# Timed Alternating-Time Temporal Logic 

Étienne André, Wojtek Jamroga, Michał Knapik, Wojciech Penczek, and Laure Petrucci

Institute of Computer Sciences, PAS, Warsaw, Poland

Seminarium IPI PAN, Kwiecień 2017

## Outline

- Base framework: Alternating-Time Temporal Logic extended with discrete, non-Zeno time [Markey et. al]
- Our results:
- Time history is irrelevant.
- Time is irrelevant, unless we want strict punctuality: strategies based on the number of visits at a location.
- Two actions per location are sufficient to implement any counting strategy, unless strict punctuality is needed.


## Models

A Tight Durational Concurrent Game Structure is a 7-tuple $\mathcal{A}=($ Agents, $\Sigma, \mathcal{Q}, \mathcal{A P}, \mathcal{L}, \mathrm{pr}, t)$, where:

- Agents is a finite set of all the agents,
- $\Sigma$ is a finite set of actions,
- $\mathcal{Q}$ is a finite set of locations,
- $\mathcal{A P}$ is a set of atomic propositions,
- $\mathcal{L}: \mathcal{Q} \rightarrow \mathcal{P}(\mathcal{A P})$ is a location labeling function,
- pr: Agents $\times \mathcal{Q} \rightarrow \mathcal{P}(\Sigma) \backslash\{\emptyset\}$ is a protocol function,
- $t: \mathcal{Q} \times \Sigma^{\mid \text {Agents } \mid} \rightarrow \mathcal{Q} \times \mathbb{N}_{+}$is a transition function.

Models, ct'd


We model runs in a state/time space: $\mathcal{S}:=\mathcal{Q} \times \mathbb{N}$, e.g.: $(90,0) \xrightarrow{(a, y)}(90,2)^{(a, x)}(90,3) \xrightarrow{(c, y)}(92,5)$

## Models, ct'd



We model runs in a state/time space: $\mathcal{S}:=\mathcal{Q} \times \mathbb{N}$, e.g.:

$$
\left(q_{0}, 0\right) \xrightarrow{(a, y)}\left(q_{0}, 2\right) \xrightarrow{(a, x)}\left(q_{0}, 3\right) \xrightarrow{(c, y)}\left(q_{2}, 5\right)
$$

## Strategies

Notations: let $q \in \mathcal{Q}, s \in \mathcal{S}$ and $\pi \in \mathcal{S}^{+} \cup \mathcal{S}^{\omega}$.

- $I c(s)$ and $t m(s)$ : location and time, resp., of $s$,
- $\pi(i)$ : $i$-th state of $\pi$,
- $\pi_{i}$ : prefix of $\pi$ of length $i$,
- $\pi^{i}$ : postfix of $\pi$ starting from $\pi(i)$,
- for finite $\pi$ :
- $\pi_{F}$ : final state of $\pi$,
- $\#_{F}(\pi)$ : number of states of $\pi$ whose location is $\operatorname{Ic}\left(\pi_{F}\right)$.
. count how many times the final location appears along $\pi$, e.g.:

$$
\begin{aligned}
\pi & =\left(\left(q_{0}, 0\right),\left(q_{0}, 2\right)\right) \\
\pi^{\prime} & =\left(\left(q_{0}, 0\right),\left(q_{0}, 2\right),\left(q_{0}, 3\right)\right) \\
\pi^{\prime \prime} & =\left(\left(q_{0}, 0\right),\left(q_{0}, 2\right),\left(q_{0}, 3\right),\left(q_{2}, 5\right)\right)
\end{aligned}
$$

$$
\#_{F}(\pi)=2, \#_{F}\left(\pi^{\prime}\right)=3, \#_{F}\left(\pi^{\prime \prime}\right)=1
$$

## Strategies

Notations: let $q \in \mathcal{Q}, s \in \mathcal{S}$ and $\pi \in \mathcal{S}^{+} \cup \mathcal{S}^{\omega}$.

- $I c(s)$ and $t m(s)$ : location and time, resp., of $s$,
- $\pi(i)$ : $i$-th state of $\pi$,
- $\pi_{i}$ : prefix of $\pi$ of length $i$,
- $\pi^{i}$ : postfix of $\pi$ starting from $\pi(i)$,
- for finite $\pi$ :
- $\pi_{F}$ : final state of $\pi$,
- $\#_{F}(\pi)$ : number of states of $\pi$ whose location is $\operatorname{Ic}\left(\pi_{F}\right)$.
. count how many times the final location appears along $\pi$, e.g.:

$$
\begin{aligned}
\pi & =\left(\left(q_{0}, 0\right),\left(q_{0}, 2\right)\right) \\
\pi^{\prime} & =\left(\left(q_{0}, 0\right),\left(q_{0}, 2\right),\left(q_{0}, 3\right)\right) \\
\pi^{\prime \prime} & =\left(\left(q_{0}, 0\right),\left(q_{0}, 2\right),\left(q_{0}, 3\right),\left(q_{2}, 5\right)\right)
\end{aligned}
$$

$$
\#_{F}(\pi)=2, \#_{F}\left(\pi^{\prime}\right)=3, \#_{F}\left(\pi^{\prime \prime}\right)=1
$$

## Strategies

Notations: let $q \in \mathcal{Q}, s \in \mathcal{S}$ and $\pi \in \mathcal{S}^{+} \cup \mathcal{S}^{\omega}$.

- $I C(s)$ and $t m(s)$ : location and time, resp., of $s$,
- $\pi(i)$ : $i$-th state of $\pi$,
- $\pi_{i}$ : prefix of $\pi$ of length $i$,
- $\pi^{i}$ : postfix of $\pi$ starting from $\pi(i)$,
- for finite $\pi$ :
- $\pi_{F}$ : final state of $\pi$,
- $\#_{F}(\pi)$ : number of states of $\pi$ whose location is $\operatorname{IC}\left(\pi_{F}\right)$.
... count how many times the final location appears along $\pi$, e.g.:

$$
\begin{aligned}
\pi & =\left(\left(q_{0}, 0\right),\left(q_{0}, 2\right)\right), \\
\pi^{\prime} & =\left(\left(q_{0}, 0\right),\left(q_{0}, 2\right),\left(q_{0}, 3\right)\right), \\
\pi^{\prime \prime} & =\left(\left(q_{0}, 0\right),\left(q_{0}, 2\right),\left(q_{0}, 3\right),\left(q_{2}, 5\right)\right), \\
\#_{F}(\pi)=2, \# F\left(\pi^{\prime}\right) & =3, \#_{F}\left(\pi^{\prime \prime}\right)=1 .
\end{aligned}
$$

## Strategies, ct'd

Define the following types of strategies for $a \in$ Agents:
Timed perfect recall strategies ( $\Sigma_{\mathrm{T}}$ )
Functions $\sigma_{\mathrm{a}}: \mathcal{S}^{+} \rightarrow \Sigma$ s.t. $\forall_{\pi \in \mathcal{S}^{+}} \sigma_{\mathrm{a}}(\pi) \in \operatorname{pr}_{\mathrm{a}}\left(I C\left(\pi_{F}\right)\right)$.
(Intuition: no constraints, apart from the protocol)

> Strategies $\sigma_{a} \in \Sigma_{\mathrm{T}}$ s.t., for each $\pi, \pi^{\prime} \in \mathcal{S}^{+}$, if $\pi_{F}=\pi_{F}^{\prime}$, then $\sigma_{a}(\pi)=\sigma_{a}\left(\pi^{\prime}\right)$.
> (Intuition: agent a selects action based on the final state)
> UNTIMED MEMORYLESS STRATEGIES $\left(\Sigma_{R}\right)$
> Strategies $\sigma_{a} \in \Sigma_{\mathrm{T}}$ s.t., for each $n \in \mathbb{N}$ and $\pi, \pi^{\prime} \in \mathcal{S}^{n}$, if
> $\operatorname{lc}(\pi(i))=\operatorname{lc}\left(\pi^{\prime}(i)\right)$ for all $0 \leq i \leq n$, then $\sigma_{a}(\pi)=\sigma_{a}\left(\pi^{\prime}\right)$.
> (Intuition: agent a selects action based on the final location)

## Strategies, ct'd

Define the following types of strategies for $a \in$ Agents:
Timed perfect recall strategies ( $\Sigma_{\mathrm{T}}$ )
Functions $\sigma_{a}: \mathcal{S}^{+} \rightarrow \Sigma$ s.t. $\forall_{\pi \in \mathcal{S}^{+}} \sigma_{a}(\pi) \in \operatorname{pr}_{a}\left(I C\left(\pi_{F}\right)\right)$.
(Intuition: no constraints, apart from the protocol)
Timed memoryless strategies ( $\Sigma_{\mathrm{t}}$ )
Strategies $\sigma_{a} \in \Sigma_{\mathrm{T}}$ s.t., for each $\pi, \pi^{\prime} \in \mathcal{S}^{+}$, if $\pi_{F}=\pi_{F}^{\prime}$, then $\sigma_{a}(\pi)=\sigma_{a}\left(\pi^{\prime}\right)$.
(Intuition: agent a selects action based on the final state)
$\square$

## Strategies, ct'd

Define the following types of strategies for $a \in$ Agents:
Timed perfect recall strategies ( $\Sigma_{\mathrm{T}}$ )
Functions $\sigma_{\mathrm{a}}: \mathcal{S}^{+} \rightarrow \Sigma$ s.t. $\forall_{\pi \in \mathcal{S}^{+}} \sigma_{a}(\pi) \in \operatorname{pr}_{\mathrm{a}}\left(\operatorname{lc}\left(\pi_{F}\right)\right)$.
(Intuition: no constraints, apart from the protocol)
Timed memoryless strategies ( $\Sigma_{\mathrm{t}}$ )
Strategies $\sigma_{a} \in \Sigma_{\mathrm{T}}$ s.t., for each $\pi, \pi^{\prime} \in \mathcal{S}^{+}$, if $\pi_{F}=\pi_{F}^{\prime}$, then $\sigma_{a}(\pi)=\sigma_{a}\left(\pi^{\prime}\right)$.
(Intuition: agent a selects action based on the final state)
Untimed memoryless strategies ( $\Sigma_{\mathrm{R}}$ )
Strategies $\sigma_{a} \in \Sigma_{\mathrm{T}}$ s.t., for each $n \in \mathbb{N}$ and $\pi, \pi^{\prime} \in \mathcal{S}^{n}$, if $I C(\pi(i))=I C\left(\pi^{\prime}(i)\right)$ for all $0 \leq i \leq n$, then $\sigma_{a}(\pi)=\sigma_{a}\left(\pi^{\prime}\right)$.
(Intuition: agent a selects action based on the final location)

## Strategies, ct'd

Counting strategies $\left(\Sigma_{\#}\right)$
Strategies $\sigma_{a} \in \Sigma_{\mathrm{T}}$ s.t., for each $\pi, \pi^{\prime} \in \mathcal{S}^{+}$, if $\operatorname{IC}\left(\pi_{F}\right)=\operatorname{IC}\left(\pi_{F}^{\prime}\right)$ and $\#_{F}(\pi)=\#_{F}\left(\pi^{\prime}\right)$, then $\sigma_{a}(\pi)=\sigma_{a}\left(\pi^{\prime}\right)$.
(Intuition: agent a selects action based on the number of visits in the final location along the current outcome)


## Strategies, ct'd

## Counting strategies ( $\Sigma_{\#}$ )

Strategies $\sigma_{a} \in \Sigma_{\mathrm{T}}$ s.t., for each $\pi, \pi^{\prime} \in \mathcal{S}^{+}$, if $\operatorname{lc}\left(\pi_{F}\right)=\operatorname{lc}\left(\pi_{F}^{\prime}\right)$ and $\#_{F}(\pi)=\#_{F}\left(\pi^{\prime}\right)$, then $\sigma_{a}(\pi)=\sigma_{a}\left(\pi^{\prime}\right)$.
(Intuition: agent a selects action based on the number of visits in the final location along the current outcome)

## Threshold strategies $\left(\Sigma_{\#_{n}}\right)$

A counting strategy $\sigma_{a} \in \Sigma_{\#}$ is called $n$-threshold for some $n \in \mathbb{N}_{+}$iff for each location $q \in \mathcal{Q}$ there are:

- actions $a c t_{1}, \ldots, a c t_{n+1} \in \Sigma$, and
- integer intervals $I_{1}=\left[1, i_{1}\right), I_{2}=\left[i_{1}, i_{2}\right), \ldots, I_{n+1}=\left[i_{n}, \infty\right)$
s.t. for all $1 \leq j \leq n+1: \sigma_{a}^{\#}(q, k)=\operatorname{act}_{j}$ if $k \in I_{j}$.
(Much-needed intuition: e.g., a counting strategy is $2-$ threshold if for any location $q \in \mathcal{Q}$ there are three actions act $_{1}$, act $_{2}$, act $_{3}$ s.t. first only act $t_{1}$ is used when q is visited, then only act $t_{2}$, and finally only act $_{3}$, ad infinitum.


## Strategies, ct'd

Counting strategies $\left(\Sigma_{\#}\right)$
Strategies $\sigma_{a} \in \Sigma_{\mathrm{T}}$ s.t., for each $\pi, \pi^{\prime} \in \mathcal{S}^{+}$, if $\operatorname{lc}\left(\pi_{F}\right)=\operatorname{lc}\left(\pi_{F}^{\prime}\right)$ and $\#_{F}(\pi)=\#_{F}\left(\pi^{\prime}\right)$, then $\sigma_{a}(\pi)=\sigma_{a}\left(\pi^{\prime}\right)$.
(Intuition: agent a selects action based on the number of visits in the final location along the current outcome)

## Threshold strategies $\left(\Sigma_{\#_{n}}\right)$

A counting strategy $\sigma_{a} \in \Sigma_{\#}$ is called $n$-threshold for some $n \in \mathbb{N}_{+}$iff for each location $q \in \mathcal{Q}$ there are:

- actions act $t_{1}, \ldots$, act $_{n+1} \in \Sigma$, and
- integer intervals $I_{1}=\left[1, i_{1}\right), I_{2}=\left[i_{1}, i_{2}\right), \ldots, I_{n+1}=\left[i_{n}, \infty\right)$
s.t. for all $1 \leq j \leq n+1: \sigma_{a}^{\#}(q, k)=\operatorname{act}_{j}$ if $k \in I_{j}$.
(Much-needed intuition: e.g., a counting strategy is $2-t h r e s h o l d ~ i f ~$ for any location $q \in \mathcal{Q}$ there are three actions act $_{1}$, act $_{2}$, act $_{3}$ s.t. first only act ${ }_{1}$ is used when q is visited, then only act $t_{2}$, and finally only act $_{3}$, ad infinitum.


## Strategies, ct'd

## Counting strategies ( $\Sigma_{\#}$ )

Strategies $\sigma_{a} \in \Sigma_{\mathrm{T}}$ s.t., for each $\pi, \pi^{\prime} \in \mathcal{S}^{+}$, if $\operatorname{lc}\left(\pi_{F}\right)=\operatorname{lc}\left(\pi_{F}^{\prime}\right)$ and $\#_{F}(\pi)=\#_{F}\left(\pi^{\prime}\right)$, then $\sigma_{a}(\pi)=\sigma_{a}\left(\pi^{\prime}\right)$.
(Intuition: agent a selects action based on the number of visits in the final location along the current outcome)

## Threshold strategies $\left(\Sigma_{\#_{n}}\right)$

A counting strategy $\sigma_{a} \in \Sigma_{\#}$ is called $n$-threshold for some $n \in \mathbb{N}_{+}$iff for each location $q \in \mathcal{Q}$ there are:

- actions $a c t_{1}, \ldots, a c t_{n+1} \in \Sigma$, and
- integer intervals $I_{1}=\left[1, i_{1}\right), I_{2}=\left[i_{1}, i_{2}\right), \ldots, I_{n+1}=\left[i_{n}, \infty\right)$
s.t. for all $1 \leq j \leq n+1: \sigma_{a}^{\#}(q, k)=\operatorname{act}_{j}$ if $k \in I_{j}$.
(Much-needed intuition: e.g., a counting strategy is $2-t h r e s h o l d ~ i f ~$ for any location $q \in \mathcal{Q}$ there are three actions act $_{1}$, act $_{2}$, act $_{3}$ s.t. first only act $t_{1}$ is used when q is visited, then only act ${ }_{2}$, and finally only act $_{3}$, ad infinitum.


## Strategies, ct'd

Counting strategies $\left(\Sigma_{\#}\right)$
Strategies $\sigma_{a} \in \Sigma_{\mathrm{T}}$ s.t., for each $\pi, \pi^{\prime} \in \mathcal{S}^{+}$, if $\operatorname{lc}\left(\pi_{F}\right)=\operatorname{lc}\left(\pi_{F}^{\prime}\right)$ and $\#_{F}(\pi)=\#_{F}\left(\pi^{\prime}\right)$, then $\sigma_{a}(\pi)=\sigma_{a}\left(\pi^{\prime}\right)$.
(Intuition: agent a selects action based on the number of visits in the final location along the current outcome)

## Threshold strategies $\left(\Sigma_{\#_{n}}\right)$

A counting strategy $\sigma_{a} \in \Sigma_{\#}$ is called $n$-threshold for some $n \in \mathbb{N}_{+}$iff for each location $q \in \mathcal{Q}$ there are:

- actions act $t_{1}, \ldots$, act $_{n+1} \in \Sigma$, and
- integer intervals $I_{1}=\left[1, i_{1}\right), I_{2}=\left[i_{1}, i_{2}\right), \ldots, I_{n+1}=\left[i_{n}, \infty\right)$
s.t. for all $1 \leq j \leq n+1: \sigma_{a}^{\#}(q, k)=\operatorname{act}_{j}$ if $k \in I_{j}$.
(Much-needed intuition: e.g., a counting strategy is 2 -threshold if for any location $q \in \mathcal{Q}$ there are three actions act $_{1}$, act $_{2}$, act $_{3}$ s.t. first only act $t_{1}$ is used when $q$ is visited, then only act $t_{2}$, and finally only act ${ }_{3}$, ad infinitum.


## Strategies, ct'd

Let $A \subseteq$ Agents.

- A joint strategy $\sigma_{A}$ for $A$ is a tuple of strategies, one per agent $a \in A$.

Notation: if $A=\left\{a_{1}, \ldots, a_{k}\right\}$ for some $k \in \mathbb{N}$ and $\sigma_{A}=\left(\sigma_{a_{1}}, \ldots, \sigma_{a_{k}}\right)$ is a joint strategy for $A$, then, for each $i \in \mathbb{N}$ and $\pi \in \mathcal{S}^{\omega}$, denote $\sigma_{A}\left(\pi_{i}\right):=\left(\sigma_{a_{1}}\left(\pi_{i}\right), \ldots, \sigma_{a_{k}}\left(\pi_{i}\right)\right)$.

- The outcome of $\sigma_{A}$ in state $s \in \mathcal{S}$ is the set $\operatorname{out}\left(s, \sigma_{A}\right) \subseteq \mathcal{S}^{\omega}$ s.t. $\pi \in \operatorname{out}\left(s, \sigma_{A}\right)$ iff $\pi(0)=s$ and, for each $i \in \mathbb{N}$, there is $a c t^{\prime} \in p r_{\bar{A}}(I c(\pi(i)))$ s.t. $\mathcal{E}\left(\pi(i),\left(\sigma_{A}\left(\pi_{i}\right), a c t^{\prime}\right)\right)=\pi(i+1)$.

Intuition: when coalition $A$ follows $\sigma_{A}$, then at every state it selects actions according to the joint strategy while the remaining agents can choose anything they wish.

## Logics: syntax

## Timed Alternating-Time Temporal Logic

The language of TATL is defined by the following grammar:

$$
\phi::=\mathrm{p}|\neg \phi| \phi \vee \phi|\langle\langle A\rangle\rangle X \phi|\langle\langle A\rangle\rangle \phi U_{\sim \eta} \phi \mid\langle\langle A\rangle\rangle \phi R_{\sim \eta} \phi
$$

where $\mathrm{p} \in \mathcal{A P}, A \subseteq$ Agents, $\sim \in\{\leq,=, \geq\}$, and $\eta \in \mathbb{N}$.
We interpret $\langle\langle\boldsymbol{A}\rangle\rangle \psi$ as "coalition $\boldsymbol{A}$ has a strategy to enforce $\psi$ ", $X$ stands for "at the next state", $U$ for "until", and $R$ for "release".

Derived modalities: $F$ ("in the future") and $G$ ("globally"): $\langle\langle A\rangle\rangle F_{\sim \eta} \phi:=\langle\langle A\rangle\rangle \top U_{\sim \eta} \phi,\langle\langle A\rangle\rangle G_{\sim \eta} \phi:=\langle\langle A\rangle\rangle \perp R_{\sim \eta} \phi$.

## Logics: syntax

## Timed Alternating-Time Temporal Logic

The language of TATL is defined by the following grammar:

$$
\phi::=\mathrm{p}|\neg \phi| \phi \vee \phi|\langle\langle A\rangle\rangle X \phi|\langle\langle A\rangle\rangle \phi U_{\sim \eta} \phi \mid\langle\langle A\rangle\rangle \phi R_{\sim \eta} \phi
$$

where $\mathrm{p} \in \mathcal{A P}, A \subseteq$ Agents, $\sim \in\{\leq,=, \geq\}$, and $\eta \in \mathbb{N}$.
We interpret $\langle\langle A\rangle\rangle \psi$ as "coalition $A$ has a strategy to enforce $\psi$ ", $X$ stands for "at the next state", $U$ for "until", and $R$ for "release".

Derived modalities: $F$ ("in the future") and $G$ ("globally"): $\langle\langle A\rangle\rangle F_{\sim \eta} \phi:=\langle\langle A\rangle\rangle \top U_{\sim \eta} \phi,\langle\langle A\rangle\rangle G_{\sim \eta} \phi:=\langle\langle A\rangle\rangle \perp R_{\sim \eta} \phi$.

## Logics: syntax

## Timed Alternating-Time Temporal Logic

The language of TATL is defined by the following grammar:

$$
\phi::=\mathrm{p}|\neg \phi| \phi \vee \phi|\langle\langle A\rangle\rangle X \phi|\langle\langle A\rangle\rangle \phi U_{\sim \eta} \phi \mid\langle\langle A\rangle\rangle \phi R_{\sim \eta} \phi
$$

where $\mathrm{p} \in \mathcal{A P}, A \subseteq$ Agents, $\sim \in\{\leq,=, \geq\}$, and $\eta \in \mathbb{N}$.
We interpret $\langle\langle\boldsymbol{A}\rangle\rangle \psi$ as "coalition $\boldsymbol{A}$ has a strategy to enforce $\psi$ ", $X$ stands for "at the next state", $U$ for "until", and $R$ for "release".

Derived modalities: $F$ ("in the future") and $G$ ("globally"): $\langle\langle A\rangle\rangle F_{\sim \eta} \phi:=\langle\langle A\rangle\rangle \top U_{\sim \eta} \phi,\langle\langle A\rangle\rangle G_{\sim \eta} \phi:=\langle\langle A\rangle\rangle \perp R_{\sim \eta} \phi$.

## Logics: syntax

## Timed Alternating-Time Temporal Logic

The language of TATL is defined by the following grammar:

$$
\phi::=\mathrm{p}|\neg \phi| \phi \vee \phi|\langle\langle A\rangle\rangle X \phi|\langle\langle A\rangle\rangle \phi U_{\sim \eta} \phi \mid\langle\langle A\rangle\rangle \phi R_{\sim \eta} \phi
$$

where $\mathrm{p} \in \mathcal{A P}, A \subseteq$ Agents, $\sim \in\{\leq,=, \geq\}$, and $\eta \in \mathbb{N}$.
We interpret $\langle\langle A\rangle\rangle \psi$ as "coalition $A$ has a strategy to enforce $\psi$ ", $X$ stands for "at the next state", $U$ for "until", and $R$ for "release".

Derived modalities: $F$ ("in the future") and $G$ ("globally"): $\langle\langle A\rangle\rangle F_{\sim \eta} \phi:=\langle\langle A\rangle\rangle \top U_{\sim \eta} \phi,\langle\langle A\rangle\rangle G_{\sim \eta} \phi:=\langle\langle A\rangle\rangle \perp R_{\sim \eta} \phi$.

## Logics: syntax

## Timed Alternating-Time Temporal Logic

The language of TATL is defined by the following grammar:

$$
\phi::=\mathrm{p}|\neg \phi| \phi \vee \phi|\langle\langle A\rangle\rangle X \phi|\langle\langle A\rangle\rangle \phi U_{\sim \eta} \phi \mid\langle\langle A\rangle\rangle \phi R_{\sim \eta} \phi
$$

where $\mathrm{p} \in \mathcal{A P}, A \subseteq$ Agents, $\sim \in\{\leq,=, \geq\}$, and $\eta \in \mathbb{N}$.
We interpret $\langle\langle A\rangle\rangle \psi$ as "coalition $A$ has a strategy to enforce $\psi$ ", $X$ stands for "at the next state", $U$ for "until", and $R$ for "release".

Derived modalities: $F$ ("in the future") and $G$ ("globally"): $\langle\langle A\rangle\rangle F_{\sim \eta} \phi:=\langle\langle A\rangle\rangle \top U_{\sim \eta} \phi,\langle\langle A\rangle\rangle G_{\sim \eta} \phi:=\langle\langle A\rangle\rangle \perp R_{\sim \eta} \phi$.

## Logics: syntax

## Timed Alternating-Time Temporal Logic

The language of TATL is defined by the following grammar:

$$
\phi::=\mathrm{p}|\neg \phi| \phi \vee \phi|\langle\langle A\rangle\rangle X \phi|\langle\langle A\rangle\rangle \phi U_{\sim \eta} \phi \mid\langle\langle A\rangle\rangle \phi R_{\sim \eta} \phi
$$

where $\mathrm{p} \in \mathcal{A P}, A \subseteq$ Agents, $\sim \in\{\leq,=, \geq\}$, and $\eta \in \mathbb{N}$.
We interpret $\langle\langle\boldsymbol{A}\rangle\rangle \psi$ as "coalition $\boldsymbol{A}$ has a strategy to enforce $\psi$ ", $X$ stands for "at the next state", $U$ for "until", and $R$ for "release".

Derived modalities: $F$ ("in the future") and $G$ ("globally"): $\langle\langle A\rangle\rangle F_{\sim \eta} \phi:=\langle\langle A\rangle\rangle \top U_{\sim \eta} \phi,\langle\langle A\rangle\rangle G_{\sim \eta} \phi:=\langle\langle A\rangle\rangle \perp R_{\sim \eta} \phi$.

## Logics: syntax

## Timed Alternating-Time Temporal Logic

The language of TATL is defined by the following grammar:

$$
\phi::=\mathrm{p}|\neg \phi| \phi \vee \phi|\langle\langle A\rangle\rangle X \phi|\langle\langle A\rangle\rangle \phi U_{\sim \eta} \phi \mid\langle\langle A\rangle\rangle \phi R_{\sim \eta} \phi
$$

where $\mathrm{p} \in \mathcal{A P}, A \subseteq$ Agents, $\sim \in\{\leq,=, \geq\}$, and $\eta \in \mathbb{N}$.
We interpret $\langle\langle\boldsymbol{A}\rangle\rangle \psi$ as "coalition $\boldsymbol{A}$ has a strategy to enforce $\psi$ ", $X$ stands for "at the next state", $U$ for "until", and $R$ for "release".

Derived modalities: $F$ ("in the future") and $G$ ("globally"): $\langle\langle A\rangle\rangle F_{\sim \eta} \phi:=\langle\langle A\rangle\rangle \top U_{\sim \eta} \phi,\langle\langle A\rangle\rangle G_{\sim \eta} \phi:=\langle\langle A\rangle\rangle \perp R_{\sim \eta} \phi$.

## Logics: syntax, ct’d

Exemplary properties:

- $\langle\langle A\rangle\rangle F_{=13}$ finish: "Coalition $A$ has a strategy to enforce that finish is reached at precisely 13 time units".
- $\left\langle\langle A\rangle G_{\geq 42}\right.$ safe: "Coalition $A$ has a strategy to enforce that safe holds always after reaching 42 time units".


## Logics: semantics

For each type of strategy, we define corresp. satisfaction relation identified by resp. superscript; e.g. $\models_{R}$ corresponds to $\Sigma_{R}$.

SATISFACTION
$s \mid=\gamma\langle\langle\lambda\rangle\rangle \psi$ : There is a strategy $\sigma_{A} \in \Sigma_{Y}$ for $A$ s.t. $\psi$ holds along each outcome $\pi \in \operatorname{out}\left(s, \sigma_{A}\right)$.

Satisfaction over outcomes:

- $\pi \models X_{\phi}$ iff $\pi(1) \models \phi$,
- $\pi \models \phi U_{\sim \eta} \psi$ iff $\pi(i) \models \psi$ for some $i$ s.t. $t m\left(\pi_{i}\right) \sim \eta$ and $\pi(j) \models \phi$ for all $j<i$,
- $\pi \models \phi R_{\sim \eta} \psi$ iff $t m\left(\pi_{i}\right) \sim \eta$ implies that $\pi(i) \models \psi$ or $\pi(j) \models \phi$ for some $j<i$,
... the boolean operations are as usual.


## Hierarchy of satisfactions



Red implications hold only for $\mathrm{TATL}_{\leq, \geq}$, i.e., formulae without equalities.

## Key implications: timed strategies and memory

(1) Timed STRATEGIES DO NOT NEED MEMORY

For each $q \in \mathcal{Q}$ and $\phi \in$ TATL, we have $q \models_{T} \phi$ iff $q \models_{t} \phi$.
(so we omit subscript and write $\models$ )

EASY RESULT: TIME LIMIT
Let $\langle\langle\boldsymbol{A}\rangle\rangle \psi \in$ TATL. If $c \in \mathbb{N}$ is the greatest integer present in $\psi$, then there is no need to track time after it exceeds $c$.

More formally: if $\sigma_{\boldsymbol{A}} \in \Sigma_{\mathrm{T}}$ implements $\langle\langle\boldsymbol{A}\rangle\rangle \psi$, then there is a reduction $\sigma_{A}^{\prime}$ of $\sigma_{A} \in \Sigma_{\mathrm{T}}$ s.t. $\forall_{q \in \mathcal{Q}} \forall_{t \geq c} \sigma_{A}^{\prime}(q, t)=\sigma_{A}^{\prime}(q, c+1)$.

## Key implications: time vs order

(2) TRUE IN COUNTING $\Longrightarrow$ TRUE IN TIMED

For each $q \in \mathcal{Q}$ and $\phi \in$ TATL, if $q \models \# \phi$, then $q \vDash \phi$.
Easy: just disregard the clock in memoryful outcomes.

## Key implications: time vs order, ct'd

Recall TATL $_{\leq, \geq}$: subset of TATL with only $\leq, \geq$allowed, e.g., $\left\langle\langle A\rangle G_{\geq 42}\right.$ safe, but not $\langle\langle A\rangle\rangle F_{=13}$ finish.
(3) True in timed $\Longrightarrow$ TRUE IN Counting

For each $q \in \mathcal{Q}$ and $\phi \in \operatorname{TATL}_{\leq, 2}$, if $q \vDash \phi$, then $q \models_{\#} \phi$.

Cannot be extended to TATL, see next slide.

## Key implications: time vs order, ct'd

Recall TATL $_{\leq, \geq}$: subset of TATL with only $\leq, \geq$allowed, e.g., $\left\langle\langle A\rangle G_{\geq 42}\right.$ safe, but not $\langle\langle A\rangle\rangle F_{=13}$ finish.
(3) True in timed $\Longrightarrow$ TRUE IN Counting

For each $q \in \mathcal{Q}$ and $\phi \in \operatorname{TATL}_{\leq, 2}$, if $q \vDash \phi$, then $q \models_{\#} \phi$.

Cannot be extended to TATL, see next slide.

## Key implications: time vs order, ct'd



Observe: $q_{0} \models\langle\langle 1\rangle\rangle F_{=5} \mathrm{p}$, but $q_{0} \mid \vDash_{\#}\langle\langle 1\rangle\rangle F_{=5} \mathrm{p}$, as there is no counting strategy that allows for deciding when to leave $q_{0}$ for a location labeled with $p$, and which branch to take in order to reach the target in 5 time units.

## Key implications: time vs order, ct'd



Observe: $q_{0} \models\langle\langle 1\rangle\rangle F_{=5}$ p, but $q_{0} \mid \vDash_{\#}\langle\langle 1\rangle\rangle F_{=5}$ p, as there is no counting strategy that allows for deciding when to leave $q_{0}$ for a location labeled with $p$, and which branch to take in order to reach the target in 5 time units.

## Key implications: time vs order, ct'd



Observe: $q_{0} \models\langle\langle 1\rangle\rangle F_{=5}$ p, but $\left.q_{0}\right|_{\#}\langle\langle 1\rangle\rangle F_{=5}$ p, as there is no counting strategy that allows for deciding when to leave $q_{0}$ for a location labeled with $p$, and which branch to take in order to reach the target in 5 time units.

## Key implications: counting up to...

(4) THE THRESHOLD FOR TATL $_{\leq, \geq}$IS 1

For each $q \in \mathcal{Q}$ and $\phi \in \operatorname{TATL}_{\leq, \geq}$, if $q \models_{\#} \phi$, then $q \models_{\#_{1}} \phi$.
All modalities apart from $U_{\geq \eta}$ need only one action, while $U_{\geq \eta}$ needs two.
... AND CANNOT BE LOWERED


- $q_{0}=_{\#_{1}}\langle\langle 1\rangle\rangle F_{\geq 5}$ : loop four times and jump ahead
- $q_{0} \mid \vDash_{\#_{0}}\langle\langle 1\rangle\rangle F_{\geq 5}$ : loop forever, or jump too early


## Key implications: counting up to..., ct'd


(5) THERE IS NO THRESHOLD FOR TATL
$\langle\langle 1\rangle\rangle F_{=17} \mathrm{p}$ : three distinct actions needed to sum up to exactly 17 time units.

This can be extended to an arbitrary number of actions using $Ł$. Mikulski's sequence: $(10)^{n}+\left(1 \ldots 2^{n}\right)_{(\text {binary })}$.

## Summary

Our results, once again:

- Time history is irrelevant.
- Time is irrelevant, unless we want strict punctuality: strategies based on the number of visits at a location.
- Two actions per location are sufficient to implement any counting strategy, unless strict punctuality is needed.
Future work:
- What changes for incomplete knowledge?
- Are there any practical implications?
- Extension to TATL*.


## Thank you!

