC algorithm, known as the Gibbs sampler , can be applied only
in the multidimensional setting. To clarify the presentation, two different cases
of this approach will be further discussed: the two-stage Gibbs sampler and the
multi-stage Gibbs sampler.

6.3.1 The two-stage Gibbs sampler

We start from the simpler, two-dimensional case of the Gibbs sampler. Let us
suppose that we are interested in generation of variables (X1, Y1), (X2, Y2), . . .
from the two-dimensional random vector (X,Y ) with a joint density f(x, y). If
the methods for sampling from both of the conditional densities fX|Y (x|y) and
fY |X(y|x), related to the joint pdf f(x, y), are known, then for the fixed starting
point x0 the following algorithm can be applied:
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Algorithm 6.10 (Two-stage Gibbs sampler).

1. Generate Yi from the density fY |X(.|xi−1).
2. Generate Xi from the density fX|Y (.|yi).

Then, these two steps are repeated. In this case, the subsequent values of the
random variables X or Y are generated alternately from the appropriate con-
ditional densities, i.e. the sampler “jumps” between the two coordinates of the
random vector (X,Y ).

The two-stage Gibbs sampler can be applied if the joint pdf f(x, y) is nu-
merically too complex for direct simulations. It should be noted that not only
the whole sequence (Xi, Yi)i=1 is a Markov chain, but also each of subsequences
X0, X1, . . . and Y0, Y1, . . . has the same property. The stationary distributions
of these subsamples are the relevant marginal densities fX(.) and fY (.). There-
fore, this method can be applied in somewhat opposite way, not as the solution
for the complex joint density. If we start from a marginal density fX(.), then
the second, auxiliary variable Y is added, which is not directly relevant for us
from the statistical point of view. Such approach leads us to a new joint density
f(x, y). There are many settings ,where this natural completion of the density
fX(.) (which is our aim) into f(x, y) exists, e.g. missing data models (see Section
5.4.3). In this case, the conditional densities fY |X(.) and fX|Y (.) may be easier
to simulate than the joint pdf or the marginal density fX(.).

Some theorems, which are related to the convergence properties of the two-
stage Gibbs sampler should be mentioned. These theorems are proved in (Robert
& Casella 2004).

Definition 6.11. Let X =
(

X(1), X(2), . . . , X(m)
)

be an m-dimensional random

vector with the joint density fX
(

x(1), . . . , x(m)
)

, and fX(i)(.) be the marginal

density of the variable x(i). If

fX(i)

(

x(i)
)

> 0 for every i = 1, . . . ,m⇒ fX

(

x(1), . . . , x(m)
)

> 0 , (6.16)

then fX satisfies the positivity condition.

The above definition means that the support of fX
(

x(1), . . . , x(m)
)

is the
Cartesian product of the supports of the marginal densities fX(i)(.)

Lemma 6.12. Each of the sequences X0, X1, . . . and Y0, Y1, . . ., produced by the
two-stage Gibbs sampler, is a Markov chain with the corresponding stationary
distribution

fX(x) =

∫

f(x, y)dy , fY (y) =

∫

f(x, y)dx .

If the positivity constraint on f(x, y) holds, then both of these chains are irre-
ducible.
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Theorem 6.13. If the positivity constraint on f(x, y) holds and the transition
kernel

K(X,Y )((xi−1, yi−1), (xi, yi)) = fY |X(yi|xi−1)fX|Y (xi|yi)
is absolutely continuous with respect to the dominating measure, the chain (X,Y )
is Harris recurrent and ergodic with the stationary distribution f(x, y).

In Section 4.8, sampling from multivariate normal distribution based on
Cholesky decomposition was considered. It is also possible to apply the Gibbs
sampler for such a problem.

Example 6.14. Let us suppose that we would like to sample from the two-
dimensional random variable X ∼ N(0,W), where

W =

(

1 ρ
ρ 1

)

.

Then, the two-dimensional Gibbs sampler for the starting point x0 is described
by the following steps:

Algorithm 6.15 (Two-stage Gibbs sampler for the multivariate normal
distribution).

1. Generate Yi ∼ N
(

ρxi−1, 1− ρ2
)

.

2. Generate Xi ∼ N
(

ρyi, 1− ρ2
)

.

6.3.2 The multi-stage Gibbs sampler

In the case of multidimensional Gibbs sampler, its aim is to sample the sequence
of m-dimensional random vectors X1,X2, . . . ,Xn, . . . from the joint density f(X).

Let
(

X
(1)
i , . . . , X

(m)
i

)

denote the coordinates of the random vector Xi. In a more

general case, each of the coordinates X
(j)
i could be also some multidimensional

random vectors.
Denote by X

(−j)
i the random vector

(

X
(1)
i , . . . , X

(j−1)
i , X

(j+1)
i , . . . , X

(m)
i

)

,

i.e. the vector Xi without its j-th component. Let us assume that we dispose of
the numerically effective algorithms for sampling from the conditional densities
fX(j)|X(−j)

(

.|x(1), . . . , x(j−1), x(j+1), . . . , x(m)
)

for j = 1, . . . ,m. Such densities
are known as full conditionals .

Then, for the fixed starting point x0 =
(

x
(1)
0 , . . . , x

(m)
0

)

, the following algo-

rithm may be applied:
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Algorithm 6.16 (Gibbs sampler with systematic scan).

1. Generate X
(1)
i+1 from the density fX(1)|X(−1)

(

.|x(2)i , . . . , x
(m)
i

)

.

2. Generate X
(2)
i+1 from the density fX(2)|X(−2)

(

.|x(1)i+1, x
(3)
i , . . . , x

(m)
i

)

.

3. Generate X
(3)
i+1 from the density fX(3)|X(−3)

(

.|x(1)i+1, x
(2)
i+1, x

(4)
i , . . . , x

(m)
i

)

.

4. . . .
m. Generate X

(m)
i+1 from the density fX(m)|X(−m)

(

.|x(1)i+1, x
(2)
i+1, . . . , x

(m−1)
i+1

)

.

Algorithm 6.16 is the straightforward generalization of the two-dimensional
case, described by Algorithm 6.10. The subsequent components of the random
vector X are sampled in a systematic way and the algorithm proceeds in “one
direction” during consecutive iterations. Therefore, this approach is known as
the Gibbs sampler with systematic scan (or systematic sweep).

Example 6.17. The following autoexponential model was introduced by Besag
(1974). If x ∈ R3

+, then the corresponding joint density is given as

f(x) ∝ exp
(

−
(

x(1) + x(2) + x(3) + θ12x
(1)x(2) + θ23x

(2)x(3) + θ31x
(3)x(1)

))

,

where θij > 0 are known. In this model the full conditionals are exponential
densities, e.g.

X(3)|x(1), x(2) ∼ Exp
(

1 + θ23x
(2) + θ31x

(1)
)

.

Therefore, simulation from these distributions is straightforward. Other condi-
tionals and the marginal distributions are more numerically complex functions.

Other approaches for the selection of the coordinates of X, apart from the
systematic one, are also possible. The first example is the symmetric scan (or
the reversible Gibbs sampler) and the second one is random sweep.

The symmetric scan of components of the random vector X is described by
the following algorithm, which is, as previously, started from a fixed starting
point x0:

Algorithm 6.18 (Gibbs sampler with symmetric scan).

1. Generate X
(1)
∗ from the density fX(1)|X(−1)

(

.|x(2)i , . . . , x
(m)
i

)

.

2. Generate X
(2)
∗ from the density fX(2)|X(−2)

(

.|x(1)∗ , x
(3)
i , . . . , x

(m)
i

)

.

3. GenerateX
(3)
∗ from the density fX(3)|X(−3)

(

.|x(1)∗ , x
(2)
∗ , x

(4)
i , . . . , x

(m)
i

)

.
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4. . . .
m. Generate X

(m)
i+1 from the density

fX(m)|X(−m)

(

.|x(1)∗ , x
(2)
∗ , . . . , x

(m−1)
∗

)

.

m+1. Generate X
(m−1)
i+1 from the density

fX(m−1)|X(−(m−1))

(

.|x(1)∗ , x
(2)
∗ , . . . , x

(m−2)
∗ , x

(m)
i+1

)

.

m+2. . . .

2m-1. Generate X
(1)
i+1 from the density fX(1)|X(−1)

(

.|x(2)i+1, . . . , x
(m)
i+1

)

.

In this case only one simulation of each component out of two samples is directly
used as the final output, but the chain generated in this way has some important
theoretical properties (like reversibility of the chain, see (Robert & Casella 2004)
for additional details).

The name random sweep Gibbs sampler is related to the random selection of
the components of the generated vector. The coordinates are chosen in a random
order before each set of transitions. As previously, the algorithm is started from
a fixed starting point x0, and then the following steps are applied:

Algorithm 6.19 (Random sweep Gibbs sampler).

1. Generate permutationΣ ofm elements (which leads to rearrangement
of m components of the random vector).

2. Generate X
(Σ1)
i+1 from the density fX(Σ1)|X(−Σ1)

(

xΣ1 |x(−Σ1)
i

)

, where

Σ1 is the first value from the permutation Σ.
3. . . .

m+1. Generate X
(Σm)
i+1 from the density fX(Σm)|X(−Σm)

(

xΣm
|x(−Σm)

i+1

)

,

where Σm is the last value from the permutation Σ.

As previously, in the case of the two-dimensional Gibbs sampler, it is nec-
essary to asses the convergence of the generated chain X1,X2, . . . ,Xn, . . .. Ad-
ditionally, the assumptions of the relevant theorem should not be too complex
to verify in practice. An example of such approach is given by the following
theorem:

Theorem 6.20. If the conditional densities fX(j)|X(−j) fulfil the conditions:

1. let x = (x(1), . . . , x(m)) and x
′ = (x′(1), . . . , x′(m)

), and there exists δ > 0
for which x,x′ ∈ supp(fX), |x− x

′| < δ,
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fX(j)|X(−j)

(

x(j)
∣

∣

∣x(1), . . . , x(j−1), x′
(j+1)

, . . . , x′
(m)
)

> 0 for i = 1, . . . ,m ,

2. there exists δ′ < δ such that every pair x,x′ ∈ supp(fX) can be connected by
a finite sequence of balls with radius δ′, having the (stationary) measure of
the intersection of two consecutive balls positive,

then the MC produced by the Gibbs sampler is irreducible and aperiodic. Addi-
tionally, if h : S → R is such that

Ef |h(X)| <∞ ,

then, for every initial distribution πX0 there holds

1

n

n
∑

k=1

h(Xk)
a.s.−−−−→

n→∞

∫

S
h(x)f(x)dx

and

lim
n→∞

∥

∥

∥

∥

∫

S
Kn(x, .)dπX0 (x) − f(.)

∥

∥

∥

∥

TV

= 0 .

The conditions, mentioned in Theorem 6.20, which is proved in (Robert &
Casella 2004), can be more directly explained. The first one informs about the
possibility of transition between two states x and x

′, which are close enough. The
second one specifies that the whole support of the Gibbs sampler is connected
via the related sequence of intersecting balls.

Other useful theorems, concerning the issues of convergence, are discussed in
(Robert & Casella 2004).

6.4 Hybrid MCMC methods

From the theoretical point of view, there is an important similarity between
the MH algorithm and the Gibbs sampler, which is confirmed by the following
theorem:

Theorem 6.21. The multi-stage Gibbs sampler with m steps is equivalent to the
composition of m Metropolis–Hastings algorithms with acceptance probabilities
uniformly equal to one.

This theorem is proved in (Robert & Casella 2004).
However, from the practical point of view, there are important differences

between these two types of MCMC methods. Firstly, the acceptance probability
of the Gibbs sampler is always equal to one. Therefore any discussion as to the
optimal acceptance rate is unnecessary. In the case of the MH algorithm, the
rejection probability is given by 1 − p(xi−1, Yi) (see (6.2)) which is not always
equal to zero.

Secondly, in the case of the Gibbs sampler, knowledge of some analytical or
probabilistic properties of the joint pdf f and the numerically efficient methods
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of sampling from the full conditionals fX(j)|X(−j)

(

.|x(−j)
)

are required. Then,
the choice of these conditional densities is limited in some way. In the case of the
MH algorithm, the instrumental distribution could be more freely selected. This
constitutes both an advantage and a disadvantage. For the MH algorithm it is
easier to find the generation method of the instrumental density which could be
directly numerically applied, but it is also possible that the selected density is
incorrect or misleading (e.g. having nonconnected support).

Thirdly, the construction of the Gibbs sampler is always multidimensional. It
is possible that some components of the random vector are artificially introduced
or unnecessary for the considered output (e.g. like in the case of missing data
models), but generation of at least two-dimensional vectors is always required.

Summarising, there are important differences in the way of construction of
the MH algorithm and the Gibbs sampler for practical applications. It seems
that the Gibbs sampler is favoured, because this simulation method is based
on conditional densities of the true target density f(.). In the case of the MH
algorithm, sampling is related to some approximation of this density f(.), and
rejection of a part of the generated values is necessary. But a decomposition of
the joint density f(.) for a particular system of coordinates does not ensure the
validity of the Gibbs sampler. A wrong choice of the components can lead to the
increase of the convergence time or to getting into a trapping state (see (Robert
& Casella 2004) for the relevant examples).

In the case of the MH algorithm, problems are more related to a bad agree-
ment between the target density and the instrumental pdf. Therefore, the rem-
edy, which takes advantage of both of these algorithms, is to implement a hybrid
approach that uses both the Gibbs sampler and the MH algorithm. This method
is known as hybrid MCMC algorithm and is described by the following definition:

Definition 6.22. Let K(1)
X ,K(2)

X , . . . ,K(p)
X be the transition kernels, which corre-

spond to different steps of some MCMC method. If a1, . . . , ap is some probability

distribution, then a mixture of K(1)
X ,K(2)

X , . . . ,K(p)
X is an algorithm associated

with the kernel
KX = a1K(1)

X + . . .+ apK(p)
X .

A cycle of K(1)
X ,K(2)

X , . . . ,K(p)
X is the algorithm with the kernel

KX = K(1)
X ◦ . . . ◦ K(p)

X .

Construction of the hybrid MCMC algorithm is based on some composition of
both the MH algorithm and the Gibbs sampler which are appropriately selected.
For example, every p iterations, the step of the Gibbs sampler is replaced with
a step of the MH algorithm (then we have a cycle) or, at each iteration, this
MH step is selected with some probability (which gives a mixture). The hybrid
methods are valid from the theoretical point of view, when the heterogeneity of
the chains generated by the cycles is removed by considering only the appropriate
subchains of the whole output (see, e.g. (Robert & Casella 2004)).
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6.5 Examples of applications of MCMC methods

In this section we discuss some examples of applications of MCMC methods.
We start from the general remarks concerning hierarchical models related to
Bayesian analysis. Then, the Ising model and the statistical approach to noise
reduction methods will be considered.

6.5.1 Hierarchical models

The Gibbs sampler is particularly well adapted to the statistical models known
as the hierarchical structures. In these models, a special form of the density f(x)
is used, which can be decomposed as

f(x) =

∫

f1(x|y1)f2(y1|y2) . . . fi(yi)dy1 dy2 . . . dyi

for some i ≥ 1. This decomposition can be done due to structural (i.e. related to
the structure of the model itself) or computational reasons (compare with miss-
ing data models, see Section 5.4.3). If prior information is sparse, the noninfor-
mative densities (e.g. uniform distribution) can be introduced in the hierarchical
modelling at various levels of hierarchy of the respective model.

The hierarchical models appear in a natural way in the Bayesian analysis
(see, e.g. (Gilks, Richardson & Spiegelhalter 1996)). In this case, the structure
of the model or the variability of the observations may require introduction of
several levels of prior distributions. Then, these levels and relations among them
can be illustrated using a graph, which is known as DAG (direct, acyclic graph).
The DAG consists of nodes and arrows. Parents of the node are all the nodes
which are directly connected with this node and the related arrows are directed
to this node. Children of the node are all the nodes which are directly connected
with this node and the related arrows are directed from this node. For example,
in Figure 6.1, nodes B and C are children of node A, node A is parent of node
C, node C is parent of node D. In statistical applications, the nodes represent
random distributions of various parameters of the considered model, and arrows
denote the statistical relations between these distributions.

A relevant example, considered in (Robert & Casella 2004) and (Schukken,
Casella & van den Broek 1991) illustrates the application of the hierarchical
models:

Example 6.23. In animal epidemiology sometimes data from groups of animals
(like litters or herds) is used. Because some diseases are infectious, then usual
assumptions about independence cannot be not fulfilled. Schukken et al. (1991)
collected the data of the number of cases of clinical mastitis in dairy cattle herds
over a one year period and applied the hierarchical structure to model these data.
It is assumed that, in each herd, the occurrence of this disease is a Bernoulli
random variable. Let Xi denote the number of cases in the herd i, which leads
to Xi ∼ Poiss(λi), where λi is the rate of the infection in herd i. Because of the
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Fig. 6.1. An example of DAG

lack of independence, caused by the fact that this disease is infectious, Schukken
et al. (1991) specified the following hierarchical model

Xi ∼ Poiss(λi),

λi ∼ Γ (α, βi),

βi ∼ Γ (a, b),

where α, a, b are fixed parameters. Then, the posterior density of λi, i.e. f(λi)
may be directly simulated via the Gibbs sampler and we have

λi ∼ Γ (xi + α, 1 + βi) ,

βi ∼ Γ (α+ a, λi + b) .

6.5.2 The Ising model

In this section we discuss some examples of lattice models. We start from the
Ising model , which is one of the simplest lattice models, but, nevertheless, can be
applied in many areas (e.g. in electromagnetism, see (Cipra 1987, Binder 1988,
Linna 2012)).

Let us consider the Ising model on the two-dimensional table S of size D×D.
Each term s(i) of this table S, which is called spin, can take only values +1 or −1
(“up” and “down”). These spins interact only with their own neighbours, usually
only with the nearest of them, e.g. left, right, up and down direct neighbours of
the specified element. The symbol ∼ is used to denote this equivalence neigh-
bourhood relation, i.e. if x ∼ y, then x and y are neighbours. The distribution
of the entire table is related to the function (which is known as energy)

h(S) = −J
∑

i∼j

s(i)s(j) −H
∑

i

s(i) , (6.17)

where J is an interaction constant and H is an external magnetic field. Both
of these parameters are known. Then, e.g., we would like to obtain the most
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likely configuration of the system, corresponding to the minimum of the energy
function h(S).

If H = 0, then this model has two degenerate ground states (i.e. states with
minimum energy): either all spins are up or all spins are down.

In order to model the behaviour of the Ising model, the Gibbs sampler can be
used. For the model described by the energy function (6.17), the full conditionals
are given by

fS(i)|S(−i)

(

s(i)|S(−i)
)

=

=
exp

(

−Hs(i) − Js(i)
∑

j:i∼j s
(j)
)

exp
(

−H − J
∑

j:i∼j s
(j)
)

+ exp
(

H + J
∑

j:i∼j s
(j)
) =

=
exp

(

−
(

H + J
∑

j:i∼j s
(j)
)

(s(i) + 1)
)

1 + exp
(

−2
(

H + J
∑

j:i∼j s
(j)
)) . (6.18)

Then, each spin in the table S is sequentially updated, i.e. for each i the value of
s(i) ∈ {−1,+1} is generated, using the density (6.18). Because in (6.18) only the
neighbours of s(i) should be taken into account for the evaluation of this density,
therefore this pdf could be directly applied even for large dimensions of S.

6.5.3 Noise reduction models

An approach similar to the Ising model may be applied in the case of noise
reduction in the images. Let us denote a digital image by S. This is equivalent
to a two-dimensional table, consisting of pixels, i.e. elements s(i) of the image.
These pixels can take binary values (in the case of black and white images),
values from some discrete space (in the case of grayscale images) or values from
some more complex set (e.g. in the case of colour images). Denote by A the space
of all possible values (known as colours) of the pixels. In practical applications,
the dimension of S can be large, e.g. 20482. Therefore, any statistical method
used to solve this issue become a numerically complex problem.

A graph K describes the structure of the neighbourhoods for all pixels of
the image S. This structure can be simpler or more complex – e.g. for the fixed
pixel s(i) only four nearest pixels can be considered as its neighbours (as in the
case of the Ising model, described in Section 6.5.2) or only eight of them (with
additional four pixels at the vertices).

The observed (noisy) image is denoted by Y and it consists of pixels y(i).
As previously, the possible values of each pixel y(i) are given by the space of
colours A, but, in general, they may be taken from some other set. The real
(unobserved) image is denoted by X and it consists of pixels x(i).

Let us assume that the registered image Y is a noised transformation of some
real image X. The statistical model of this noise is given by the probability
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P (Y|X) =
∏

i∈S
P
(

y(i)
∣

∣

∣x(j:i∼j)
)

, (6.19)

where the conditioning at the right hand side of the formula is taken for all
pixels, which are neighbours of y(i).

For example, the model of the noise may be described by the Gaussian noise
with the direct influence of the pixel x(i) on the pixel y(i), i.e.

P
(

y(i)
∣

∣

∣x(i)
)

∼ N(x(i), σ2) ,

where σ2 is some fixed parameter (i.e. the level of the noise of background).
If the image is black and white one, then it is possible to model the noise

by the random “swap” of colours (i.e. when “black” pixel is changing into the
“white” one with some probability and vice versa) which could be represented
via the formula

P
(

y(i)
∣

∣

∣x(i)
)

=

{

y(i) = x(i) with probability p

y(i) 6= x(i) with probability 1− p
, (6.20)

where 1− p is the probability that the colour “swaps”.
Apart from the model of noise, also the prior probability distribution of pixels

of the real image X should be introduced. For example, it may be assumed that
this distribution is described by the Potts model . Its simplest case is modelled
by the probability

P(X) ∝
∏

i∈S
exp



−β
∑

i∼j

11
(

x(i) = x(j)
)



 , (6.21)

where i ∼ j denotes all neighbours of the pixel x(i), described by the previously
introduced graph K. In the case of probability given by (6.21), the pixels which
have the same colour in some neighbourhood are the most possible configuration.

The posterior probability is equal to

P (X|Y) ∝ P(X) P (Y|X) .

If we apply the models (6.19) and (6.21), it leads to the full conditional proba-
bility

P
(

x(i)
∣

∣

∣x
(−i),Y

)

∝

exp



−β
∑

i∼j,i6=j

11
(

x(i) = x(j)
)





∏

i∼j

P
(

y(j)
∣

∣

∣x(k:j∼k)
)

. (6.22)

It follows from the assumptions of the model that if we are looking for the real,
denoised image X, then we are interested in the “most probably value” of the
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distribution. Therefore, if we could sample from the full conditional probabilities
(6.22), it becomes possible to use the multi-stage Gibbs sampler in a similar way
as in the case of the Ising model. For example, if the neighbourhood relation for
the pixel i is defined by its eight closest neighbours (four pixels at the vertices
and four pixels at the edges) and the model of the noise is given by the random
“swaps” as in (6.20), then we get

P
(

x(i)
∣

∣

∣x
(−i),Y

)

∝ exp



−β
∑

i∼j,i6=j

11
(

x(i) = x(j)
)

+ ln p 11
(

x(i) = x(j)
)

+

+ ln(1− p) 11
(

x(i) 6= x(j)
))

. (6.23)

Because in this case the neighbourhood relation is restricted only to eight other
pixels, then the normalizing constant for the probability (6.23) may be easily
calculated.

The case of the Potts model, described by (6.21), is closely related to black
and white images. If the image has some “real” colours or is given as a grayscale
image, then prior probability can be modelled as

P(X) ∝
∏

i∈S
exp



−β
∑

i∼j

ψ
(

x(i) − x(j)
)



 ,

where ψ(.) is some symmetric function (see, e.g. (Besag 1986, Geman & MacClure
1987)). However, the relevant full conditional density can be too complex for
direct sampling from it. Then, introduction of an additional step of the MH al-
gorithm may be necessary. Such approach leads to hybrid MCMC models (see
Section 6.4).

6.6 Necessity of convergence diagnosis

As it was mentioned previously, the main advantage of the MCMC method
compared to the Monte Carlo approach is that there is no necessity for direct
sampling from the target density f(x). Instead, to generate the output, almost
any instrumental density g(y|x) can be selected (in the case of the MH algorithm,
see Section 6.2) or full conditional densities fX(j)|X(−j)

(

.|x(−j)
)

(for the Gibbs
sampler, see Section 6.3) can be applied.

The ergodicity theorems, considered in Section 3.3, ensure that the Markov
chain generated via the MCMC method converges to the appropriate expected
value. However, the speed and quality of this convergence depend on the starting
value X0 of this chain and the number of simulations n. Of course, the chain
should “forget” as soon as possible the initial value (in order to not introduce
the additional bias for the final estimator) and, additionally, some necessary
number of simulations should be performed (in order to assess a fixed level of
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the error). These two problems are the most significant disadvantages of the
MCMC methods. In the case of the MCMC approach, the most important tools
for the Monte Carlo methods – the Central Limit Theorem and the Strong Law
of Large Numbers – cannot be directly applied, because of dependencies among
random variables in the Markov chain.

There are some theorems, which achieve the same purposes as CLT and SLLN
and which are appropriate for Markov Chain Monte Carlo methods. However,
usually, the assumptions of these theorems are very difficult to verify in practice.
For example, information about covariance between the random variables for
the subsequent steps in the Markov chain is necessary. Yet, estimation of this
measure is a numerically complex problem and may require additional simulation
steps.

Therefore, in the case of Markov Chain Monte Carlo methods, special conver-
gence diagnosis is necessary for answering the main question: when the obtained
estimator is “close enough” to the approximated value? In this section some
solutions to this problem will be discussed.

6.7 Approaches to convergence diagnosis

The theorems, introduced in Sections 6.2.2 and 6.3, concerning convergence of
various MCMC methods are necessary as mathematical proofs of validity of
these approaches. But they cannot be directly applied as methods of controlling
the chain produced by the given algorithm, i.e. they do not serve to provide
the stopping rule meant to guarantee that the number of steps of the generated
Markov chain is sufficient.

Therefore, we should consider various methods, which may be helpful in
analysing the convergence of the given realization of the Markov chain. These
methods are known as convergence diagnosis and their detailed review may be
found in, e.g., (Robert & Casella 2004).

As it was mentioned in Section 6.6, two issues arise, when we state the
problem of the quality of approximation for the considered value, e.g. the ex-
pected value Efh(X), if this approximation is based on the output of the MCMC
method. These issues can be summarized in the following questions:

1. There is a statistical dependency between the subsequent random variables
in the Markov chain. Therefore, the obtained estimator may be influenced
by the starting value of this chain. Then, the first question is: how many
iterations from the beginning of the chain should be deleted to ensure that
the estimator is unbiased?

2. The error of the obtained estimator depends on the number of simulations.
The greater the number of iterations, the lower this error. Therefore, it is
necessary to introduce some stopping rule for the chain. Then, the second
question is: when we should finish the simulations?
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Another issue with the convergence diagnosis is related to the problem of
comparing the various methods, which give answers to the questions mentioned
above. Some of these approaches are strictly theoretical ones, others are heuris-
tic (see, e.g., (Romaniuk 2007, Romaniuk 2008) for a more detailed discussion).
Additionally, they can measure different things (e.g. use different statistical mea-
sures or other stopping conditions), they are based on different simulation al-
gorithms (e.g. in some cases parallel simulations of multiple Markov chains are
necessary), etc. Therefore, it is possible that these methods give various answers,
i.e. different stopping rules. In practice, the convergence of the considered MC
should be checked using the whole set of convergence diagnosis methods, not
just a single approach.

6.7.1 Convergence to the stationary distribution

The first considered criterion is related to the convergence of the Markov chain
X0, X1, . . . to its stationary distribution. As it was noted, such chain is started
from some initial value X0. Therefore, if this chain is “close enough” to its target
density f(.), then the starting value X0 should not influence the obtained final
approximation. This “close enough” condition has various meanings, because
different measures can be applied. For example, total variation difference

‖Kn
X(x, .) − f(.)‖TV

between the n-th step transition kernel and the stationary distribution is used.
Some theoretical results in this case are known (see (Jones & Hobert 2001, Robert
& Casella 2004)), but the calculations necessary to obtain the analytical results
may be very difficult.

Another approach is to apply some standard nonparametric test, such as the
Kolmogorov-Smirnov test to check the stationarity condition of a single output
of the Markov chain. The term “stationarity” is related to the simple conclu-
sion that if Xi ∼ πX , where πX is the stationary distribution of the MC, then
also Xi+1 ∼ πX . The same applies for the arbitrary steps Xt1 and Xt2 if the
chain is in its stationary regime. Then, having the sample X0, X1, . . . , Xn, it is
possible to compare the distributions of two halves of this sample, X1, . . . , Xn/2

and Xn/2+1, . . . , Xn. Because, usually, the nonparametric tests are devised for
iid samples, then some correction for the correlation between the dependent
values of the Markov chain is necessary. This can be done by the introduction
of a batch size k, leading to the construction of two “more independent” sam-
ples. If only some values of the halves mentioned are used, we obtain subsam-
ples X1, Xk+1, . . . and Xn/2+1, Xn/2+1+k, . . . denoted further by V1, V2, . . . and

V
′

1 , V
′

2 , . . . , respectively. It should be noted that this subsampling mechanism
leads to some loss of information, because only a part of the generated values is
used to check this criterion.

Then the Kolmogorov-Smirnov statistics is applied
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TKS =
1

M
sup
x

∣

∣

∣

∣

∣

M
∑

i=1

(

11(Vi ∈ (0, x))− 11(V
′

i ∈ (0, x))
)

∣

∣

∣

∣

∣

, (6.24)

where M is the maximum number of values for the subsamples Vi and V
′

i . It
is possible to evaluate the density of the statistics (6.24), though only in the
asymptotic case. Under the stationarity assumption, as M → ∞, the limiting
distribution of the statistics

√
MTKS has the cdf given by

D√
MTKS

(x) = 1−
∞
∑

k=1

(−1)k−1e−2k2x2

,

which can be easily approximated by a finite sum. But the exact solution of this
statistical test is quite difficult to obtain because of the correlations between the
values of the Markov chain and the influence of the subsampling mechanism.
Another approach is to draw a graph of

√
MTKS as a function of the length

of the subsample and to check visually for a stable distribution around small
values.

Convergence can also be verified by checking if the generated chainX0, X1, . . .
“visited” all the states of the space state S. In order to find how much of the
support of the target distribution is explored by the chain, the integral

∫

S
f(x)dx (6.25)

is evaluated. The value of the integral (6.25) should be, of course, close to one.
Philippe & Robert (2001) proposed a solution based on Riemann sums (compare
with Section 5.2.4). When f(x) is a one-dimensional density and Xk:n are the
order statistics based on the chain X0, X1, . . ., then

n−1
∑

k=0

(Xk+1:n −Xk:n) f(Xk) (6.26)

converges to one, even when the random variables are not generated from the
density f(x). Then, if the chain fails to explore some part of the support of f(x),
the approximation (6.26) should warn us about this problem by providing an
evaluation of the mass of the previously explored region. However, this method
is not so straightforward in the multidimensional case.

6.7.2 Convergence of the average

When the simulated values are “close enough” to the stationary distribution,
some starting values should be deleted. The number of these deleted steps can
be based on the criteria considered in Section 6.7.1 or it could be given as a fixed
part of all simulated values (e.g. 10% or 20% of the total number of simulations).
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Then, the next step and the second question in the convergence analysis should
be taken into account.

The problem of distance between the considered MCMC estimator (e.g. em-
pirical average) and the approximated value (e.g. the integral, which is equal to
the expected value Efh(X)) plays a very important role in the convergence anal-
ysis. As previously, the term “distance” has various meanings, because different
measures of error and norms may be applied.

Graphical methods, based on drawing the outputs of the MCMC method,
can detect some obvious problems of convergence of the empirical average. Yu
& Mykland (1998) proposed to use the cumulative sums (CUSUM), drawing the
partial differences

Cn(i) =

i
∑

k=1

(h(Xk)− Sn) (6.27)

for i = 1, . . . , n, where

Sn =
1

n

n
∑

k=1

h(Xk) .

As noted by the authors of this approach, when the mixing of the chain is high
(i.e. the chain explores the support of the stationary distribution very fast), the
graph of Cn(.) is highly irregular and concentrated around 0. To the contrary,
in the case of a slowly mixing chain (i.e. when the chain slowly explores its state
space), the graph is regular with long excursions away from 0.

However, this approach has some important disadvantages. Firstly, it is based
on a single chain. Therefore, it is almost impossible to detect the existence of
other possible modes of f(.) or of other unexplored regions of the state space.
Secondly, this method is strictly heuristic and subjective. It is based only on the
intuition of the observer. But there are some general advices in this case, like
comparing with other, known types of time series.

Another method, proposed by Robert (1995) is to simultaneously use several
estimators of Efh(X), which are based on the same chain. When all of these
estimator have the same value (up to a given precision), convergence can be
stated. Apart from the “standard” estimator given by (5.8), the conditional (i.e.
Rao-Blackwellized) estimator (compare with (6.15)) is used. This second esti-
mator can be constructed, e.g., in the case of the Gibbs sampler (see (Robert &
Casella 2004)) and is given by

E
RB
f h(X) =

1

n

n
∑

i=1

Ef (h(Xi)|Zi) , (6.28)

where Zi are some additional random variables, e.g. in the case of the MH
algorithm they can be identified with the probabilities P(Xi = Y |Y0, Y1, . . . , Yn )
(see Section 6.2.3 for additional details).

The next estimator is provided by the importance sampling method (compare
to the approach described in Section 5.3.1). If the density f(x) is known up to
a constant, the importance sampling estimator is given by
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E
IS

f h(X) =
1

n

n
∑

i=1

wih(Xi) , (6.29)

where

wi ∝
f(Xi)

gi(Xi)

and gi(Xi) is the true density used to simulate the value Xi. It should be noted
that importance sampling removes the correlations between the terms in the sum
at the right hand side of (6.29) (see (Robert & Casella 2004) for further details).
Therefore, more “classical” convergence control methods can also be applied in
this case.

Another estimator of Efh(X) can be obtained via the Riemann approxima-
tion (compare with the method described in Section 5.2.4 and formula (6.26)).
It is given by

E
R

f h(X) =
n−1
∑

i=0

(Xi+1:n −Xi:n)h(Xi:n)f(Xi:n) , (6.30)

where X0:n, X1:n, . . . denotes the order statistics of the chain X0, X1, . . .. It
should be noted that multidimensional extensions of such an approach have
the quality decreasing with the number of dimensions, therefore, this estimator
should rather be applied in the one-dimensional case.

Then, all of the obtained estimators are compared, e.g. the graph of their con-
vergence is plotted or differences between their values are evaluated. Of course,
this approach has also some important disadvantages. Firstly, it may be inap-
plicable in some cases, e.g. the Riemann approximation may be not available for
the considered example. Secondly, it is intrinsically conservative, i.e. the value
of only one estimator may indicate that additional simulations are required in
distinction from the others. Lastly, it is based only on a single chain, there-
fore some important problems with convergence might be neglected or improper
conclusions may be drawn.

An alternative convergence diagnosis was proposed by Gelman & Rubin

(1992). In their approach K > 1 chains are simultaneously generated. Let X
(k)
i

denote the i-th element of the k-th chain for i = 1, . . . , n and k = 1, . . . ,K.
Then, the estimator of the between-chain variances is equal to

VarB =
1

K

K
∑

k=1

(

h(X(k))− h(X)
)2

,

where

h(X(k)) =
1

n

n
∑

i=1

h
(

X
(k)
i

)

, h(X) =
1

K

K
∑

k=1

h
(

X(k)
)

.

The estimator of within-chain variances is given by
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VarW =
1

K

K
∑

k=1

(

1

n

n
∑

i=1

(

h
(

X
(k)
i

)

− h (Xk)
)2
)

. (6.31)

And the additional estimator of variance

Var
′

=
n

n+ 1
VarW +VarB (6.32)

is introduced. In order to diagnose the convergence, the estimators Var
′

and
VarW should be compared, because they are asymptotically equivalent. There-
fore, if they are close in value, convergence can be stated.
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The generalized method of catastrophe bonds
pricing

Piotr Nowak

7.1 Introduction and bibliographical overview

Nowadays, natural catastrophes occur more frequently than before. Additionally,
they hit densely populated areas (e.g., tsunami in Japan (2011)). This results
in high values of damages. One can mention huge losses caused by Hurricane
Andrew in 1992. In Poland and in whole Central Europe devastating floods
(e.g., the 1997 Oder Flood) are a significant problem.

Natural disasters have negative impact on financial stability of insurers, since
classical insurance mechanisms are inadequate to deal with rare catastrophic
events, which cause large-scale damages. Therefore, new insurance-linked finan-
cial instruments are introduced. Catastrophe bonds (also called cat bonds), which
are examples of such instruments, are issued as means of catastrophic risk trans-
fer to financial markets. A hedger, sponsoring the catastrophe bond, is usually
an insurance or reinsurance company. It creates a special purpose entity (of-
ten called SPV) to manage the cash flows related to the catastrophe bond. The
payoff received by the cat bond holder depends on a precisely specified random
variable, called triggering point, which is connected, inter alia, with the occur-
rence of a catastrophic event (such as flood, earthquake, hurricane, windstorm)
in a specified place and time, its real parameters, hedger’s actual losses or actual
losses to the insurance industry as a whole, caused by a natural disaster. More-
over, the payoff usually depends on interest rates. The hedger pays an insurance
premium in exchange for a pre-specified coverage, if the triggering point occurs.
The bondholders purchase cat bonds for cash. Both premium and cash flows are
directed to the special purpose entity, which issues the catastrophe bonds and
purchases high grade securities in order to satisfy future demands. Bondhold-
ers receive full payment if the triggering point does not occur. Otherwise, the
payment for bondholders (i.e., the face value and/or interest) is partly (or fully)
forgiven and the entity compensates the hedger instead.

Some further detailed remarks concerning historical and practical aspects of
catastrophe bonds can be found in Section 8.1. In this chapter we apply methods
of stochastic analysis and financial mathematics to find the valuation expression
for catastrophe bonds. Our aim is to propose a generalized catastrophe bond
pricing formula, which can be applied to many types of such instruments. In
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particular, our approach can be used for various types of payoff functions. More-
over, the possibility of choice of an appropriate model of the spot interest rate
makes the proposed pricing method more universal from theoretical and practical
points of view.

The amount of papers, concerning catastrophe bonds and their valuation, is
relatively low. The authors of (Canabarro, Finkemeier, Anderson & Bendimerad
2000), apart from a discussion concerning stochastic catastrophe modelling,
present a comparative analysis of catastrophe bonds and other assets. Addi-
tionally, the authors noted absence of correlation between natural catastrophe
risk and financial market risk. In (Bodoff & Gan 2009), an analysis of empirical
data was reported, and the issuing price of cat bonds was described as a linear
function of expected loss with parameters that depend on peril and zone. The
behavioural finance method was used in (Kai, Zhong-ying & Shang-zhi 2007).
The authors mentioned its applicability potential in China. Wang (2004) ap-
plied the probability transform to extend the Sharpe ratio concept to evaluate
the risk-adjusted performance of cat bonds.

There are also approaches involving discrete-time stochastic processes: (Cox
& Pedersen 2000) within the framework of representative agent equilibrium and
(Reshetar 2008), where the authors assumed that payoff functions are linked to
catastrophic property losses and catastrophic mortality.

Stochastic models in continuous time were considered in (Baryshnikov, Mayo
& Taylor 1998), where compound Poisson processes were used to incorporate var-
ious characteristics of the catastrophe process. The drawback of this approach
is the assumption that the arbitrage and ”the real-life” measure coincide. How-
ever, although no analytical pricing formula was obtained, a method of reducing
the pricing problem to an integral PDE was proposed. In (Albrecher, Hartinger
& Tichy 2008) the claim index was modelled by the doubly stochastic com-
pound Poisson process, reporting lags of the claims having occurred were in-
corporated into the model and the properties of catastrophe bonds’ prices were
analysed with application of Quasi-Monte Carlo methods. In turn, Egamia &
Young (2008) used indifference pricing method for valuation of structured cat
bonds. Vaugirard (2003) applied the arbitrage approach for cat bonds pricing.
He addressed the problem of incompleteness of the financial market, caused by
catastrophic risk, and non-traded insurance-linked underlyings in the Merton’s
manner (see (Merton 1976)). Lin, Shyu & Chang (2008) applied the Markov-
modulated Poisson process for the description of the arrival rate of natural
catastrophes. In (Nowak & Romaniuk 2013b) we used the approach similar to the
one proposed by Vaugirard. However, in contradistinction to (Vaugirard 2003),
where risk index in the form of geometric jump-diffusion process was considered,
we defined a cat bond payoff function dependent on cumulative catastrophe
losses, modelled by compound Poisson process. We proved catastrophe bond
pricing formula at moment 0, assuming diffusion model of the risk-free interest
rate and a stepwise and a piecewise linear cat bond payoff functions. Moreover,
we conducted Monte Carlo simulations to analyse the behaviour of the valu-
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ation expression. Finally, in the mentioned paper we summarized our earlier
approaches (see (Nowak & Romaniuk 2009, Nowak & Romaniuk 2010a, Nowak
& Romaniuk 2010d, Nowak & Romaniuk 2011, Nowak, Romaniuk & Ermolieva
2011) ), where special cases of our pricing method were proposed. In the se-
ries of papers (Nowak & Romaniuk 2010c, Nowak & Romaniuk 2013c, Nowak
& Romaniuk 2014b, Nowak & Romaniuk 2014c) we also considered the prob-
lem of pricing of the insurance-linked instrument in fuzzy framework (see, e.g.,
(Zadeh 1965)) for some particular models of catastrophe bonds. We combined
there a stochastic and a fuzzy approach to obtain cat bond valuation expres-
sions under uncertainty. A similar approach was applied for the case of Euro-
pean options in (Wu 2004, Nowak & Romaniuk 2010b, Nowak 2011, Nowak &
Romaniuk 2013a, Nowak & Romaniuk 2014a).

In this chapter we propose a generalized method of catastrophe bonds pric-
ing. We assume that there is no possibility of arbitrage on the market, investors
are neutral toward nature jump risk and replicability of interest rate changes by
financial instruments existing on the market. We apply stochastic processes in
continuous time and stochastic analysis, in particular, the martingale method of
pricing. The contribution of this chapter is threefold. First, we consider catastro-
phe bonds with a more complex payoff structure than those defined in (Nowak &
Romaniuk 2013b). Second, we give a full analytical description of the cat bond
valuation formulas for three important one-factor affine interest rate models.
Third, in comparison with (Nowak & Romaniuk 2013b), where we focused our
attention on catastrophe bond prices at the moment 0, we describe in a more
detailed way the pricing formula at each moment t ∈ [0, T ], where T is the bond
expiration date. The payoff structure, defined by us, enables the use of a wide
class of functions, describing dependence between values of bondholder’s payoff
and cumulative catastrophe losses, in particular, the piecewise quadratic func-
tions can be applied. We consider three particular cases of the one-factor affine
interest rate models, i.e. the Merton, the Vasicek and the Cox–Ingersoll–Ross
model with the above mentioned complex payoff structure of the insurance-
linked instruments. We also show basic properties of the cat bonds prices for
these models as functions of the risk-free interest rate parameters.

As we noted above, this chapter is devoted to derivation and proof of the
generalized catastrophe bonds pricing formula. Section 7.2 contains basic nota-
tions, definitions and assumptions concerning the financial market, the filtered
probability space and the stochastic processes used for modelling catastrophe
bonds. In Section 7.3 we define catastrophe bond payoff structure. Section 7.4,
which is the main section of this chapter, contains definition of the class of the
spot affine interest rate models used by us and the proof of the generalized catas-
trophe bonds pricing formula. In Section 7.5 we present the particular forms of
the catastrophe bonds valuation expressions for three models of the affine spot
interest rate. For definitions of probabilistic and stochastic notions used in this
chapter we refer the reader to Chapter 2.
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7.2 Basic notations and definitions

We introduce basic notations, definitions and assumptions concerning catas-
trophic losses, the risk-free interest rate, zero-coupon bonds and financial market.
At the beginning, we define stochastic processes describing the dynamics of the
spot interest rate and cumulative catastrophe losses.

We use stochastic models in continuous time, assuming T = [0, T ′] for T ′ > 0.
The date of maturity of the catastrophe bond, denoted by T , is not later than
T ′, i.e. T ≤ T ′. We consider two probability measures: P and Q and we denote
by E

P and E
Q the expected values with respect to them.

Stochastic processes and random variables, introduced in this section, are
defined with respect to probability P. A probability measure Q, equivalent to P,
will be defined in the next section.

Let (Wt)t∈[0,T ′] be a Brownian motion. The process (Wt)t∈[0,T ′] will be used
in the stochastic model of the risk-free interest rate.

Let (Ui)
∞
i=1 be a sequence of independent identically distributed random vari-

ables with finite second moments. For each i = 1, 2, ... Ui equals the value of
losses caused by the i-th catastrophic event. Though we focus our attention on
the case of the independent catastrophic losses, it is possible to assume, more
generally, that there is a dependence between Ui for i = 1, 2, ....

For each t ∈ [0, T ′], cumulative catastrophe losses until moment t will be
described by compound Poisson process Ñt, defined by the equality

Ñt =

Nt
∑

i=1

Ui, t ∈ [0, T ′] ,

where Nt is a (possibly non-homogeneous) Poisson process with an intensity
function κ.

In particular, for each t ∈ [0, T ′], the value of the process Nt is equal to the
number of catastrophic events until the moment t and the moments of jumps of
the process (Nt)t∈[0,T ′] are treated as moments of catastrophic events. In turn,

the heights of jumps of the process Ñt are equal to the values of losses caused
by catastrophic events.

All the above introduced processes and random variables are defined on a

filtered probability space
(

Ω,F , (Ft)t∈[0,T ′] ,P
)

. The filtration (Ft)t∈[0,T ′] and

the additional filtrations
(

F0
t

)

t∈[0,T ′]
and

(

F1
t

)

t∈[0,T ′]
are: the natural filtration of

both processes (Wt)t∈[0,T ′] and
(

Ñt

)

t∈[0,T ′]
in the first case, the natural filtration

of (Wt)t∈[0,T ′] in the second case, and the natural filtration of
(

Ñt

)

t∈[0,T ′]
in the

third case, augmented to encompass all the null sets from F = FT ′ .
All the above defined processes and random variables are independent and

the filtered probability space
(

Ω,F , (Ft)t∈[0,T ′] ,P
)

satisfies usual conditions

(see Definition 2.23).
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In the remainder of this section we focus our attention on assumptions con-
cerning financial market and financial instruments.

We assume that trading on the market takes place continuously in time,
there are no transaction costs, there are no restrictions concerning borrowing
and short selling. Moreover, lending and borrowing rates are equal.

We denote by (Bt)t∈[0,T ′] the banking account, satisfying the following equa-
tion:

dBt = rtBtdt, B0 = 1,

where r = (rt)t∈[0,T ′] is the risk-free spot interest rate, i.e. short-term rate
for risk-free borrowing or lending at time t over the infinitesimal time inter-
val [t, t+ dt]. We assume that r is a specified later diffusion process. For all
t ∈ [0, T ′]

Bt = exp

(∫ t

0

rsds

)

.

We also assume that zero-coupon bonds are traded on the market. We denote by
B (t, T ) the price at time t of zero-coupon bond with the maturity date T ≤ T ′

and with the face value equal to 1.
We price catastrophe bonds under the assumption of absence of arbitrage

on the market. Moreover, we assume that i) investors are neutral toward nature
jump risk and ii) changes in interest rate r can be replicated by the existing
financial instruments (especially zero-coupon bonds). For empirical confirmation
of assumption i) we refer the reader e.g. to (Canabarro et al. 2000, Vaugirard
2003).

7.3 Catastrophe bond payoff structure

We begin with the definition of the catastrophe bond payoff structure. In
(Vaugirard 2003) a relatively simple form of the cat bond payoff function was
applied. The author assumed that if the triggering point does not occur, the
bondholder is paid the face value Fv and otherwise the payoff is equal to the
face value minus a coefficient in percentage w (called a payoff decrease in further
parts of this book), i.e. Fv(1− w).

However, more complex cat bond payoff functions are also possible. There-
fore, in this section we propose a generalized payoff structure, whose particular
forms can be applied for various types of catastrophe bonds.

We fix a positive integer n ≥ 1, the face value of catastrophe bond Fv > 0
and the maturity date of cat bond T ∈ [0, T ′].

We denote by W the class of sequences of payoff decreases

w = (w1, w2, ..., wn) ,

where 0 ≤ w1, w2, ..., wn and
n
∑

i=1

wi ≤ 1. We denote the partial sums of w ∈ W
by
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w(0) = 0, w(k) =

k
∑

i=1

wi, k = 1, 2, ..., n.

Let Φ be the class of sequences

ϕ = (ϕ1, ϕ2, ..., ϕn) ,

satisfying the following conditions

(i) ϕi : [0, 1] → [0, 1] , i = 1, ..., n;
(ii) ϕi ∈ C ([0, 1]) and is non-decreasing for each i = 1, 2, ..., n;
(iii) ϕi (0) = 0, i = 1, ..., n.

We also consider the following subclasses of Φ

Φ0 = {ϕ ∈ Φ : ϕi ≡ 0 for i = 1, 2, ..., n} ;

Φ1 = {ϕ ∈ Φ : ϕi(1) = 1 for i = 1, 2, ..., n} ;

Φ1,l = {ϕ ∈ Φ : ϕi(x) = x for x ∈ [0, 1] and i = 1, 2, ..., n} ;
and

Φ1,q =
{

ϕ ∈ Φ : ϕi(x) = x2 for x ∈ [0, 1] and i = 1, 2, ..., n
}

.

Clearly, Φ1,l and Φ1,q are subclasses of Φ1.
Let K be the class of sequences

K = (K0,K1,K2, ...,Kn) ,

where 0 ≤ K0 < K1 < ... < Kn.
We define now the catastrophe bond payoff function.

Definition 7.1. Let w ∈ W , ϕ ∈ Φ and K ∈ W. Let

fw,ϕ,K : [0,∞) →
[

Fv
(

1− w(n)
)

, Fv
]

be a function such that

(i) fw,ϕ,K|[0,K0] ≡ Fv;

(ii) fw,ϕ,K (x) |(Ki−1,Ki] = Fv
(

1− w(i−1) − ϕi

(

x−Ki−1

Ki−Ki−1

)

wi

)

, i = 1, 2, ..., n;

(iii) f |(Kn,∞) ≡ Fv
(

1− w(n)
)

.

We denote by IB (w,ϕ,K) the catastrophe bond with the face value Fv, the
maturity and the payoff date T , if its payoff function is the random variable
νw,ϕ,K, given by the equality

νw,ϕ,K = fw,ϕ,K

(

ÑT

)

.

The payoff function νw,ϕ,K of IB (w,ϕ,K) is called stepwise (piecewise linear
or piecewise quadratic) if ϕ ∈ Φ0 (ϕ ∈ Φ1,l or ϕ ∈ Φ1,q).
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Remark 7.2. The catastrophe bond IB (w,ϕ,K) has the following properties:

1. The general formula describing the payoff as a function of losses ÑT can be
written down in the form

νw,ϕ,K = Fv

[

1−
n
∑

i=1

ϕi

(

ÑT ∧Ki − ÑT ∧Ki−1

Ki −Ki−1

)

wi

−
n
∑

i=1

(1 − ϕi(1))wiI{ÑT>Ki}

]

. (7.1)

In particular,

νw,ϕ,K =































Fv

(

1−
n
∑

i=1

wiI{ÑT>Ki}
)

for ϕ ∈ Φ0;

Fv

[

1−
n
∑

i=1

ÑT∧Ki−ÑT∧Ki−1

Ki−Ki−1
wi

]

for ϕ ∈ Φ1,l;

Fv

[

1−
n
∑

i=1

(

ÑT∧Ki−ÑT∧Ki−1

Ki−Ki−1

)2

wi

]

for ϕ ∈ Φ1,q.

.

2. If the catastrophe does not occur (ÑT ≤ K0 ), the bondholder receives the
payoff equal to the face value Fv.

3. If ÑT > Kn, the bondholder receives the payoff equal to Fv(1− w(n)).
4. If Ki−1 < ÑT ≤ Ki for i = 1, 2, ..., n, the bondholder receives the payoff

equal to

Fv

(

1− w(i−1) − ϕi

(

ÑT −Ki−1

Ki −Ki−1

)

wi

)

.

In the case of the stepwise payoff function this payoff is constant and equal
to Fv

(

1− w(i−1)
)

when ÑT ∈ (Ki−1,Ki]. For ϕ ∈ Φ1,l (ϕ ∈ Φ1,q), the

payoff decreases linearly (quadratically) from value Fv
(

1− w(i−1)
)

to value

Fv
(

1− w(i)
)

when ÑT increases in the interval (Ki−1,Ki].

By applying the above properties of the catastrophe bond payoff structure,
we obtain the following lemma.

Lemma 7.3. Let νw,ϕ,K be the payoff function of IB (w,ϕ,K),

ψi = P(ÑT ≤ Ki), i = 0, 1, 2, ..., n and ψn+1 = 1.

Let

ei = E

{

ϕi

(

ÑT −Ki−1

Ki −Ki−1

)

I{Ki−1<ÑT≤Ki}

}

, i = 1, 2, ..., n.

Then the following equality holds

E
P νw,ϕ,K = Fv

{

ψ0 −
n
∑

i=1

wiei +

n+1
∑

i=1

(

1− w(i−1)
)

(ψi − ψi−1)

}

. (7.2)
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In particular,

E
P νw,ϕ,K = Fv

(

ψ0 +
n+1
∑

i=1

(

1− w(i−1)
)

(ψi − ψi−1)

)

for ϕ ∈ Φ0.

Formulas obtained in Lemma 7.3 can be used in the cat bond pricing formula
at moment 0 (see Theorem 7.7). They will be applied to numerical considerations
presented in Section 8.2.3.

7.4 Catastrophe bond valuation

7.4.1 Spot interest rate models

We shall now describe the class of the spot one-factor affine interest rate models
and the probability measure Q, used in the further part of this chapter.

Let the spot interest rate (rt)t∈[0,T ′] be a diffusion process satisfying the
following equation

drt = α (rt) dt+ σ (rt) dWt. (7.3)

We denote by S the set of all the values which r can take with a strictly positive
probability.

Let
(

λ̄t
)

t∈[0,T ′]
be a stochastic process, integrable with respect to the Brow-

nian motion (Wt)t∈[0,T ′], which satisfies the equality

E
P exp

(

−
∫ T ′

0

λ̄sdWs −
1

2

∫ T ′

0

λ̄2sds

)

= 1. (7.4)

As it was mentioned in Section 2.4, one of the sufficient conditions for (7.4) is
the following inequality:

E
P

[

exp

(

1

2

∫ T ′

0

λ̄2t dt

)]

<∞.

Let a probability measure Q, equivalent to P, be defined by the Radon–
Nikodym derivative

dQ

dP
= exp

(

−
∫ T ′

0

λ̄sdWs −
1

2

∫ T ′

0

λ̄2sds

)

P -a.s. (7.5)

We assume that λ̄t = λ̄ (rt) , t ∈ [0, T ′], is the market price of risk process
and it has the following interpretation. If the dynamics of B(t, T ), t ∈ [0, T ], is
described by the stochastic equation



7.4 Catastrophe bond valuation 157

dB(t, T ) = B(t, T )(µT
t dt+ σT

t dWt),

where µT = (µT
t )t∈[0,T ] is the drift and σT = (σT

t )t∈[0,T ] is the volatility of the
bond price process, then the process λ̄ satisfies the equation

σT λ̄ = µT − r Q⊗dt a.e.

Since there is no possibility of arbitrage on the market, all bonds (regardless of
their maturity time T ) have the same market price of risk (see e.g. (Kwok 2008)).

Theorem 2.46 implies that under Q the interest rate process is given by the
equation

drt = α̂ (rt) dt+ σ (rt) dW
Q
t , (7.6)

where
α̂ (r) = α (r)− σ (r) λ̄ (r)

and WQ
t is Q-Brownian motion.

We consider a subclass of the above described interest rate models, which are
one-factor affine models. The general theory of the affine models was developed
by Duffie & Kan (1996) while Dai & Singleton (2000) provided their classifica-
tion. Their popularity follows from their tractability for bond prices and bond
option prices. Such popular interest rate models as the Merton, the Vasicek and
the Cox–Ingersoll–Ross model are of this type.

A one-factor affine model of the interest rate is a time homogeneous diffusion
model, given by (7.6), where

α̂ (r) = φ̂− κ̂r and σ
2 (r) = δ1 + δ2r (7.7)

for constants φ̂, κ̂, δ1, δ2 (see, e.g., (Munk 2011)). It is required that δ1 + δ2r ≥ 0
for all values r ∈ S.

Though it would be possible to consider the whole class of one-factor affine
interest rate models in our cat bond pricing approach, yet in order to avoid
technicalities, we focus on the class Af of the three mentioned above interest
rate models, corresponding to the following settings of parameters φ̂, κ̂, δ1, δ2: i)

φ̂ ∈ R, κ̂ = 0, δ1 > 0, δ2 = 0 (the Merton model); ii) φ̂ > 0, κ̂ > 0, δ1 > 0, δ2 = 0

(the Vasicek model); iii) φ̂ > 0, κ̂ > 0, δ1 = 0, δ2 > 0 (the Cox–Ingersoll–Ross
model).

7.4.2 The pricing formula

We apply a method of pricing similar to the one proposed in (Vaugirard 2003). As
we noted, Vaugirard (2003) considered a simple form of catastrophe bond payoff
function. The triggering point was defined as the first passage time through a
level of losses K of risk index I, driven by a Poisson jump-diffusion process. He
assumed that if the triggering point does not occur, the bondholder is paid the
face value Fv; and if the triggering point occurs, the payoff is equal to the face
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value minus a coefficient in percentage w, i.e. Fv(1−w). Therefore, bondholders
were regarded to be in a short position on a one-touch up-and-in digital option
on I and, similarly as in the case of options, the martingale method could be used
to price catastrophe bonds. Though we do not consider the risk index, we follow
these steps of the Vaugirard’s pricing method, using conditional expectation with
respect to the equivalent martingale measure to obtain the analytical form of
the cat bond pricing formula.

At the beginning, we recall the notions of a λ-system and a π-system as well
as Dynkin’s lemma.

Definition 7.4. A λ-system is a non-empty family A of subsets of a set X with
the following properties:

(1) X ∈ A.
(2) If A,B ∈ A and A ⊂ B, then B \A ∈ A.
(3) If a sequence {A1, A2, . . .} ⊂ A satisfies An ↑ A, then A ∈ A.

A π-system Π is a non-empty family of subsets of a set X , which satisfies
the following condition:

A,B ∈ Π ⇒ A ∩B ∈ Π.

We can now formulate Dynkin’s lemma.

Lemma 7.5. If A is a λ-system and a non-empty family Π ⊂ A is a π-system,
then σ(Π) ⊂ A.

To prove the catastrophe bond pricing formula we will use the following
lemma.

Lemma 7.6. For each t ∈ [0, T ] the following equalities hold:

a)

E
Q

(

exp

(

−
∫ T

t

rsds

)

|Ft

)

= E
Q

(

exp

(

−
∫ T

t

rsds

)

|F0
t

)

;

b)
E
Q (νw,ϕ,K |Ft) = E

Q
(

νw,ϕ,K |F1
t

)

;

c)

E
Q

(

exp

(

−
∫ T

t

rsds

)

νw,ϕ,K |Ft

)

= E
Q

(

exp

(

−
∫ T

t

rsds

)

|F0
t

)

E
Q
(

νw,ϕ,K |F1
t

)

.
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Proof. Let t ∈ [0, T ]. Let

F0,1
t = {A ∩B : A ∈ F0

t and B ∈ F1
t }.

Since F0
t = {A ∩ Ω : A ∈ F0

t } and F1
t = {Ω ∩ B : B ∈ F1

t }, it follows that
F0

t ∪ F1
t ⊂ F0,1

t . Clearly, σ(F0,1
t ) = Ft and F0,1

t is a π-system.
To shorten notation we introduce the following symbols:

c = exp

(

−
∫ T

t

rsds

)

, ν = νw,ϕ,K ,

E
0
t (·) = E

Q
(

·|F0
t

)

and E
1
t (·) = E

Q
(

·|F1
t

)

.

We also introduce the following families of sets:

A1 ={A ∈ Ft : E
Q(cIA) = E

Q(E0
t (c)IA)},

A2 ={A ∈ Ft : E
Q(νIA) = E

Q(E1
t (ν)IA)}

and
A3 = {A ∈ Ft : E

Q(cνIA) = E
Q(E0

t (c)E
1
t (ν)IA)}.

A1,A2,A3 are λ-systems. Indeed, Ω ∈ A1,A2,A3. If A ⊂ B, then IB\A =
IB − IA. For A,B ∈ A3

E
Q(cνIB\A) =E

Q(cνIB)− E
Q(cνIA) = E

Q(E0
t (c)E

1
t (ν)IB)

−E
Q(E0

t (c)E
1
t (ν)IA) = E

Q(E0
t (c)E

1
t (ν)IB\A).

Similarly, for A,B ∈ A1

E
Q(cIB\A) = E

Q(E0
t (c)IB)− E

Q(E0
t (c)IA) = E

Q(E0
t (c)IB\A)

and for A,B ∈ A2

E
Q(νIB\A) = E

Q(E1
t (ν)IB)− E

Q(E1
t (ν)IA) = E

Q(E1
t (ν)IB\A).

If An ↑ A, then IAn
↑ IA and condition (3) from Definition 7.4 for A1,A2,A3

follows from Lebesgue’s monotone convergence theorem. Moreover, F0,1
t ⊂

A1, F0,1
t ⊂ A2 and F0,1

t ⊂ A3. Indeed, let C ∈ F0,1
t and C = A ∩ B, where

A ∈ F0
t and B ∈ F1

t . Then, from the independence of F0
t and F1

t , it follows that

E
Q(cIC) =E

Q(cIA)E
Q(IB) = E

Q(E0
t (c)IA)E

Q(IB)

=E
Q(E0

t (c)IAIB) = E
Q(E0

t (c)IC).

Furthermore,

E
Q(νIC) = E

Q(νIB)E
Q(IA) = E

Q(E1
t (ν)IB)E

Q(IA)

= E
Q(E1

t (ν)IC)
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and finally,

E
Q(cνIC) =E

Q(cIA)E
Q(νIB) = E

Q(E0
t (c)IA)E

Q(E1
t (ν)IB)

=E
Q(E0

t (c)E
1
t (ν)IC).

By applying Dynkin’s lemma for the π-system F0,1
t and λ-systems A1,A2,A3

we obtain equalities a), b) and c), which finishes the proof of the lemma. ⊓⊔

Now we formulate and prove the main theorem concerning the catastrophe
bond pricing.

Theorem 7.7. Let (rt)t∈[0,T ′] be a risk-free spot interest rate given by the dif-
fusion process (7.3) and such that after the equivalent change of probability
measure, described by the Radon – Nikodym derivative (7.5), it belongs to Af.
Let w ∈ W , ϕ ∈ Φ and K ∈ K and let IBw,ϕ,K (t) be the price at time t,
0 ≤ t ≤ T ≤ T ′, of IB (w,ϕ,K). Then

IBw,ϕ,K (t) = η (t, T, rt, w, ϕ,K) , 0 ≤ t ≤ T, (7.8)

where

(i)

η (t, T, r, w, ϕ,K) = exp (−a (T − t)− b (T − t) r)EQ
(

νw,ϕ,K|F1
t

)

; (7.9)

(ii) functions a (τ) and b (τ) satisfy the following system of differential equations:

1

2
δ2b

2 (τ) + κ̂b (τ) + b′ (τ)− 1 = 0, τ > 0,

a′ (τ) − φ̂b (τ) +
1

2
δ1b

2 (τ) = 0 τ > 0 (7.10)

with conditions a (0) = b (0) = 0.

In particular,

IBw,ϕ,K (0) =η (0, T, r0, w, ϕ,K)

= exp (−a (T )− b (T ) r0)E
P νw,ϕ,K . (7.11)

Proof. According to the assumptions formulated in Subsection 7.4.1, we obtain
the probability measure Q equivalent to P. The change of probability measure
is described by (7.5). Under the probability measure Q, the spot interest rate
dynamics is given by the equation

drt =
(

φ̂− κ̂rt

)

dt+
√

δ1 + δ2rtdW
Q
t (7.12)

with parameters φ̂, κ̂, δ1, δ2, specified in definition of the class Af. For Q, the
family B (t, T ) , 0 ≤ t ≤ T ≤ T ′, is an arbitrage-free family of zero-coupon bond
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prices with respect to r, i.e. for each T ∈ [0, T ′], B (T, T ) = 1 and the process of
discounted zero-coupon bond price

B (t, T ) /Bt, t ∈ [0, T ] ,

is a Q-martingale. Then we have the following valuation formula for the zero-
coupon bond:

B (t, T ) = E
Q
(

e−
∫

T

t
rudu|F0

t

)

, t ∈ [0, T ] .

From the zero-coupon bond pricing formula for the one-factor affine interest rate
models (see, e.g., (Munk 2011)) it follows that

E
Q

(

exp

(

−
∫ T

t

rudu

)

|F0
t

)

= exp (−a (T − t)− b (T − t) rt) , (7.13)

where a (τ) and b (τ) satisfy the system (7.10). Using assumptions formulated
in Section 7.2 and arguments similar as in (Vaugirard 2003), we obtain the
analogous equality for the price of catastrophe bond at moment t ∈ [0, T ]:

IBw,ϕ,K (t) = E
Q

(

exp

(

−
∫ T

t

rudu

)

νw,ϕ,K|Ft

)

. (7.14)

From Lemma 7.6 it follows that

E
Q

(

exp

(

−
∫ T

t

rudu

)

νw,ϕ,K |Ft

)

= E
Q

(

exp

(

−
∫ T

t

rsds

)

|F0
t

)

E
Q
(

νw,ϕ,K |F1
t

)

. (7.15)

By applying (7.13) to formula (7.15) we obtain the equality (7.8). Moreover,
from formula (7.8) for t = 0,

IBw,ϕ,K (0) = exp (−a (T )− b (T ) r0)E
Q νw,ϕ,K . (7.16)

Since νw,ϕ,K and dQ
dP are independent,

E
Q νw,ϕ,K = E

P

(

νw,ϕ,K
dQ

dP

)

= E
P (νw,ϕ,K)EP

(

dQ

dP

)

= E
P νw,ϕ,K.

From this equality, together with (7.16), we obtain (7.11). ⊓⊔
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7.5 Catastrophe bonds pricing formulas in particular cases

As we noted earlier, very popular and often used models belonging to the class of
affine spot interest rates are the Merton, Vasicek, and Cox–Ingersoll–Ross (CIR
for short) models.

The Merton model is described by the following equation

drt = ϕdt+ σdWt (7.17)

for constants ϕ and σ > 0. Its advantage is its relatively simple form. However,
its main drawback is the possibility of obtaining negative values of r.

The model of the spot interest rate, introduced by Vasicek, is an Ornstein–
Uhlenbeck process of the form

drt = κ (θ − rt) dt+ σdWt, (7.18)

where κ, θ and σ are positive constants. The process is mean reverting and
the constant θ is called the long-term level of the short rate. The interest rates
modelled by (7.18), similarly as in the case of the Merton model, can become
negative, which is an undesirable feature.

The spot interest rate process in the CIR model is given by the equation

drt = κ (θ − rt) dt+ σ
√
rtdWt, (7.19)

where κ, θ and σ are positive constants. The CIR model also exhibits mean
reversion around the long-term level θ. However, the value space of the process
r is the space of non-negative numbers (positive numbers when 2κθ ≥ σ2).

Theorem 7.8. Let w ∈ W , ϕ ∈ Φ and K ∈ W. Let IBw,ϕ,K (t) be the price at
time t ∈ [0, T ] of IB (w,ϕ,K) .

(i) If (rt)t∈[0,T ′] is described by (7.17) and λ̄ (rt) = λ is constant, then

IBw,ϕ,K (t) =

exp

(

− (T − t) rt −
1

2
(ϕ− λσ) (T − t)

2
+

1

6
σ2 (T − t)

3

)

E
Q
(

νw,ϕ,K|F1
t

)

.

(7.20)

(ii) For (rt)t∈[0,T ′] given by (7.18) and λ̄ (rt) = λ being constant

IBw,ϕ,K (t) = exp

(

− 1

κ

(

1− e−κ(T−t)
)

rt − y∞

[

(T − t)− 1

κ

(

1− e−κ(T−t)
)

]

− σ2

4κ3

(

1− e−κ(T−t)
)2
)

E
Q
(

νw,ϕ,K|F1
t

)

, (7.21)

where y∞ = θ − λσ
κ − σ2

2κ2 .
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(iii) If (rt)t∈[0,T ′] is modelled by (7.19), 2κθ ≥ σ2 and λ̄ (rt) =
λ
√
rt

σ , where λ is
a constant, then

IBw,ϕ,K (t) = exp

(

2κ̂θ̂

σ2

[

ln

(

γ
(κ̂+γ)

2

(

eγ(T−t) − 1
)

+ γ

)

+
(κ̂+ γ)

2
(T − t)

]

−
(

eγ(T−t) − 1
)

(κ̂+γ)
2

(

eγ(T−t) − 1
)

+ γ
rt

)

E
Q
(

νw,ϕ,K |F1
t

)

, (7.22)

where θ̂ = κθ
κ+λ κ̂ = κ+ λ and γ =

√
κ̂2 + 2σ2.

Proof. We apply Theorem 7.7. Since the price of the catastrophe bond is the
product of the form (7.9), our approach is similar to the zero-coupon bonds
pricing method for the risk-free affine interest rate models (see, e.g., (Munk
2011)). In case (i), under the assumption that λ̄ (rt) = λ, the solution of (7.10)
has the form

a (τ) =
1

2
(ϕ− λσ) τ2 − 1

6
σ2τ3;

b (τ) = τ.

For the Vasicek interest rate model (ii) and λ̄ (rt) = λ, the solution of (7.10) is
given by

a (τ) = y∞ [τ − b (τ)] +
σ2

4κ
b2 (τ) ;

b (τ) =
1

κ

(

1− e−κτ
)

,

where y∞ = θ − λσ
κ − σ2

2κ2 . In case (iii), under the assumption of λ̄ (rt) =
λ
√
rt

σ ,
the equality (7.4) holds (see, e.g., (Filipovic, Cheridito & Kimmel 2007)) and

a (τ) = −2κ̂θ̂

σ2

(

ln (2γ) +
1

2
(κ̂+ γ) τ − ln [(κ̂+ γ) (eγτ − 1) + 2γ]

)

;

b (τ) =
2 (eγτ − 1)

(γ + κ̂) (eγτ − 1) + 2γ
.

⊓⊔

In the remaining part of this section we present some properties of the catas-
trophe bond price for the affine one-factor interest rate models. The following
corollaries, which are the consequences of behaviour of zero-coupon bond prices,
show properties of the price of catastrophe bond at moment 0 as a function of
chosen parameters of the Merton, Vasicek and CIR interest rate models. Such
properties can be important for the construction of portfolio of insurance and
financial instruments by an insurance or reinsurance company.
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Corollary 7.9. For all the one-factor affine interest rate models from class
Af, the first and the second derivative of IBw,ϕ,K (0) = η (0, T, r0, w, ϕ,K) with
respect to r0 are given by the formulas:

∂η (0, T, r0, w, ϕ,K)

∂r0
= −b (T ) η (0, T, r0, w, ϕ,K) ;

∂2η (0, T, r0, w, ϕ,K)

∂r20
= b2 (T ) η (0, T, r0, w, ϕ,K) .

Corollary 7.10. The following statements hold:

1. For the Merton interest rate model the price η (0, T, r0, w, ϕ,K) is a convex
and decreasing function of r0 and ϕ. Moreover, the price is a convex and
increasing function of λ.

2. In the case of the Vasicek interest rate, η (0, T, r0, w, ϕ,K) is a convex and
decreasing function of r0 and θ. It is also a convex and increasing function of
λ. Moreover, η (0, T, r0, w, ϕ,K) approaches exp (−θT )EP νw,ϕ,K as κ→ ∞.

3. For the Cox–Ingersoll–Ross risk-free interest rate model, η (0, T, r0, w, ϕ,K)
is a convex and decreasing function of r0 and θ and it is a concave and
increasing function of λ.

As we noted above, the catastrophe bond valuation expression, proposed
and proved in this chapter, has a general form, which takes into account the
possibility of a complex instrument’s payoff structure and enables to choose an
appropriate risk-free interest rate model. Taking into consideration the growth
of the catastrophe bond market, further development of our cat bond pricing
method is interesting, possible and useful.
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Simulations and analysis of catastrophe bonds
and multi-layer insurance portfolios

Maciej Romaniuk

The natural catastrophic events like floods and hurricanes are source of serious
problems for the insurance and reinsurance industry. Even a single catastrophic
event can lead to bankruptcy or to lack of reserves of the insurer. Therefore,
new financial instruments, which connect the insurance and financial markets
might constitute a remedy for these problems. In Chapter 7 the method of pric-
ing of an example of such instrument, called the catastrophe bond (or the cat
bond), was considered. Then, in the present chapter, numerical analysis of cat
bond prices, based on Monte Carlo simulations will be presented. However, the
insurer takes usually into account not only a single financial derivative, but a
whole portfolio, consisting of various layers, such as a risk reserve process it-
self, an issued catastrophe bond, a possible agreement with a reinsurer etc. For
examples of such complex approaches, see (Ermolieva, Romaniuk, Fischer &
Makowski 2007, Nowak & Romaniuk 2009, Nowak & Romaniuk 2010d, Nowak
et al. 2011). Therefore, there is a need to analyse such multi-layer insurance
portfolio applying, e.g., Monte Carlo simulations. Thus, this problem will be
considered in this chapter in a more detailed way.

8.1 Catastrophe bonds

Nowadays, the insurance and reinsurance industry are threatened by risks arising
from natural catastrophes, such as hurricanes, earthquakes and floods. Losses
from Hurricane Andrew, for example, reached US$30 billion in 1992, while losses
from Hurricane Katrina in 2005 are estimated at $40–60 billion (see (Muermann
2008)). It means that a single catastrophic event, like the mentioned hurricanes,
may result in damages worth billions of dollars. Therefore, these events can
cause problems with reserves for many insurers or even bankruptcy of these
enterprises (see (Cummins, Doherty & Lo 2002)). Also the prices of reinsurance
policies are strongly connected with appearance of such catastrophes. It causes
problems with mitigation of catastrophic risks if the insurers apply the standard,
reinsurance approach.

The main problem is that the classic insurance mechanisms are unsuitable
for addressing the extreme, infrequent losses caused by the natural catastrophes.
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Then, even a single catastrophe reduces the reserves of the insurers or even leads
to bankruptcy of these companies. For example, after Hurricane Andrew more
than 60 insurance companies fell into insolvency (see (Muermann 2008)). In the
case of traditional insurance models (see, e.g. (Borch 1974)) independent risk
claims that are frequent, but also small in relation to the value of the whole
insurance portfolio are the assumed usual situation. Car crashes or fires in the
houses are the examples of such incidents. And the classic strategy of selection
of an insurance contract portfolio – the more of (independent) risks, the safer
the portfolio – which is based on this assumption, is justified by the law of large
numbers and the central limit theorem (see, e.g. (Borch 1974)).

However, catastrophic risks mean that new approaches are needed for build-
ing insurance company portfolios. As the sources of losses caused by natural
catastrophes, which are infrequent, but rather severe, are strongly dependent on
time and location, the traditional portfolio-building strategy can only increase
the probability of bankruptcy of the insurer (see (Ermoliev, Ermolieva, Mc-
Donald & Norkin 2001)). Additionally, classical insurance mechanisms are often
criticized because of serious problems with adverse selection and moral hazard
– e.g., hope for governmental help or possession of insurance policy may change
people’s attitude and lead them to “dangerous” behaviour like building houses
in areas threatened by floods, not preventing additional losses etc. To cope with
the dramatic impacts of extreme catastrophic events, like floods and hurricanes,
an integrated policy that combines mitigation measures with diversified ex ante
and ex post financial instruments is required (see (Nowak 1999)).

Development of new financial instruments is an example of a modern ap-
proach. As it is known, worldwide financial markets fluctuate by tens of bil-
lions of dollars on a daily basis. This is why securitization of losses, i.e., the
“packaging” of catastrophic risks into tradable financial assets in the form of
the so-called catastrophe derivatives, is useful for dealing with the impacts of
extreme natural catastrophes (see, e.g. (Cummins, Doherty & Lo 2002, Free-
man & Kunreuther 1997, Froot 2001, Harrington & Niehaus 2003, Nowak &
Romaniuk 2009, Nowak & Romaniuk 2010d, Nowak et al. 2011, Nowak &
Romaniuk 2013b, Nowak & Romaniuk 2014b)).

The example of such catastrophe-linked security is the catastrophe bond (cat
bond, known also as Act-of-God bond, see, e.g., (Cox, Fairchild & Pedersen 2000,
Ermolieva et al. 2007, George 1997, Nowak & Romaniuk 2013b, O’Brien 1997,
Romaniuk & Ermolieva 2005, Vaugirard 2003)). In 1993 the first catastrophe
derivatives were introduced by the Chicago Board of Trade (CBoT). These fi-
nancial derivatives were based on underlying indexes, reflecting the insured prop-
erty losses due to natural catastrophes, reported by insurance and reinsurance
companies.

The payoff received by the cat bond holder is linked to an additional random
variable, which is called triggering point (see (George 1997)). This triggering
point may be connected, for example, with occurrence of a natural catastrophe
in a specified region at a fixed time interval, the value of issuer’s actual losses
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from the catastrophic event (like flood), losses modelled by special software,
based on the real parameters of a catastrophe, the whole insurance industry
index, the real parameters of a catastrophe (e.g., earthquake magnitude or wind
speeds in case of windstorms), or the hybrid index related to modelled losses
(see, e.g. (Walker 1997)). Then, the triggering points are related to indemnity
triggers, index and parametric triggers of such catastrophic events. For some cat
bonds (like Atlas Re II issued for the SCOR Group), the triggering points are
the second or even the third event during a fixed period of time. If the triggering
point occurs, then the whole structure of payments is changed. The necessary
parameters, like the region and the time interval for the catastrophic event, are
described in detail for the catastrophe bond. The payments for cat bonds usually
depend also on the interest rates, like LIBOR.

One of the earliest examples of catastrophe bonds is the A-1 USAA bond,
introduced in 1997. The payoff for this instrument was connected with the hur-
ricane on the East coast of the USA between July 15, 1997 and December 31,
1997. If there had been a hurricane in this region with more than $1 billion losses
against USAA, the coupon of the bond would have been lost. The payment of
this cat bond equalled LIBOR plus 282 basis points.

Another catastrophe bond was issued in 1997 by Swiss Re to cover earthquake
losses. The first cat bond prepared by a non-financial firm was issued in 1999
in order to cover earthquake losses in the Tokyo region for Oriental Land Com-
pany, Ltd., the owner of Tokyo Disneyland (see (Vaugirard 2003)). The cat bond
market in year 2003 hit a total issuance of $1.73 billion, a 42% increase from the
record of the year 2002 which was equal to $1.22 billion (see (McGhee 2004)).
Additionally, since 1997, 54 cat bond issues have been completed with total risk
limits of almost 8 billion (see (Vaugirard 2003)). To the end of 2004 there were
about 65 emissions of cat bonds. Insurance and reinsurance companies issued
almost all of these cat bonds, with reinsurers accounted for over 50% of the
issuances (see (Vaugirard 2003)). To the end of 2006, 89 cat bonds were issued
and 41 of them were prepared by insurers and 43 by reinsurers. In the very year
2006 there were 20 issuances (see (Ripples IntoWaves: The Catastrophe Bond
Market at Year-End 2006 2007)). Moreover, the market of cat bonds is expected
to emerge in the future, because of increasing losses from the catastrophic events.

As mentioned earlier, the catastrophe bonds are used to transfer risk from
the insurance markets to the financial markets via the mechanism known as
securitization of losses. Because of problems with classical insurance models,
which appear in the case of the catastrophic events, like dependencies among
sources of risks, potentially unlimited losses, problems with adverse selection, as
well as moral hazard and reinsurance pricing cycles, new financial instruments
like cat bonds are an important alternative. Apart from transferring capital,
the liquid catastrophe derivatives market allows the insurance and reinsurance
companies to adjust their exposure to natural catastrophic risk dynamically
through hedging with those contracts at lower transaction costs.
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Many authors emphasize the advantages of using cat bonds by insurers, as
compared to other sources of additional capital in the case of catastrophic events.
For example, Finken & Laux (2009) indicate that the cat bonds play an im-
portant role in the pricing of reinsurance contracts when there is asymmetric
information between inside and outside reinsurers about an insurer’s risk. Ad-
ditionally, if the cat bond with a parametric trigger is used, then the adverse
selection problem does not arise. On the contrary, there is basis risk, caused
by some degree of independence between the cat bond’s payoff and the in-
surer’s actual loss. However empirical analysis shows that even in such cases
cat bonds can be effectively used to hedge catastrophic risks (see (Cummins,
Lalonde & Phillips 2002, Cummins, Lalonde & Phillips 2004, Harrington, Mann
& Niehaus 1995)).

In the case of cat bond, the cash flows related to this financial instrument are
usually managed by a special tailor-made fund, called a special-purpose vehicle
(SPV) or special purpose company (SPC) (see, e.g. (Vaugirard 2003, Lee &
Yu 2007)). The hedger (e.g. insurer or reinsurer) pays an insurance premium in
exchange for coverage in the situation, when the triggering point occurs. The
investors purchase an insurance-linked security for cash. The above mentioned
premium and cash flows are directed to SPV (see Figure 8.1), which issues the
catastrophe bonds. Usually, SPV purchases safe securities in order to satisfy
future possible demands. Investors hold the issued assets whose coupons and/or
principal depend on the occurrence of the triggering point, e.g. the catastrophic
event. If this event occurs during the specified period, the SPV compensates the
insurer and the cash flows for investors are changed (see Figure 8.2). Usually,
these flows are lowered, i.e. there is full or partial forgiveness of the repayment
of principal and/or interest. However, if the triggering point does not occur, the
investors usually receive the full payment (see Figure 8.3). Cat bonds, similarly
to other financial derivatives, are often rated by an agency, such as Standard &
Poor’s, Moody’s, or Fitch Ratings.

Fig. 8.1. Catastrophe bond: initial cash flows
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Fig. 8.2. Catastrophe bond: cash flows if the triggering point occurs

Fig. 8.3. Catastrophe bond: cash flows if the triggering point does not occur

8.2 Simulations of cat bond prices

In order to analyse the behaviour of the cat bond price, described by the formulas
from Section 7.4.2, Monte Carlo simulations will be considered in this section.
We start from the introduction of the relevant stochastic models of losses and of
the risk-free interest rate.

8.2.1 Model of the losses

As previously noted, the triggering point of the cat bond is connected directly
(e.g. via value of losses) or indirectly (e.g. via special catastrophe index of the
insurance industry) with catastrophic events. Therefore, there is a necessity to
apply accurate statistical models of natural catastrophes.

An example of such an approach is considered in (Chernobai, Burnecki,
Rachev, Trueck & Weron 2006), where the losses resulting from natural catas-
trophic events in the United States are taken into account. The distributions
of the single catastrophic event and the stochastic processes of the number of
events are calibrated in the mentioned paper, based on data from the United
States provided by the Property Claim Services (PCS) of the ISO (Insurance
Service Office Inc.).
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For each catastrophe, the PCS loss estimate represents anticipated industry-
wide insurance payments for different property lines of insurance covering (see
(Burnecki, Kukla & Weron 2000)). A catastrophic event is denoted as catastro-
phe if the expected claims exceed a determined threshold. In 1997, the threshold
was increased from $5 million to $25 million due to changing economic condi-
tions. The losses of magnitudes below this limit are not recorded in the PCS
databases. Therefore, there are non-randomly missing data on the left side of
the loss distribution of the catastrophic event. This problem is considered in
(Chernobai et al. 2006) and the distributions of losses are modelled via condi-
tional distributions, taking into account the effect of the missing data.

In (Chernobai et al. 2006) some of the loss distributions, widely used in sta-
tistical analysis, are considered. As noted there, especially the lognormal pdf
showed a good fit – both in-sample (i.e. during goodnes-of-fit tests for the esti-
mated parameters of the distribution) and out-of-sample (in forecasting tests).
Also the Weibull distribution provided good forecasting results.

In the insurance industry the process of the aggregated losses is described by

Ñt =

Nt
∑

i=i

Ui (8.1)

for t ≥ 0, where the number of losses is modelled by some stochastic processNt ≥
0 and the values of the single claims are given by the random sequence U1, U2, . . .
(see, e.g., (Asmussen & Albrecher 2010)). Usually, the processNt is homogeneous
(abbreviated further as HPP) or non-homogeneous (NHPP) Poisson process (see
Section 4.9) and the losses {Ui}i=1 are iid random variables (see, e.g., (Asmussen
& Albrecher 2010, Cox, Fairchild & Pedersen 2004, Nowak & Romaniuk 2013b)).
In the case of the catastrophic events, like hurricanes and floods, the value of
the single loss Ui is modelled by the relevant heavy-tailed distribution (see, e.g.,
(Asmussen & Albrecher 2010)), like the lognormal distribution, considered in
(Chernobai et al. 2006).

Apart from the estimation of the parameters of distribution of Ui, the stochas-
tic process Nt used in (8.1) should be also modelled. Then, for the HPP the
intensity parameter λHPP, and for the NHPP the intensity function λNHPP(t)
are estimated. In (Chernobai et al. 2006) the annual seasonality of the events,
based on periodogram, is pointed out. Therefore, the cyclic intensity function

λNHPP(t) = a+ b2π sin (2π(t− c)) (8.2)

with parameters a, b, c was proposed there. The considered estimation procedure
is based on fitting the mean value function ENt to the accumulated quarterly
number of losses in PCS data (see also (Burnecki & Weron 2005) for additional
details).

In (Ma & Ma 2013), for the similar set of PCS data, adjusted for inflation,
more complex cyclic intensity function

λNHPP(t) = a+ b sin2(t+ c) + d exp

(

cos

(

2πt

ω

))
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with parameters a, b, c, d, ω is considered. These parameters were then fitted to
the accumulated annual number of losses using nonlinear least squares method.

In our setting we apply the parameters obtained by Chernobai et al. (2006),
based on the previously mentioned real-life data provided by PCS. These data
covered the values of losses resulting from natural catastrophes in USA that
occurred between 1990 and 1999, specially adjusted using the Consumer Price
Index, provided by the U.S. Department of Labour. Using the least squares
estimation, the values of parameters for the intensity function λNHPP(t), given
by (8.2) were evaluated in (Chernobai et al. 2006) as

a = 30.8750 , b = 1.6840 , c = 0.3396 . (8.3)

These parameters will be further on used in our analysis.
As mentioned previously, Chernobai et al. (2006) considered various proba-

bility distributions for the value of the single loss Ui, like exponential, lognormal,
Weibull distribution etc. Special attention was paid to the problem of truncation
of the recorded data, because a catastrophic event is denoted as a catastrophe
if losses caused by this event exceeded some fixed minimum level. As indicated
by the authors quoted, the lognormal distribution with the density

f(t) =
1√

2πσLNt
exp

(

− (log t− µLN)
2

2σ2
LN

)

(8.4)

and the estimated parameters

µLN = 17.3570 , σLN = 1.7643 (8.5)

showed a good fit for the considered real-life data. This pdf surpasses other types
of distributions discussed in (Chernobai et al. 2006). Therefore, the lognormal
distribution with the mentioned parameters will be used further on in our anal-
ysis. However, other types of distributions and other intensity functions could
be directly applied to model the process of losses Ñt using the Monte Carlo
approach, developed in this chapter.

8.2.2 Model of the interest rates

The cat bond price, given by Theorem 7.8, which is a special case of Theorem 7.7,
depends also on the selected risk-free interest rate model. As noted in Section
7.5, in our setting, the Vasicek model (see (7.18)), described by

drt = κ (θ − rt) dt+ σdWt (8.6)

is applied.
As in the case of the stochastic process of the losses Ñt (see Section 8.2.1), the

model of rt fitted to real-life data is used. Chan, Karolyi, Longstaff & Sanders
(1992) considered various one-factor interest rate models for the U.S. Treasury
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bill yield data. In particular, the parameters of the Vasicek model were evaluated
as

κ = 0.1779 , θ = 0.086565 , σ2 = 0.0004 (8.7)

and these values are used in our further analysis.

8.2.3 Analysis of prices

Because of the complex nature of the pricing formula, introduced in Theorem 7.8,
which consists of both the discount factor and the expected value as a function
of the process of losses, in the following, the Monte Carlo approach is applied to
evaluate and analyse the prices of the cat bond.

As it was noted in Section 5.3, the error of the Monte Carlo method strictly
depends on the number of simulations. Therefore, in order to minimize its influ-
ence, in each experiment one million simulations are conducted (i.e. n = 100000).

As the model of the risk-free interest rate, the Vasicek model (see Sections 7.5
and 8.2.2) is applied. Its parameters are given by (8.7) and for the simplicity, its
starting value r0 is set to 0.03.

We assume that T = 1, i.e. the maturity time of the considered catastrophe
bond is equal to one year. The face value of this bond is one, so the one monetary
unit assumption is introduced.

Because the catastrophe bond is priced, then the underlying model of catas-
trophic events (8.1) should be also adopted. We apply the NHPP model of the
number of catastrophes Nt and the lognormal distribution of the value of the
single loss Ui, given by the parameters (8.3) and (8.5), respectively. Of course,
other models of catastrophic events and various distributions of the value of the
loss can also be used with the Monte Carlo approach.

The payment function for the considered catastrophe bond is piecewise lin-
ear, as described in a detailed way in Section 7.1. The triggering points Ki are
connected with exceeding the limits given by quantiles of the cumulated value
of losses for the previously mentioned models: NHPP (the number of losses) and
lognormal distribution (the value of the single loss). Such x-th quantile is de-
noted further by Qloss

NHPP-LN
(x). The graph of the related quantiles is given with

Figure 8.4.
Using the quantiles as the triggering points is intuitively very appealing,

because usually the insurer is interested in transferring some value of its “too
high” part of the cumulated claims into the financial markets. In the considered
setting we take

K0 = Qloss
NHPP-LN(0.75),K1 = Qloss

NHPP-LN(0.85),K2 = Qloss
NHPP-LN(0.95)

and the values of payments decreases are equal to

w1 = 0.4, w2 = 0.6 .

Therefore, e.g. if the cumulated value of losses exceeds the 0.95th quantile, then
the holder of the cat bond receives zero as the final payment.
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Fig. 8.4. Graph of the quantiles Qloss

NHPP-LN(x) of the cumulated value of losses (in
million $)

After conducting Monte Carlo simulations, the estimator of the catastrophe
bond price is equal to 0.839936. Because of the applied numerical approach, it
is possible to analyse the payments of such bond in a more detailed way. For
example, the histogram (see Figure 8.5) or descriptive statistics (see Table 8.1)
are evaluated. As it may be seen from this histogram, two values of the payments
are the most common – zero or one (i.e. the face value of this cat bond).

Measure Value
Mean 0.869583
Median 1
Mode 1
Standard deviation 0.282263
Skewness -2.14197
Kurtosis 6.26528

Table 8.1. Descriptive statistics of payments for catastrophe bond

In practical cases, estimation of true parameters of the probability distribu-
tion of the single catastrophic loss is a serious problem. If there is an estimation
error, i.e. the “real” cdf is not similar to the estimated distribution, then the eval-
uated cat bond price may be not close to its “appropriate” value. Such issue is
illustrated with Figure 8.6, where the dependency between the catastrophe bond
price (vertical axis) and the various sets of parameters µLN and σLN (horizontal
axes) is analysed. As it may be seen, the cat bond price is a decreasing function
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Fig. 8.5. Example of histogram of catastrophe bond payments

of both of these parameters and differences between the prices for various sets
of µLN and σLN are significant.
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Fig. 8.6. Example of analysis of cat bond prices for different values of µLN and σLN
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Apart from the possible errors in the estimation of cdf of a single loss, also
the intensity function of the process of the number of losses λ(t) may be subject
to similar problems. As it is seen from Figure 8.7, if the parameter a in the
function λNHPP(t), given by (8.2), is altered, then the catastrophe bond price
behaves in a rather non-linear way. Nevertheless, generally speaking, such price
is a decreasing function of a.

29.5 30.0 30.5 31.0 31.5 32.0 32.5
a

0.825

0.830

0.835

0.840

0.845

0.850

Price

Fig. 8.7. Example of analysis of cat bond prices for different values of a in the intensity
function λNHPP(t)

A more complex situation is illustrated with Figure 8.8, where the dependence
between the catastrophe bond price and the value of the parameter b for the
intensity function λNHPP(t), given by (8.2), is considered. In this case, because
of the cyclic component in (8.2), the price is a highly unstable function of b.
Therefore, it is almost impossible to predict the level of error for the cat bond
price if there is any problem with estimation of this parameter.

Apart from the influence of the estimation errors, the insurer may be inter-
ested also in the analysis of relation between the evaluated price of cat bond
and the given set of parameters of the payment function. An example of such
an examination is illustrated with Figure 8.9, where the prices for various values
of w2 are found if w1 = 0.1 is set. The other parameters are the same as in the
case of the first cat bond considered in this section. Then, the price is almost a
linear function of the value of the payment decrease w2.

Another example of similar analysis is given in Figure 8.10. In this case,
various values for only two triggering points K0 and K1 are considered. Ad-
ditionally, w1 = 1 is set to model the bigger impact of decreasing the final
payment on the price of the cat bond. As previously, the triggering points
are related to the fact of exceeding the quantiles Qloss

NHPP-LN
(x) of the cu-
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Fig. 8.8. Example of analysis of cat bond prices for different values of b in the intensity
function λNHPP(t)
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Fig. 8.9. Example of analysis of cat bond prices for different values of w2

mulated value of losses. Then, K0 ∈ [Qloss
NHPP-LN

(0.4), Qloss
NHPP-LN

(0.65)] and
K1 ∈ [Qloss

NHPP-LN
(0.7), Qloss

NHPP-LN
(0.95)]. The other parameters are the same as

in the first analysis. The price is a non-linear increasing function of both K0

and K1.

8.3 Modelling of the portfolio layers

In previous sections, cat bond prices were analysed using Monte Carlo simula-
tions. Now we apply these results to the problem of the whole insurance portfolio,
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Fig. 8.10. Example of analysis of cat bond prices for different values of K0 =
Qloss

NHPP-LN(.) and K1 = Qloss

NHPP-LN(.)

which consists of several instruments (or layers). Before the analysis of such port-
folio, these complex instrument should be modelled. Therefore, we start from the
detailed description of this portfolio and some necessary formulas.

8.3.1 Risk reserve process

In insurance mathematics, a risk reserve process (or risk process) (Rt)t≥0 is
introduced as a model of evolution of the financial reserves of the insurance
company over time (see, e.g., (Asmussen & Albrecher 2010)). For t = 0 we have
R0 = u, where u is called the initial reserve of the insurer. The number of claims,
which are submitted to the insurer in time interval [0, t], is modelled by the
stochastic process Nt ≥ 0. The values of these claims are given by non-negative
iid random variables C1, C2, . . . (compare this notation with the discussion of
the model of losses in Section 8.2.1). In return for protection, the insureds pay a
premium to the insurer at the rate p per unit time. Then, the whole risk reserve
process is defined as

Rt = u+ pt− C̃t , (8.8)

where C̃t =
∑Nt

i=1 Ci is the claim process (compare with a similar process of
losses given by (8.1)).

In the classical insurance approach, if the process of the number of claims
Nt is given by the homogeneous Poisson process (HPP), then the premiums are
related to the average number of claims per unit time and the expected value of
the single claim Ci via the formula
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p = (1 + νp)λHPP ECi , (8.9)

where νp is a safety loading (or a security loading, see, e.g. (Asmussen &
Albrecher 2010)) and λHPP is a constant intensity of the process Nt. A sim-
ilar notation was introduced in Section 8.2.1. In the literature, the typically
assumed values of the safety loading νp are approximately 10% – 20%.

If the process Nt is described by the non-homogeneous Poisson process
(NHPP) (as in the case of the model considered in Section 8.2.1), then, instead
of the risk reserve process (8.8), its modified form

Rt = u+

∫ t

0

p∗(s)ds− C̃t

with non-constant intensity of premium p∗(s) should be introduced. In this case
(see, e.g., (Chernobai et al. 2006) for similar approach) the related premium
function p(t) is given by the formula similar to (8.9), namely

p(t) =

∫ t

0

p∗(s)ds = (1 + νp)ECi

∫ t

0

λNHPP(s)ds , (8.10)

where λNHPP(s) is the intensity function of the considered NHPP.
The formula (8.10) with time-dependent function p(t) reflects a situation,

when for each t the insurer continually adjusts the premium, taking into account
new information about the claims. However, from the practical point of view,
the premium is usually treated as “aggregation of average value of claims” and
in many cases it is not possible (e.g. because of governmental regulation) or not
feasible (e.g. because of necessity of introducing completely new contracts) to
change its value too often. Then, the premium is a constant function for some
periods of time, e.g. is equal to p till the fixed moment T , when a new value of
the premium is evaluated. In such a case, the condition

p(T ) = pT = (1 + νp)ECi

∫ T

0

λNHPP(s)ds (8.11)

is fulfilled.
In classical insurance models, the cash flows for the risk process Rt are con-

sidered without taking into account the value of money in time, i.e. without
introducing the interest rate model to the financial market. Therefore, the main
problem in the classical approach is related to calculation of probability of the
ruin (see, e.g., (Asmussen & Albrecher 2010)). The probability of ultimate ruin
(ruin probability with infinite horizon) ψ(u) is the probability that the reserves
of the insurer ever drop below zero

ψ(u) = P

(

inf
t≥0

Rt < 0

)

and the probability of the ruin before time T (ruin probability with finite horizon)
is the probability that the reserves drop below zero in time interval [0, T ], i.e.
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ψ(u, T ) = P

(

inf
t∈[0,T ]

Rt < 0

)

.

However, in our setting, the relevant interest rate model for the financial
market is considered. Therefore, instead of the classical version of the risk process
Rt, its modified form, given by

RFV
T = FVT (u) + FVT (p(T ))− FVT

(

NT
∑

i=1

Ci

)

(8.12)

is used. From now on, the operator FVT (.) denotes the future value of the
specified cash flow evaluated at a fixed, final moment T . It should be taken into
account that the moments of payments vary for particular parts of (8.12) – the
initial reserve u exists at t = 0, the premium p(t) is paid continually for all
0 ≤ t ≤ T , the claims Ci are reported when the related events occur. Therefore,
the future values for various periods should in this case be evaluated.

8.3.2 Catastrophe bond

As noted in Section 8.1, the traditional insurance approach is not adequate
in the case of the catastrophic events like hurricanes and floods. Therefore, in
the here modelled insurance portfolio, consideration of additional layers, i.e.
supplementary financial and insurance instruments, is necessary. We start from
adding first such layer – a catastrophe bond – to this portfolio.

Let us suppose that the insurer, the owner of the considered portfolio, issues
a catastrophe bond. The cash flows, related to this instrument, are described in
Section 8.1. The insurer pays an insurance premium pcb, which is proportional
to the part αcb of the whole price of the single catastrophe bond Icb and to the
number of issued cat bonds ncb, i.e.

pcb = αcbIcbncb . (8.13)

This premium is paid always, regardless of the fact whether the issued instrument
brings any future payments for the insurer.

The subsequent cash flows depend on the occurrence of the triggering point.
If the triggering point takes place, then the insurer receives some payoff. It is
equal to the payment function of the single catastrophe bond for the issuer
f i
cb(.) multiplied by the quantity of the issued bonds ncb. In our setting, both

the triggering point (or the triggering points) and the payment function f i
cb(.)

depend on the cumulated value of the losses Ñt, defined by the process (8.1).
Otherwise, if the triggering point does not occur, the insurer receives nothing

and f i
cb(Ñt) = 0 in this case. It means that the whole payoff – the whole face

value of the cat bond – is transferred to the holder of the bond.
Then, the risk process Rt is modified by an additional part, defined by

Rcb
t = −pcb + ncbf

i
cb(Ñt) . (8.14)
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It should be noted that both the process of the losses Ñt =
∑Nt

i=1 Ui and

the process of the claims C̃t =
∑Nt

i=1 Ci are driven by the same Poisson process
Nt, but the value of the single claim Ci in some settings can be only a part
of the whole value of the relevant loss Ui. For example, if the process Ñt and
the triggering points are related to the values of losses for the whole insurance
industry (as this is the case of the PCS index), then the claims of the single
insurer are only some part of the registered losses. Then, the value of the claim
Ci is given by

Ci = αclaimUiZi , (8.15)

where αclaim ∈ [0, 1], Zi ∼ U [cmin, cmax], where Ui and Zi are mutually inde-
pendent random variables for all i. The parameter αclaim describes the share of
the considered insurer in the whole insurance industry for the given region, for
which the catastrophe bond is issued. If αclaim = 1, then there is only one in-
surer in this region and all losses are (potentially) insured by this enterprise. The
additional random variable Zi may be seen as the random part of the value of
losses Ui in the whole value of claims Ci. It is known that sometimes not all the
properties are completely insured, or the losses are not reported to the insurer
at all, or the specified insurer has various levels of shares in different subregions
of the whole region, which may be modelled by some random distribution. As
an example of such an approach, the uniform pdf for the interval [cmin, cmax],
where 0 ≤ cmin < cmax ≤ 1 are some constant parameters, is applied. Therefore,
if Zi ∼ U [0, 1], then one of the classical non-informative distributions is used in
(8.15).

Of course, other probability distributions with support on the interval
[cmin, cmax], instead of the uniform one, could be applied for the variable Zi.
Also a simpler influence relation, given by

Ci = αclaimUi (8.16)

can be used in the analysis of the portfolio.
It should be noted that the use of such kind of triggering point as the value

of the losses of the whole insurance industry or other parametric trigger, leads
to the absence of the adverse selection problem. Instead of this, in the case of
dependence between the losses Ui and claims Ci, modelled by the formulae (8.15)
or (8.16), the basis risk occurs. It is caused by an imperfect correlation between
the payoff for the insurer and the claims reported to this enterprise. Because of
this risk, the cash flow from the catastrophe bond does not completely match
the claims. This leads to exposure of the insurer to uncovered claims (see, e.g.,
(Finken & Laux 2009, Cummins et al. 2004)). Therefore, additional layers of the
portfolio are also important in the hedging of the insurer.

The flows of the cat bond Rcb
t , described by the formula (8.14), are usually

connected with the maturity of this financial instrument, i.e. time T , as noted in
Section 8.1. Additionally, the model of the interest rate is applied in our setting.
Then, the introduction of this extra layer into the portfolio leads to a more
complex form of the risk process (8.12) given by
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RFV
T = FVT (u− pcb) + FVT (P (T ))− FVT

(

C̃T

)

+ ncbf
i
cb(ÑT ) (8.17)

for the fixed moment T of maturity of the cat bond.

8.3.3 The reinsurer contract

In order to improve their financial stability, the insurers usually transfer some
part of their risk caused by high insured losses to other companies, known as
reinsurers. A standard reinsurance contract is an excess-of-loss policy (see, e.g.,
(Lee & Yu 2007)). In this case, in exchange for some premium prnsr, the rein-
surance company pays a part of claim value to the insurer if the total value of
claims C̃T till the moment T exceeds some fixed amount. This minimum limit is
called an attachment point Arnsr. The payment from the reinsurer mentioned is
also subject to the maximum value of total claims. This maximum limit is a cap
level Brnsr. Beyond this level, the reinsurer pays only the fixed value Brnsr−Arnsr

regardless of the reported claims. Then, the payment function for the insurer is
equal to

f i
rnsr

(

C̃T

)

=











Brnsr −Arnsr if C̃T ≥ Brnsr

C̃T −Arnsr if Brnsr > C̃T ≥ Arnsr

0 otherwise

. (8.18)

Therefore, in the classical risk process Rt, defined by (8.8), we have an ad-
ditional part, related to the reinsurance contract

Rrnsr
t = −prnsr + f i

rnsr

(

C̃T

)

.

This leads us to a more complete form of the risk process RFV
T , defined by (8.17),

with two layers in the portfolio

RFV
T = FVT (u− pcb − prnsr) + FVT (P (T ))− FVT

(

C̃T

)

+ ncbf
i
cb(ÑT ) + f i

rnsr

(

C̃T

)

.

Of course, other forms of reinsurance contracts, apart from the excess-of-loss
policy, are possible in this setting.

An other issue is related to the calculation of the premium for the reinsurer
prnsr. Usually, as noted by (Finken & Laux 2009), the value of this premium
depends on reinsurer’s knowledge about inner procedures of the insurer, like in-
surer’s book of business, principles of underwriting and reserving policy, business
model and future plans of the enterprise, etc. There is a close business relation
between insurers and reinsurers, which leads to asymmetric information in the
case when some “new” reinsurer is coming onto the market. For simplicity of our
analysis, we assume that the premium prnsr depends on the expected value of the
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present value (denoted further by PV) of the payment function for the insurer
f i
rnsr, namely

prnsr = (1 + νrnsr)E
(

PV
(

f i
rnsr

(

C̃T

)))

, (8.19)

where νrnsr is the safety loading for the reinsurer. This approach is similar to
the security loading νp, used for the insured’s premium p (compare with formula
(8.9)).

8.3.4 Other layers

As noted in (Nowak et al. 2011, Nowak & Romaniuk 2009, Nowak & Romaniuk
2010d) other layers may be incorporated into our model of the insurer’s portfolio.
For example, these layers can be related to governmental help, or foreign help,
or additional infusion of capital from another enterprise (e.g. owner of the con-
sidered insurer), etc. Such cash flow may be seen as positive payment directed
to the insurer, because the previously mentioned types of payoffs actually lower
the value of total claims.

We assume that the value of the considered cash flow is proportional to the
reported claims C̃T till the moment T with a fixed minimum limit Ahlp, namely

f i
hlp

(

C̃T

)

=

{

ρhlpC̃T if C̃T ≥ Ahlp

0 otherwise
,

where ρhlp is a proportion parameter. However, this additional fund is not al-
ways used, but only with some probability, modelled by an independent ran-
dom variable Thlp. If this binary variable is equal to one (i.e. Thlp = 1, where
P (Thlp = 1) = phlp), then the described cash flow can occur. Otherwise, if
Thlp = 0, this additional external help is not available. This leads us to the
subsequent part in the risk process Rt, which is equal to

Rhlp
T = 11 (Thlp = 1) f i

hlp

(

C̃T

)

.

Then, taking into account all of the previously described layers in the insurer’s
portfolio, the modified risk process RFV

T is given by

RFV
T = FVT (u− pcb − prnsr) + FVT (P (T ))− FVT

(

C̃T

)

+ ncbf
i
cb(ÑT ) + f i

rnsr

(

C̃T

)

+ 11 (Thlp = 1) f i
hlp

(

C̃T

)

. (8.20)

The risk process for the multi-layer insurance portfolio RFV
T is defined by

the formula (8.20) in the simplified form, i.e. only when the time t is equal to
the fixed moment T . Taking into account the layers described in the previous
sections, a similar stochastic process could be formulated for any 0 < t ≤ T ,
where T is the maturity of the cat bond and the reinsurer contract. But even for
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this simplified form (8.20), the process RFV
T is a very complex one. Therefore, in

order to analyse its behaviour, like estimation of the probability of the insurer’s
ruin for the fixed time T or of value of its default, Monte Carlo simulations
should be applied.

8.4 Simulation of the underlying models

In order to completely describe and analyse the multi-layer insurance portfolio,
introduced in Section 8.3, the relevant model of the interest rates and the model
of the process of catastrophes should be selected, calibrated and then used during
Monte Carlo simulations.

8.4.1 Model of losses and claims

As presented in Section 8.2.1, the process of the aggregated catastrophe losses
Ñt has the standard form given by

Ñt =

Nt
∑

i=i

Ui ,

where Nt is the process of the number of losses, modelled by the homogeneous
(HPP) or the non-homogeneous (NHPP) Poisson process, and the values of losses
U1, U2, . . . are iid random variables, usually described by some heavy-tailed dis-
tributions, e.g. lognormal or Weibull distribution.

In our case we apply the model of losses based on parameters estimated in
(Chernobai et al. 2006) for catastrophic data provided by the Property Claim
Services of the Insurance Service Office Inc. (see Section 8.2.1 for additional
details), namely the cyclic intensity function λNHPP(t) for NHPP

λNHPP(t) = a+ b2π sin (2π(t− c)) (8.21)

with the parameters

a = 30.8750 , b = 1.6840 , c = 0.3396 , (8.22)

and the lognormal distribution of the single loss Ui, given by the density (8.4)
with the parameters

µLN = 17.3570 , σLN = 1.7643 .

As discussed in Section 8.3.2, apart from the losses, the risk process RFV
t for

the considered portfolio is also influenced by claims based on the catastrophic
losses. Then the process of the aggregated claims

C̃t =

Nt
∑

i=1

Ci (8.23)
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is described by the same NHPP of the number of events given by the intensity
function λNHPP(t) of the form (8.21) with parameters (8.22). Further to evaluate
the value of the single claim Ci for the given value of loss Ui, the formula (8.15)
or (8.16) can be used.

There are various possible types of relations between the losses and the
claims:

Claims are equal to losses – The insurer is influenced by the full value of losses
from the catastrophic events, and so Ci = Ui is set. This approach may be
applied if e.g. the considered insurer has complete monopoly for the given
region.

Claims are a deterministic part of losses – Only some given, deterministic part
of losses is transferred into claims. Then, the formula (8.16) with the specified
parameter αclaim is used. Such approach may be applied if e.g. some expert
knowledge about the share in the whole market for the considered insurer is
available.

Claims are a random part of losses – Only some random part of losses is equal
to claims. Then, the formula (8.15) with the fixed value αclaim = 1 and the
specified limits cmin, cmax is used. This model may be appropriate in many
circumstances, e.g. if only some general knowledge of the characteristics of
share in the market for the insurer is available.

Claims are both a deterministic and a random part of losses – In this case the
formula (8.15) with some specified parameters αclaim < 1, cmin, cmax is used.

8.4.2 Model of interest rates

In order to simulate the risk process RFV
T , given by (8.20), it is necessary to

evaluate the future values of the considered cash flows.
If the Vasicek model is applied (see Section 7.5 and Section 8.2.2 for additional

details), then a special iterative formula should be used to simulate such risk-free
interest rate process rt. The relevant algorithm is discussed in (Glasserman 2004).
Now we describe the most important conclusions, related to this approach.

To evaluate rt at fixed moments 0 = t0 < t1 < t2 < . . . < tn, we apply the
formula

rti+1 = e−κ(ti+1−ti)rti + θ
(

1− e−κ(ti+1−ti)
)

+ σ

√

1− e−2κ(ti+1−ti)

2κ
Zi , (8.24)

where Z1, Z2, . . . , Zn are iid samples from N(0, 1). As noted by Glasserman
(2004), such approach is an exact simulation, i.e. the distribution of rt1 , rt2 , . . . , rtn
is the same as of the Vasicek process at times t1, t2, . . . , tn for the fixed value r0.
Then, the cdf of rti+1 for the given value of rti is equal to

rti+1 ∼ N
(

e−κ(ti+1−ti)rti + θ
(

1− e−κ(ti+1−ti)
)

,

σ2 1− e−2κ(ti+1−ti)

2κ

)

. (8.25)
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Instead of the formula (8.24), the simpler Euler scheme based on the approx-
imation of the Vasicek model, given by (8.6), via the straightforward relation

rti+1 = rti + κ (θ − rti) (ti+1 − ti) + σ
√

ti+1 − ti

can also be used. However, this approach leads to some discretisation error, as
described by Glasserman (2004). Therefore, the exact solution (8.24) is further
applied in our simulations.

Then, it is possible to use the simulated trajectory rt1 , rt2 , . . . , rtn to approx-
imate the factor

fv(ti,ti+1) =

∫ ti+1

ti

rsds ,

which is necessary to evaluate the future value. Also in this case, the simple for-
mula rti (ti+1 − ti) can be applied. However, as discussed by Glasserman (2004),
a better approach is to simulate the whole paths of pairs

(

rt, fv(0,t)
)

applying
a specially selected two-dimensional Gaussian distributions. The distribution of
rti+1 for the fixed value of rti is described by (8.25). The cdf of fv(0,ti+1) for the
given fv(0,ti) and rti is equal to

fv(0,ti+1) ∼ N

(

fv(0,ti) +
1

κ

(

1− e−κ(ti+1−ti)
)

rti

+
θ

κ

(

e−κ(ti+1−ti) + κ (ti+1 − ti)− 1
)

,

σ2

κ2

(

(ti+1 − ti) +
1

2κ

(

1− e−2κ(ti+1−ti)
)

+
2

κ

(

e−κ(ti+1−ti) − 1
)

))

. (8.26)

The conditional covariance inside the pair (rti+1 , fv(0,ti+1)) for the fixed value of
(rti , fv(0,ti)) is equal to

σ2

2κ

(

1 + e−2κ(ti+1−ti) − 2e−κ(ti+1−ti)
)

. (8.27)

Taking into account the known distribution (8.25) of rti+1 , the distribution (8.26)
of fv(0,ti+1) and the covariance (8.27) between the rti+1 and fv(0,ti+1), it is pos-
sible to apply Cholesky decomposition (see Section 4.8) to simulate the joint
trajectory of both the risk-free rate rt and the relevant integral fv(0,t).

The last step in the process of modelling the trajectory of the interest rates
and the evaluation of future values is to select the necessary parameters of the
Vasicek model. As in Sections 8.2.2 and 8.2.3, the parameters estimated in Chan
et al. (1992) for the U.S. Treasury bill yield data, namely

κ = 0.1779 , θ = 0.086565 , σ2 = 0.0004 (8.28)

with r0 = 0.03, will be used in the following.
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8.4.3 Evaluation of the cat bond price

As described in Section 8.3.2, the catastrophe bond is one of the most important
financial instruments considered in our portfolio. Therefore, it is necessary to
evaluate its price, which is used in the formula (8.13) to obtain the insurance
premium pcb. In order to do this, the approach presented in Chapter 7 is directly
applied.

The relevant analysis of the cat bond price is described in Section 8.2.3. Let
us recall that we assumed that T = 1, i.e. the maturity time of the considered
catastrophe bond is equal to one year. The face value of this bond is equal to one
(the one monetary unit assumption). The payment function for the considered
catastrophe bond has piecewise linear form (see Section 7.3). The triggering
points Ki are given by the quantiles of the cumulated value of losses as

K0 = Qloss
NHPP-LN(0.75),K1 = Qloss

NHPP-LN(0.85),K2 = Qloss
NHPP-LN(0.95)

and the values of payments decreases are set to

w1 = 0.4, w2 = 0.6 .

After applying Monte Carlo simulations, the obtained value of the estimator
of the catastrophe bond price is equal to 0.839936.

8.4.4 Model of the reinsurance contract

As described in Section 8.3.3, the reinsurer contract is the next important layer
in the considered portfolio of the insurer.

As previously, one-year horizon is considered, i.e. T = 1. If excess-of-loss
policy, defined by (8.18), is taken into account, then the attachment point Arnsr

and the cap level Brnsr should be set. In order to do this, we adopt the approach
similar to the one used for the triggering point of the catastrophe bond, i.e. the
values of Arnsr and Brnsr are given by quantiles of the cumulated claims. Such
quantiles are further denoted by Qclaim

NHPP-LN
(x). They are related to the process

of the aggregated claims C̃t, described by the formula (8.23), instead of the
process of the aggregated losses Ñt, connected with the quantiles Qloss

NHPP-LN
(x)

(see Section 8.2.3).
If the claims are not exactly equal to the catastrophic losses, then the shape

of the function Qclaim
NHPP-LN

(x) is similar to the shape of Qloss
NHPP-LN

(x), but with
lower values, in general. An example of such a graph is illustrated with Figure
8.11 where cmin = 0.25, cmax = 0.5, αclaim = 1 are set.

As noted in Section 8.3.3, prior to the analysis of the portfolio, the pre-
mium for the reinsurer prnsr should be evaluated for the given set of parame-
ters. In order to do this, as indicated by the formula (8.19), the expected value

E

(

PV
(

f i
rnsr

(

C̃T

)))

should be estimated, using, e.g., the numerical approach.
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Fig. 8.11. Graph of the quantiles Qclaim

NHPP-LN(x) of the cumulated value of claims (in
million $)

As previously, the model of the losses, discussed in Section 8.4.1, and the Va-
sicek model of the interest rates, presented in Section 8.4.2, are applied in our
considerations.

An example of such estimation of the premium prnsr may be found in Figure
8.12. In this case the claims are exactly equal to losses, the safety loading for the
insurer νrnsr is set to zero, and the cap level Brnsr is fixed at Qclaim

NHPP-LN
(0.99) =

Qloss
NHPP-LN

(0.99), i.e. the 0.99-th quantile. As it can be seen from Figure 8.12, the
relation between the premium prnsr and the attachment point Arnsr for various
values of quantiles of the cumulated claims is an almost linear function.

Of course, if instead of quantiles the normal values of cumulated claims are
considered, then the premium prnsr is a strictly convex, decreasing function of C̃1

(see Figure 8.13).

8.4.5 Calibration of other parameters

There are some other parameters of the entire portfolio, which should be also
set before the analysis. In the case of the risk reserve process, the initial reserve
of the insurer u is one of the most important variables. In practice, this value is
sometimes given by the relevant legal regulations, like e.g. the requirement for
the minimal necessary limit of u.

In the model of the portfolio, considered in this chapter, the value of u is
related to some quantile of the cumulated value of the claims Qclaim

NHPP-LN
(x). This

assumption is consistent with the triggering points for the catastrophe bond and
the limits for the reinsurer contract, introduced previously.
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Fig. 8.12. Graph of the value of the reinsurance contract for the given quantiles
Qclaim

NHPP-LN(x) (in million $)
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Fig. 8.13. Graph of the value of the reinsurance contract for the given values of C̃1

(in million $)
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The other parameter is the safety loading νp for the insurance premium p,
introduced in (8.11). As mentioned in Section 8.3.1, the typical values of νp are
about 0.1 – 0.2. Also similar parameter for the reinsurer, the safety loading νrnsr,
should be set. In our considerations, this parameter has rather small values,
contained in the range 0.05 – 0.1.

8.5 Analysis of the portfolio

After the discussion, concerning the basis of the numerical methods applied in
our approach and introduction of the necessary assumptions for models and their
parameters, it is possible to analyse the behaviour of the portfolio, which consists
of the layers described in Section 8.3. This analysis will be divided into a few
diversified cases – and thus relations among various assumptions and simulated
outputs are directly verified.

8.5.1 First insight – one layer

We start from the simplest case – when there is only one layer in the portfolio,
i.e. only the classical risk reserve process is considered, without additional layers,
described in Sections 8.3.2 – 8.3.4. Of course, in the course of our analysis, the
future value of such a portfolio for T = 1 for the Vasicek model with parameters
given by (8.28) is assumed.

Analysis I.1

We first consider the case when the claims are equal to losses, i.e. the pro-
cesses C̃t and Ñt, with parameters described in Section 8.4.1, are exactly the
same. As noted in Section 8.4.5, in our analysis the initial reserve u is re-
lated to the quantile of the cumulated value of the claims, therefore we set
u = Qclaim

NHPP-LN
(0.20) = 2609.79. As indicated by Jensen (1986), the initial re-

serve should not be too high, because the insurers with high values of their own
funds are very often acquired by other enterprises. The safety loading is set to
rather a standard value, such as νp = 0.1.

For the assumptions mentioned above, the numerical procedure described
in Section 8.4 is applied. Based on its output, various measures and graphs
interesting for practitioners are acquired and some important conclusions can be
drawn.

In the case considered, the probability of the insurer’s bankruptcy in time
T = 1 is equal to 11.5333%. Further on, this event, i.e. the occurrence ofRFV

T < 0,
is called final ruin.

However, it is possible that the value of the risk process Rt falls below zero for
some t ≤ T even if its value is above zero for T . Then, instead of the “standard”
bankruptcy, verified only in a fixed time moment, the possibility of “earlier”
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bankruptcy exists. In our analysis, the estimated probability of the event Rt < 0
for some t < T (which is called further on earlier ruin) is equal to 17.0583%.
Therefore, there is also a possibility that the earlier bankruptcy does not lead to
the insolvency in the final considered moment, i.e. that RFV

T < 0. The probability
of such an event is numerically evaluated as 5.525% in this setup.

Measure Value
Minimum -676250
First quartile 2292.88
Median 4209.15
Third quartile 5474.94
Maximum 8381.82
Mean 3245.54
Std. deviation 4366.24

Table 8.2. Statistical measures of the portfolio for T = 1 from Analysis I.1

The most important statistical measures of the value of the whole portfolio
in this case, i.e. of the process RFV

T , can be found in Table 8.2. As it may be
noted, the minimum value is significantly lower (259.12 times!) than the initial
reserve. The values of other measures, like first quartile, median, mean and third
quartile are similar to u or even higher. Therefore, the catastrophic events have
important impact on the value of the portfolio and they lead to high probability
of bankruptcy or of low income of the insurer. This can also be seen when the
relevant quantiles for the values of the portfolio are plotted (see Figure 8.14). For
better readability only the quantiles from the range 0.01 – 0.99 are used there.
The “left tail” of this plot for RFV

T < 0 is a very quickly increasing function,
which indicates the possibility of very high insolvency.

But if the insurer is “lucky enough”, some strictly positive income is also
possible. It is indicated by the middle, linear, slowly increasing part of the plot
from Figure 8.14. The probability of extra profits with much higher values than
the initial reserve is rather limited – the rapidly increasing “right tail” of the plot
with exponential shape is very short (about 5% of the simulated samples).

From the insurer’s point of view, very high probability of ruin with potentially
almost unlimited losses constitutes an important problem. Therefore, we analyse
the behaviour of the portfolio in the case of insolvency in a more detailed way.
The histogram of values of the portfolio if final ruin occurs may be found at
Figure 8.15. However, due to a very low minimum value for such an event and a
significant number of outliers, such plot is almost unreadable. A better insight
is provided if histogram of only 90% of the whole output is plotted, without the
lowest 10% of samples (see Figure 8.16). Then, the shape of such a modified
histogram is similar to the exponential function. As it can be seen, the most
probable events are the ruins with their values close to zero.
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Fig. 8.14. Graph of quantiles of the final value of the portfolio from Analysis I.1 (in
million $)
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Fig. 8.15. Histogram of the values of the portfolio in the case of the final ruin from
Analysis I.1 (in million $)
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Fig. 8.16. Histogram of the 90% of values of the portfolio in the case of the final ruin
from Analysis I.1 (in million $)

Other statistical measures are also numerically evaluated for the case of the
final ruin and are presented in Table 8.3. As it can be seen from these data, even
the mean is 1.79084 times higher than the initial reserve and the median has
a similar value to u (with minus sign of course). Therefore, the final ruin has
important consequences for the insurer in the considered case, because of high
possible value of such insolvency.

Measure Value
Minimum -676250
First quartile -5399.38
Median -2412.39
Third quartile -951.83
Maximum -0.0561358
Mean -4673.71
Std. deviation 8458.6
Skewness -14.4552
Kurtosis 609.121

Table 8.3. Statistical measures of the portfolio in the case of the final ruin from
Analysis I.1

Apart from the final ruin, the previously mentioned possibility of the earlier
ruin should also be investigated. The values of the portfolio if the earlier ruin
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occurs are illustrated with the histogram (see Figure 8.17) and the relevant
statistical measures (see Table 8.4). As previously, because of very low minimum
of value of the portfolio for such an event, the complete histogram is almost
unreadable. Therefore, also in this analysis, the histogram of 90% of samples,
without 10% of the lowest values, is plotted (see Figure 8.18). Both of these
figures are similar to the histograms for the final ruin (compare with Figures 8.15
and 8.16).
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Fig. 8.17. Histogram of the values of the portfolio in the case of the earlier ruin from
Analysis I.1 (in million $)

There are some small differences in statistical measures between the cases of
the final and the earlier ruin (compare Table 8.3 with Table 8.4). As indicated
by the minimum, quartiles and mean, the overall value of the portfolio is higher
for the earlier ruin. It is also less varied. However, minimum still has a very low
value, and so the earlier ruin is also an important problem for the insurer.

For the earlier ruin, not only the value of the portfolio is interesting for the
insurer. The timing of these events may be also analysed. It can be seen from
the related histogram (see Figure 8.19) that the distribution of the moments
of the earlier ruins is not a uniform one. It rather follows some trigonometrical
function, which seems to be connected with the model of the number of losses
(8.21), given by the sinus function.

There is no strict dependency between the value of the earlier ruin and the
timing of such event – for the considered case the correlation coefficient is equal
to 0.0058815, hence it is indeed very close to zero.
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Fig. 8.18. Histogram of the 90% of values of the portfolio in the case of the earlier
ruin from Analysis I.1 (in million $)

Measure Value
Minimum -662240
First quartile -3071.59
Median -1167.68
Third quartile -379.584
Maximum -0.00361414
Mean -4673.71
Std. deviation 6673.69
Skewness -18.34
Kurtosis 987.258

Table 8.4. Statistical measures of the portfolio in the case of the earlier ruin from
Analysis I.1

Analysis I.2

One of the remedies to the problem of the insurer’s insolvency is to increase the
initial reserve u. As it was noted previously, this may be completely impractical
in the real world, because of the possibility of a hostile takeover by another en-
terprise. However, from the theoretical point of view it is interesting to analyse
the respective probabilities of bankruptcy for the cases of the final ruin and the
earlier ruin. Such issue is illustrated with Figure 8.20, where the estimated prob-
abilities of the final ruin (circles) and the earlier ruin (squares) as the functions
of u (given by quantiles Qclaim

NHPP-LN
(x)) are plotted.
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Fig. 8.19. Histogram of the moments of the earlier ruins from Analysis I.1
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the initial reserve from Analysis I.2
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As it can be seen, a higher value of u is not a suitable solution – even for the
initial reserve as high as 0.4 quantile of the whole cumulated value of the claims,
the evaluated probabilities of the ruins are still very significant (8.549% for the
final ruin and 12.1058% for the earlier ruin). Additionally, these plots are not
linear. This indicates that the linear or even exponential increase of the value of
u (compare with the related quantiles in Figure 8.11) does not lead to the same
scale of decrease for the probability of the ruin. Therefore, other solutions for
the problem of insolvency are necessary.

8.5.2 Comparison of portfolios with two layers

It is known that the problem of insolvency of the insurer may be solved using
additional reinsurance contract, because – as it was shown also in Analysis I.2
– the increase of the initial reserve is not an optimal remedy. Therefore, in this
section we start from the modelling of portfolio of the insurer with addition of
such a contract.

Another solution, also considered in this section, is to apply the catastrophe
bond instead of the reinsurance contract. Because we assume in this part that
the analysed portfolio is limited to only two layers, therefore these two different
approaches are compared afterwards.

Analysis II.1

We start our considerations from the case similar to the one discussed in Analy-
sis I.1 (see Section 8.5.1). As previously, we assume T = 1, the processes C̃t and
Ñt are exactly the same, the initial reserve u is equal to Qclaim

NHPP-LN
(0.20) and

the safety loading is set to νp = 0.1.
The reinsurance contract is modelled using the approach described in Sec-

tion 8.4.4. Then, the safety loading νrnsr is equal to 0.05 and the cap level Brnsr

is fixed at Qclaim
NHPP-LN

(0.99). The attachment point Arnsr is set as Qclaim
NHPP-LN

(0.8).
Therefore, the reinsurance contract is used only if relatively high value of total
claims is achieved.

Introduction of this additional reinsurance contract changes the behaviour of
the portfolio in an essential way. Based on numerical simulations, the probability
of the final ruin is estimated as 0.896%, the probability of the earlier ruin is equal
to 22.272%, and the probability that the earlier ruin does not lead to the final
ruin is evaluated as 21.376%. It means that the probability of the final insolvency
of the insurer is significantly lowered – a major part of the risk, related to the
high value of the cumulated claims is transferred to the reinsurer. However, due
to the necessity of paying the reinsurer’s premium prnsr at the very beginning of
the valuation of the portfolio (i.e. at t = 0), the probability of the earlier ruin is
higher by about 5.2137%.

Table 8.5 presents the statistical measures related to the value of the portfolio
for T = 1. They should be compared with the relevant data for Analysis I.1 (see
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Table 8.2). The first quartile, median and third quartile are lower in the case with
the reinsurance contact. This behaviour seems to be related to the necessity of
paying the reinsurer’s premium prnsr always, regardless of the fact whether such
contract is at all used. The mean is similar in both cases, while the minimum
and maximum are higher for the portfolio considered here.

Measure Value
Minimum -663837
First quartile 1602.43
Median 3506.85
Third quartile 4770.81
Maximum 19702.8
Mean 3211.98
Std. deviation 2959.35

Table 8.5. Statistical measures of the portfolio for T = 1 from Analysis II.1

Similarly, the graph of the quantiles of the final value of the portfolio for
the presented case should be compared with the similar plot prepared during
Analysis I.1 (compare Figures 8.14 and 8.21). The graph for the portfolio with
application of the reinsurance contract has a completely different shape – it
is almost linear, especially for quantiles higher than 0.2. This “breaking point”
may be easily related to the value of the attachment point Arnsr, used in our
considerations. However, we should keep in mind the fact that Figure 8.21 is
plotted only for quantiles in the range of 0.01 – 0.99, and so the minimum value
of such portfolio is still very low (as indicated in Table 8.5).

As previously, both of the final ruin and the earlier ruin should be more
deeply analysed. The statistical measures for the final ruin can be found in
Table 8.6. After comparison with Table 8.3, where the relevant estimators for
Analysis I.1 are evaluated, it appears that the final ruin is far less probable if the
reinsurer’s contract is used, but this insolvency has also a greater impact. All
of the important location measures (quartiles, median, mean) are significantly
lower, some of them even at half of the values from Table 8.3. The same applies
to standard deviation. Such behaviour may be related to the existence of the cap
level Brnsr – the reinsurer transfers only a fixed amount in excess of this limit,
but the total value of losses could be significantly higher than Qclaim

NHPP-LN
(0.99).

Then, this uncovered “excess” has an important impact on the insolvency of the
portfolio.

The histogram of the 90% of values of the portfolio if the final ruin occurs
is shown in Figure 8.22. This plot has a very similar shape to the one from
Figure 8.16, which illustrates the same event for Analysis I.1. The same applies
for the histogram of values for the case of the earlier ruin (compare Figures 8.18
and 8.23).
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Fig. 8.21. Graph of quantiles of the final value of the portfolio from Analysis II.1 (in
million $)

Measure Value
Minimum -663837
First quartile -13217.1
Median -5766.65
Third quartile -2145.22
Maximum -0.356304
Mean -11524.8
Std. deviation 20584.6
Skewness -9.30748
Kurtosis 182.724

Table 8.6. Statistical measures of the portfolio in the case of the final ruin from
Analysis II.1

Likewise, the statistical measures of value of the portfolio in the case of the
earlier ruin (see Table 8.7) are very similar to the respective data for Analysis I.1
(see Table 8.4). Mean is here one important exception.

Interesting conclusions are drawn when the time instants of occurrence of
the earlier ruin are compared. As illustrated by the envelopes of histograms
(see Figure 8.24), the probability of the earlier ruin is higher for the initial
moments if the reinsurance contract is applied. This is indicated by the higher
plot, marked by circles for the times up to about t = 0.4. Afterwards, especially
for t ≥ 0.6, the probability of such event is lower than in the case when there
is no insurance contract (which is marked by squares). Such behaviour may be
once again related to the necessity of paying the reinsurer’s premium at t = 0.
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Fig. 8.22. Histogram of the 90% of values of the portfolio in the case of the final ruin
from Analysis II.1 (in million $)

Measure Value
Minimum -662924
First quartile -2660.13
Median -1010.46
Third quartile -333.874
Maximum -0.00454387
Mean -2564.1
Std. deviation 5959.28
Skewness -19.9909
Kurtosis 1200.72

Table 8.7. Statistical measures of the portfolio in the case of the earlier ruin from
Analysis II.1

Therefore, the portfolio is in the considered case highly sensitive to the existence
of reinsurance contract at the beginning of the time period. Overall, this contract
is an important advantage compared to the case discussed in Section 8.5.1.

The correlation coefficient between the time moments and the values of the
earlier ruin is still close to zero and is evaluated as -0.00751083.

In the considered case also payments from the additional layer, i.e. from the
reinsurance contract, are numerically evaluated and then analysed. Because of
the applied values of the attachment point and the cap level, the probability
that this layer is used is relatively very high and is estimated as equal 19.9891%.
Therefore, from the practical point of view it may be questionable if such contract
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Fig. 8.23. Histogram of the 90% of values of the portfolio in the case of the earlier
ruin from Analysis II.1 (in million $)
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Fig. 8.24. Comparison of envelopes of histograms of moments of the earlier ruin,
obtained in Analysis I.1 (squares) and Analysis II.1 (circles)
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is even profitable for the reinsurer and if it could be actually available for the
insurer.

The graph of the quantiles of the value of payments from the reinsurance
contract, if such payments are above zero, is shown in Figure 8.25. This plot
is almost an exponential function. Additionally, the most important statistical
measures of these payments can be found in Table 8.8. As it can be seen from
the value of the standard deviation and especially of the maximum, these payoffs
may be very high. However, the median and the mean are not very far from the
insurer’s initial reserve u.
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Fig. 8.25. Graph of quantiles of the value of payments from the reinsurance contract
from Analysis II.1 (in million $)

Measure Value
Minimum 0.00844779
First quartile 830.573
Median 2094.37
Third quartile 4570.63
Maximum 13111.9
Mean 3364.22
Std. deviation 3502.36

Table 8.8. Statistical measures of the value of payments from the reinsurance contract
from Analysis II.1
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Analysis II.2

As it can be easily seen from the description of models, presented in Sections
8.3.2 and 8.3.3, the reinsurance contract and the catastrophe bond are different
instruments in many ways. Therefore, it is not possible to directly compare
outputs from the same models, but only similar ones can be considered. Keeping
this in mind, in the following we apply the parameters of the catastrophe bond
which yield the setting as similar as possible to the one discussed in Analysis II.1.

The model of the fundamental risk reserve process and the model of the
claims are the same as in Analysis I.1 and Analysis II.1. We use the catastrophe
bond (see Section 8.4.3) with the piecewise linear payment function. In order to
achieve the earlier mentioned similarity to the reinsurance contract, considered
in Analysis II.1, only two triggering points are set. They have the same values as
the attachment point Arnsr and the cap level Brnsr, so that K0 = Qclaim

NHPP-LN
(0.8)

and K1 = Qclaim
NHPP-LN

(0.99). The face value, as usually, is equal to one and the
sole value of payment decrease is set as w1 = 1. Then, if the cumulated value
of claims is beyond K1, the whole payment for the policyholder is lost (see
Chapter 7 for additional details).

In order to ensure similarity to Analysis II.1, the payment paid by the in-
surer αcb (see formula (8.13)) is similar to the previously used safety loading
for the reinsurer νrnsr, i.e. it is equal 0.05. Then the quantity ncb of catastrophe
bonds, which are sold to policyholders, is evaluated as equal 14881. Therefore,
the insurer pays the premium for the bonds pcb, which is equal to the reinsurer’s
premium prnsr in Analysis II.1. The cat bond price, which is also necessary for
the formula (8.13), is evaluated via the approach introduced in Chapter 7.

Using Monte Carlo simulations it was estimated that the probability of the
final ruin is equal to 0.7059%, so it is close to but also lower than in the case
of Analysis II.1. The probability of the earlier ruin is equal to 22.272%, and
the probability of the earlier ruin which does not lead to the final insolvency is
evaluated as 21.5661%. Therefore, using such catastrophe bond as an additional
layer in the portfolio is similar to the introduction of the reinsurance contract,
considered in the preceding analysis. The necessity of paying some additional
premium by the insurer (reinsurer’s premium or special payment for SPC, as
described in Section 8.1) leads to higher probability of the insolvency in the
beginning, but the overall influence is positive and the final ruin is much less
probable.

As previously, the statistical measures of the value of the portfolio at T = 1
are also analysed. By comparing Table 8.5 (measures for Analysis II.1) with the
relevant Table 8.9 (data for Analysis II.2), we can see that the overall behaviour
of these two portfolios is very similar. However, a more detailed analysis leads
to noticing some important differences. Figure 8.26 shows the plots of the quan-
tiles (from the 0.01 quantile to the 0.99 quantile) for the cases of Analysis II.1
(squares) and Analysis II.2 (circles). The obtained graph for the lower quantiles
(up to the 0.3 quantile) is much smoother and indicates higher values when the
catastrophe bond is used instead of the reinsurance contract.
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Measure Value
Minimum -662068
First quartile 1795.64
Median 3507.67
Third quartile 4771.05
Maximum 21471.9
Mean 3302.71
Std. deviation 2831.99

Table 8.9. Statistical measures of the portfolio for T = 1 from Analysis II.2
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Fig. 8.26. Graph of quantiles of the final value of the portfolio from Analysis II.1
(squares) and Analysis II.2 (circles) (in million $)

For Analysis II.1, the events of the final ruin and the earlier ruin are also
described. As it can be seen from the comparison of Table 8.6 with Table 8.10
and from Figure 8.27, where the related histograms of 90% of the values of the
portfolios are shown together, the cases of the final ruins are comparable for
the use of the reinsurer contract or the catastrophe bond. Overall, statistical
measures of position have lower values for the portfolio with the catastrophe
bond.

Of course, the conclusions which could be drawn for the earlier ruin in both
of the cases are identical, because of the assumed equality of premiums pcb
and prnsr.

It should be noted that the probability that at least one of the triggering
points for the catastrophe bond is surpassed (and the cat bond is “used” as
the source of funds for the insurer) is estimated as equal 19.9891%. It means
that with such probability the payment for the policyholder is lower than the
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Measure Value
Minimum -662068.
First quartile -14534.9
Median -6331.59
Third quartile -2427.59
Maximum -0.776527
Mean -12633.1
Std. deviation 22332.7
Skewness -8.89261
Kurtosis 162.715

Table 8.10. Statistical measures of the portfolio in the case of the final ruin from
Analysis II.2

00.050.100.15 0 0.05 0.10 0.15

-30 000

-25 000

-20 000

-15 000

-10 000

-5000

0

Fig. 8.27. Paired histogram of the 90% of values of the portfolios in the case of the
final ruin for Analysis II.2 (left hand side) and for Analysis II.1 (right hand side), in
million $

face value of the bond. Of course, this result is directly related to the param-
eter K0 applied in this setting. But from the practical point of view, it seems
that such catastrophe bond (even with relatively high probability of lowering its
payment) should be more available than the reinsurance contract, considered in
Analysis II.1. Therefore, it may be also easier to use for the insurer.

Apart from the probability, a more detailed analysis of the payments from
the catastrophe bond was also conducted. The relevant statistical measures may
be found in Table 8.11, and they can be easily compared with the data for the
payoffs from the reinsurance contract from Table 8.8. Generally, the funds which
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are paid to the insurer are higher if the catastrophe bond is used. The same is
seen from Figure 8.28, where the graphs of quantiles are compared. For the two
cases they have a similar shape, but quantiles for the payments from the cat
bonds are clearly higher. High volatility, measured by the ratio of the standard
deviation to the mean (see Table 8.11), should be also noted.

Measure Value
Minimum 0.00958761
First quartile 942.638
Median 2376.96
Third quartile 5187.33
Maximum 14881
Mean 3818.14
Std. deviation 3974.91

Table 8.11. Statistical measures of the value of payments from the catastrophe bond
from Analysis II.2
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Fig. 8.28. Graph of quantiles of the value of payments from the reinsurance contract
in Analysis II.1 (squares) and from the catastrophe bond in Analysis II.2 (circles) in
million $
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8.5.3 The whole portfolio – introduction of three layers

After taking into account only one or two layers, in the following, the portfolio,
which consists of three layers is analysed. Into this portfolio, side by side with the
classical risk process, both the catastrophe bond and the reinsurance contract
are incorporated.

For a better comparison of outcomes, the overall setting is the same as as-
sumed in Section 8.5.2. The main differences concern some specific details of
both the catastrophe bond and the reinsurance contract.

We assume that the two triggering points for the catastrophe bond are set to
K0 = Qclaim

NHPP-LN
(0.8) and K1 = Qclaim

NHPP-LN
(0.95), and the value of the payment

decrease is given as w1 = 1. For the reinsurance contract, the attachment point
Arnsr is equal toQclaim

NHPP-LN
(0.95) and the cap level Brnsr is set toQclaim

NHPP-LN
(0.99).

It means that the funds from the reinsurance contract are used after the cash
flow from the catastrophe bond occurs, i.e. if the cumulated value of claims turns
out to be even higher than K1. Such assumption is closer to practice than the
one considered during Analysis II.1, because it seems that the catastrophe bond,
with the desired set of parameters from the insurer’s point of view, should be
more available than similar reinsurance contract.

Analysis III.1

We start from the assumption corresponding to the one used during Analysis II.2.
Therefore, the new portfolio is constructed in such a way that the sum of the
premium for the bonds pcb and the reinsurer’s premium prnsr is equal to the
payment for the reinsurance contract used in Analysis II.1. As previously, αcb =
νrnsr = 0.05 and the expected present value of the reinsurance contract and the
price of the cat bond are evaluated using Monte Carlo simulations (see Chapter 7
and Section 8.4 for additional details). Then, the estimated quantity ncb of the
catastrophe bonds, which are sold for the portfolio is equal to 11090. Of course,
since the reinsurance contract is also one of the layers, this number is significantly
lower than in Analysis II.2.

Basing on Monte Carlo simulations, the probability of the final ruin is esti-
mated as equal 0.4149% – meaning that it is significantly lower than in Anal-
ysis II.1 and Analysis II.2. Due to the applied parameters of the cat bond and
the reinsurance contract, the probabilities of the earlier ruin (22.2718%) and
of the earlier ruin which does not lead to the final insolvency (21.8569%) are
very similar to the ones in Analysis II.2. All of the statistical measures of posi-
tion, presented in Table 8.12, are significantly higher than in Analysis II.1 and
Analysis II.2 (as given in Tables 8.5 and 8.9, respectively).

The same is also indicated by Figure 8.29, where the plots of quantiles (from
the 0.01 to the 0.99 quantile) of the final value of the portfolio for the now
considered case and Analysis II.2 are compared. For the former the plot is clearly
higher. Therefore, it should be profitable to apply both the catastrophe bond
and the reinsurance contract. Such approach considerably lowers the risk of the
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Measure Value
Minimum -657341
First quartile 2701.09
Median 3991.41
Third quartile 5116.74
Maximum 26199.4
Mean 3886.81
Std. deviation 2667.54

Table 8.12. Statistical measures of the portfolio for T = 1 from Analysis III.1

final insolvency and improves the overall behaviour of the portfolio of the insurer
for T = 1.
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Fig. 8.29. Graph of quantiles of the final value of the portfolio from Analysis II.2
(squares) and Analysis III.1 (circles) (in million $)

The statistical measures of the value of the portfolio if the final ruin occurs
can be found in Table 8.13. By comparing them with the similar data for Anal-
ysis II.1 (see Table 8.6) and for Analysis II.2 (see Table 8.10), one can see that
the final insolvency has a greater impact for the portfolio considered now. The
respective histogram is similar to the ones discussed previously.

Due to the applied parameters, the estimated probability of using the catas-
trophe bond is equal to 19.9891%. We can compare the payments directed to the
insurer from the cat bonds for Analysis II.2 and the instance considered here.
As it can be seen from Tables 8.11 and 8.14, all statistical measures except for
maximum are higher now. A more detailed analysis is shown in Figure 8.30 –
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Measure Value
Minimum -657341.
First quartile -17696.4
Median -7672.96
Third quartile -2913.22
Maximum -0.245904
Mean -15324.21
Std. deviation 26717.1
Skewness -8.02908
Kurtosis 125.776

Table 8.13. Statistical measures of the portfolio in the case of the final ruin from
Analysis III.1

the quantile plot for this case is higher than in Analysis II.2 up to about the 0.9
quantile.

Measure Value
Minimum 0.0203985
First quartile 2005.54
Median 5057.18
Third quartile 11036.5
Maximum 11089
Mean 5762.33
Std. deviation 4013.49

Table 8.14. Statistical measures of the value of payments from the catastrophe bond
for Analysis III.1

Because of the assumed settings, the estimated probability of using funds
from the reinsurance contract is equal to 4.9704%. As for the catastrophe bonds,
payments from this source are noticeably higher in this case than in Analysis II.1.
This fact can be easily seen from the comparison of Table 8.15 with Table 8.8,
and from Figure 8.15. Apart from the maximum and some higher ranks of quan-
tiles, the funds from the reinsurance contract used are higher for the considered
portfolio. On the other hand, maximum values of payoffs from the catastrophe
bond and from the reinsurance contract are lower now – therefore these instru-
ments can be more available for the insurer because of lower potential risks for
policyholders and the reinsurer.

Analysis III.2

There are also other approaches to the construction the relevant portfolio which
consists of three layers. For example, another number of the catastrophe bonds
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Fig. 8.30. Graph of quantiles of the payments from the catastrophe bond for Analysis
II.2 (squares) and Analysis III.1 (circles) (in million $)

Measure Value
Minimum 0.0203985
First quartile 1197.8
Median 3088.65
Third quartile 7042.49
Maximum 8519.5
Mean 3932.43
Std. deviation 3041.73

Table 8.15. Statistical measures of the value of payments from the reinsurance con-
tract for Analysis III.1

ncb could be used. Then, instead of previous assumption, concerning the fixed
sum of premiums pcb and prnsr (which then turns into the fixed value of ncb),
during the following analysis a value of ncb lower than in Analysis III.1, is set
in order to analyse the impact of such a setting.

Let us suppose that the number of the sold catastrophe bonds ncb is equal to
the difference between the triggering points K1 and K0, so that if the cumulated
value of losses is higher than K1, then all of the losses from the gap K1−K0 are
refunded. On the basis of Monte Carlo simulations, ncb is estimated to be equal
to 4593 for this assumption. Then, an analysis similar to the ones performed for
the previous cases can be carried out.

Because the number of the catastrophe bonds ncb is lower than in Analy-
sis III.1, the evaluated probability of the final insolvency (0.86%) is higher now,
but is still limited and comparable with the relevant value in Analysis II.1. On
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Fig. 8.31. Graph of quantiles of the payments from the reinsurance contract for Anal-
ysis II.1 (squares) and Analysis III.1 (circles) (in million $)

the other hand, the estimated probabilities of the earlier ruin (19.9057%) and
the earlier ruin which does not lead to the final insolvency (19.9057%) are sig-
nificantly lesser than in Analysis III.1. It can be easily seen that the additional
burden for the insurer at t = 0, i.e. the necessary payments related to issuing of
the catastrophe bond and entering into the reinsurance contract, exert important
influence on these probabilities.

When comparing this instance and Analysis III.1, we can see that all of the
statistical measures (see Table 8.16) and the relevant quantile plot (see Figure
8.32) indicate that the final value of the portfolio is lower now. Such behaviour
is, of course, related to the applied parameter ncb. This is especially seen for
lower and higher quantiles.

Measure Value
Minimum -663548
First quartile 1893.1
Median 3798.09
Third quartile 5062.07
Maximum 20002.9
Mean 3503.41
Std. deviation 2959.44

Table 8.16. Statistical measures of the portfolio for T = 1 from Analysis III.2
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Fig. 8.32. Graph of quantiles of the final value of the portfolio for Analysis III.1
(squares) and Analysis III.2 (circles) (in million $)

As it was noted, the probability of the final ruin in the considered case is
significantly higher. However, in the light of data from Table 8.17, the final
insolvency has lower impact than in Analysis III.1 (see Table 8.13).

Measure Value
Minimum -663548.
First quartile -13419.2
Median -5868.27
Third quartile -2182.69
Maximum -0.533395
Mean -11709.4
Std. deviation 20876
Skewness -9.23511
Kurtosis 179.12

Table 8.17. Statistical measures of the portfolio in the case of the final ruin for
Analysis III.2

The time moments of the earlier ruin can also be compared. Figure 8.33
shows that for both Analysis III.1 and the present instance, the overall shapes of
the envelopes of the related histograms are highly similar. There are some small
differences – because of the higher burden in the beginning, the earlier ruins are
more frequent during the initial moments in Analysis III.1.
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Fig. 8.33. Comparison of envelopes of histograms of the time moments of the earlier
ruin for Analysis III.1 (squares) and Analysis III.2 (circles)

Since now the parameter ncb has a lower value, it seems that the possible
payments from the catastrophe bond should also be lower. This is confirmed by
Table 8.18 and Figure 8.34. Both the statistical measures and the quantile plot
take lower values than in the case of Analysis III.1.

Measure Value
Minimum 0.00844893
First quartile 830.685
Median 2094.66
Third quartile 4571.25
Maximum 4593
Mean 2386.72
Std. deviation 1662.37

Table 8.18. Statistical measures of the value of payments from the catastrophe bond
for Analysis III.2
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Fig. 8.34. Graph of quantiles of the payments from the catastrophe bond for Analysis
III.1 (squares) and Analysis III.2 (circles) (in million $)
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