TIMED ALTERNATING-TIME TEMPORAL LOGIC

Étienne André, Wojtek Jamroga, **Michał Knapik**, Wojciech Penczek, and Laure Petrucci

Institute of Computer Sciences, PAS, Warsaw, Poland

Seminarium IPI PAN, Kwiecień 2017

Outline

 Base framework: Alternating-Time Temporal Logic extended with discrete, non-Zeno time [Markey et. al]

Our results:

- Time history is irrelevant.
- Time is irrelevant, unless we want strict punctuality: strategies based on the number of visits at a location.
- Two actions per location are sufficient to implement any counting strategy, unless strict punctuality is needed.

Models

A Tight Durational Concurrent Game Structure is a 7-tuple

- $\mathcal{A} = (Agents, \Sigma, \mathcal{Q}, \mathcal{AP}, \mathcal{L}, pr, t)$, where:
 - Agents is a finite set of all the agents,
 - Σ is a finite set of *actions*,
 - Q is a finite set of *locations*,
 - \mathcal{AP} is a set of *atomic propositions*,
 - $\mathcal{L}: \mathcal{Q} \to \mathcal{P}(\mathcal{AP})$ is a location labeling function,
 - pr : Agents $\times \mathcal{Q} \to \mathcal{P}(\Sigma) \setminus \{\emptyset\}$ is a protocol function,
 - $t: \mathcal{Q} \times \Sigma^{|Agents|} \to \mathcal{Q} \times \mathbb{N}_+$ is a transition function.

Models, ct'd

We model runs in a state/time space: $S := Q \times \mathbb{N}$, e.g.:

 $(q_0, 0) \xrightarrow{(a,y)} (q_0, 2) \xrightarrow{(a,x)} (q_0, 3) \xrightarrow{(c,y)} (q_2, 5)$

Models, ct'd

We model runs in a state/time space: $S := Q \times \mathbb{N}$, e.g.:

$$(q_0, 0) \stackrel{(a,y)}{\longrightarrow} (q_0, 2) \stackrel{(a,x)}{\longrightarrow} (q_0, 3) \stackrel{(c,y)}{\longrightarrow} (q_2, 5)$$

Strategies

Notations: let $q \in Q$, $s \in S$ and $\pi \in S^+ \cup S^{\omega}$.

- Ic(s) and tm(s): location and time, resp., of s,
- π(i): i–th state of π,
- π_i : **prefix of** π of length *i*,
- π^i : **postfix of** π starting from $\pi(i)$,
- for finite π :
 - π_F : final state of π ,
 - $\#_F(\pi)$: number of states of π whose location is $lc(\pi_F)$.

... count how many times the final location appears along π , e.g.:

$$\begin{aligned} \pi &= \big((q_0, 0), (q_0, 2)\big), \\ \pi' &= \big((q_0, 0), (q_0, 2), (q_0, 3)\big), \\ \pi'' &= \big((q_0, 0), (q_0, 2), (q_0, 3), (q_2, 5)\big) \end{aligned}$$

 $\#_F(\pi) = 2, \#_F(\pi') = 3, \#_F(\pi'') = 1.$

Strategies

Notations: let $q \in Q$, $s \in S$ and $\pi \in S^+ \cup S^{\omega}$.

- Ic(s) and tm(s): location and time, resp., of s,
- π(i): i–th state of π,
- π_i : **prefix of** π of length *i*,
- π^i : **postfix of** π starting from $\pi(i)$,
- for finite π :
 - π_F : final state of π ,
 - $\#_F(\pi)$: number of states of π whose location is $lc(\pi_F)$.

... count how many times the final location appears along π , e.g.:

$$\begin{aligned} \pi &= \big((q_0, 0), (q_0, 2)\big), \\ \pi' &= \big((q_0, 0), (q_0, 2), (q_0, 3)\big), \\ \pi'' &= \big((q_0, 0), (q_0, 2), (q_0, 3), (q_2, 5)\big) \end{aligned}$$

 $\#_F(\pi) = 2, \#_F(\pi') = 3, \#_F(\pi'') = 1.$

Strategies

Notations: let $q \in Q$, $s \in S$ and $\pi \in S^+ \cup S^{\omega}$.

- Ic(s) and tm(s): location and time, resp., of s,
- π(i): i–th state of π,
- π_i : **prefix of** π of length *i*,
- π^i : **postfix of** π starting from $\pi(i)$,
- for finite π :
 - π_F : final state of π ,
 - $\#_F(\pi)$: number of states of π whose location is $lc(\pi_F)$.

... count how many times the final location appears along π , e.g.:

$$\begin{aligned} &\pi = \big((q_0,0),(q_0,2)\big), \\ &\pi' = \big((q_0,0),(q_0,2),(q_0,3)\big), \\ &\pi'' = \big((q_0,0),(q_0,2),(q_0,3),(q_2,5)\big). \end{aligned}$$

 $\#_F(\pi) = 2, \#_F(\pi') = 3, \#_F(\pi'') = 1.$

Strategies, ct'd

Define the following types of strategies for $a \in Agents$: TIMED PERFECT RECALL STRATEGIES (Σ_{T}) Functions $\sigma_{a} \colon S^{+} \to \Sigma$ s.t. $\forall_{\pi \in S^{+}} \sigma_{a}(\pi) \in pr_{a}(lc(\pi_{F}))$.

(Intuition: no constraints, apart from the protocol)

TIMED MEMORYLESS STRATEGIES (Σ_t) Strategies $\sigma_a \in \Sigma_T$ s.t., for each $\pi, \pi' \in S^+$, if $\pi_F = \pi'_F$, then $\sigma_a(\pi) = \sigma_a(\pi')$.

(Intuition: agent a selects action based on the final state)

UNTIMED MEMORYLESS STRATEGIES (Σ_{R}) Strategies $\sigma_{a} \in \Sigma_{T}$ s.t., for each $n \in \mathbb{N}$ and $\pi, \pi' \in S^{n}$, if $lc(\pi(i)) = lc(\pi'(i))$ for all $0 \le i \le n$, then $\sigma_{a}(\pi) = \sigma_{a}(\pi')$.

(Intuition: agent a selects action based on the final location)

Define the following types of strategies for $a \in Agents$:

TIMED PERFECT RECALL STRATEGIES (Σ_{T}) Functions $\sigma_{a} \colon S^{+} \to \Sigma$ s.t. $\forall_{\pi \in S^{+}} \sigma_{a}(\pi) \in pr_{a}(lc(\pi_{F}))$.

(Intuition: no constraints, apart from the protocol)

TIMED MEMORYLESS STRATEGIES (Σ_t) Strategies $\sigma_a \in \Sigma_T$ s.t., for each $\pi, \pi' \in S^+$, if $\pi_F = \pi'_F$, then $\sigma_a(\pi) = \sigma_a(\pi')$.

(Intuition: agent a selects action based on the final state)

UNTIMED MEMORYLESS STRATEGIES (Σ_{R}) Strategies $\sigma_{a} \in \Sigma_{T}$ s.t., for each $n \in \mathbb{N}$ and $\pi, \pi' \in S^{n}$, if $lc(\pi(i)) = lc(\pi'(i))$ for all $0 \le i \le n$, then $\sigma_{a}(\pi) = \sigma_{a}(\pi')$.

(Intuition: agent a selects action based on the final location)

Define the following types of strategies for $a \in Agents$:

TIMED PERFECT RECALL STRATEGIES (Σ_{T}) Functions $\sigma_{a} \colon S^{+} \to \Sigma$ s.t. $\forall_{\pi \in S^{+}} \sigma_{a}(\pi) \in pr_{a}(lc(\pi_{F}))$.

(Intuition: no constraints, apart from the protocol)

TIMED MEMORYLESS STRATEGIES (Σ_t) Strategies $\sigma_a \in \Sigma_T$ s.t., for each $\pi, \pi' \in S^+$, if $\pi_F = \pi'_F$, then $\sigma_a(\pi) = \sigma_a(\pi')$.

(Intuition: agent a selects action based on the final state)

Untimed memoryless strategies (Σ_R)

Strategies $\sigma_a \in \Sigma_T$ s.t., for each $n \in \mathbb{N}$ and $\pi, \pi' \in S^n$, if $lc(\pi(i)) = lc(\pi'(i))$ for all $0 \le i \le n$, then $\sigma_a(\pi) = \sigma_a(\pi')$.

(Intuition: agent a selects action based on the final location)

Strategies $\sigma_a \in \Sigma_T$ s.t., for each $\pi, \pi' \in S^+$, if $lc(\pi_F) = lc(\pi'_F)$ and $\#_F(\pi) = \#_F(\pi')$, then $\sigma_a(\pi) = \sigma_a(\pi')$.

(Intuition: agent a selects action based on the number of visits in the final location along the current outcome)

THRESHOLD STRATEGIES $(\Sigma_{\#_n})$

A counting strategy $\sigma_a \in \Sigma_{\#}$ is called *n*–threshold for some $n \in \mathbb{N}_+$ iff for each location $q \in \mathcal{Q}$ there are:

- actions $act_1, \ldots, act_{n+1} \in \Sigma$, and
- ▶ integer intervals $I_1 = [1, i_1), I_2 = [i_1, i_2), \dots, I_{n+1} = [i_n, \infty)$

s.t. for all $1 \le j \le n+1$: $\sigma_a^{\#}(q,k) = act_j$ if $k \in I_j$.

(Much-needed intuition: e.g., a counting strategy is 2–threshold if for any location $q \in Q$ there are **three** actions act₁, act₂, act₃ s.t. first only act₁ is used when q is visited, then only act₂, and finally only act₃, ad infinitum.

Strategies $\sigma_a \in \Sigma_T$ s.t., for each $\pi, \pi' \in S^+$, if $lc(\pi_F) = lc(\pi'_F)$ and $\#_F(\pi) = \#_F(\pi')$, then $\sigma_a(\pi) = \sigma_a(\pi')$.

(Intuition: agent a selects action based on the number of visits in the final location along the current outcome)

Threshold strategies $(\Sigma_{\#_n})$

A counting strategy $\sigma_a \in \Sigma_{\#}$ is called *n*-threshold for some $n \in \mathbb{N}_+$ iff for each location $q \in Q$ there are:

- actions $act_1, \ldots, act_{n+1} \in \Sigma$, and
- ▶ integer intervals $I_1 = [1, i_1), I_2 = [i_1, i_2), \dots, I_{n+1} = [i_n, \infty)$

s.t. for all $1 \le j \le n + 1$: $\sigma_a^{\#}(q, k) = act_j$ if $k \in I_j$.

Strategies $\sigma_a \in \Sigma_T$ s.t., for each $\pi, \pi' \in S^+$, if $lc(\pi_F) = lc(\pi'_F)$ and $\#_F(\pi) = \#_F(\pi')$, then $\sigma_a(\pi) = \sigma_a(\pi')$.

(Intuition: agent a selects action based on the number of visits in the final location along the current outcome)

Threshold strategies $(\Sigma_{\#_n})$

A counting strategy $\sigma_a \in \Sigma_{\#}$ is called *n*-threshold for some $n \in \mathbb{N}_+$ iff for each location $q \in Q$ there are:

- actions $act_1, \ldots, act_{n+1} \in \Sigma$, and
- ▶ integer intervals $I_1 = [1, i_1), I_2 = [i_1, i_2), \dots, I_{n+1} = [i_n, \infty)$

s.t. for all $1 \le j \le n + 1$: $\sigma_a^{\#}(q, k) = act_j$ if $k \in I_j$.

Strategies $\sigma_a \in \Sigma_T$ s.t., for each $\pi, \pi' \in S^+$, if $lc(\pi_F) = lc(\pi'_F)$ and $\#_F(\pi) = \#_F(\pi')$, then $\sigma_a(\pi) = \sigma_a(\pi')$.

(Intuition: agent a selects action based on the number of visits in the final location along the current outcome)

Threshold strategies $(\Sigma_{\#_n})$

A counting strategy $\sigma_a \in \Sigma_{\#}$ is called *n*-threshold for some $n \in \mathbb{N}_+$ iff for each location $q \in Q$ there are:

- actions $act_1, \ldots, act_{n+1} \in \Sigma$, and
- ▶ integer intervals $I_1 = [1, i_1), I_2 = [i_1, i_2), \dots, I_{n+1} = [i_n, \infty)$

s.t. for all $1 \le j \le n + 1$: $\sigma_a^{\#}(q, k) = act_j$ if $k \in I_j$.

Strategies $\sigma_a \in \Sigma_T$ s.t., for each $\pi, \pi' \in S^+$, if $lc(\pi_F) = lc(\pi'_F)$ and $\#_F(\pi) = \#_F(\pi')$, then $\sigma_a(\pi) = \sigma_a(\pi')$.

(Intuition: agent a selects action based on the number of visits in the final location along the current outcome)

Threshold strategies $(\Sigma_{\#_n})$

A counting strategy $\sigma_a \in \Sigma_{\#}$ is called *n*-threshold for some $n \in \mathbb{N}_+$ iff for each location $q \in Q$ there are:

- actions $act_1, \ldots, act_{n+1} \in \Sigma$, and
- ▶ integer intervals $I_1 = [1, i_1), I_2 = [i_1, i_2), \dots, I_{n+1} = [i_n, \infty)$

s.t. for all $1 \le j \le n + 1$: $\sigma_a^{\#}(q, k) = act_j$ if $k \in I_j$.

Let $A \subseteq Agents$.

A joint strategy *σ*_A for A is a tuple of strategies, one per agent *a* ∈ A.

Notation: if $A = \{a_1, \ldots, a_k\}$ for some $k \in \mathbb{N}$ and $\sigma_A = (\sigma_{a_1}, \ldots, \sigma_{a_k})$ is a joint strategy for A, then, for each $i \in \mathbb{N}$ and $\pi \in S^{\omega}$, denote $\sigma_A(\pi_i) := (\sigma_{a_1}(\pi_i), \ldots, \sigma_{a_k}(\pi_i))$.

▶ **The outcome** of σ_A in state $s \in S$ is the set $out(s, \sigma_A) \subseteq S^{\omega}$ s.t. $\pi \in out(s, \sigma_A)$ iff $\pi(0) = s$ and, for each $i \in \mathbb{N}$, there is $act' \in pr_{\overline{A}}(lc(\pi(i)))$ s.t. $\mathcal{E}(\pi(i), (\sigma_A(\pi_i), act')) = \pi(i+1)$.

Intuition: when coalition A follows σ_A , then at every state it selects actions according to the joint strategy while the remaining agents can choose anything they wish.

$$\phi ::= \mathsf{p} \mid \neg \phi \mid \phi \lor \phi \mid \langle\!\langle \mathbf{A} \rangle\!\rangle \mathbf{X} \phi \mid \langle\!\langle \mathbf{A} \rangle\!\rangle \phi \mathbf{U}_{\sim \eta} \phi \mid \langle\!\langle \mathbf{A} \rangle\!\rangle \phi \mathbf{R}_{\sim \eta} \phi$$

where $p \in AP$, $A \subseteq Agents$, $\sim \in \{\leq, =, \geq\}$, and $\eta \in \mathbb{N}$.

We interpret $\langle\!\langle A \rangle\!\rangle \psi$ as "coalition *A* has a strategy to enforce ψ ", *X* stands for "at the next state", *U* for "until", and *R* for "release".

$$\phi ::= \mathsf{p} \mid \neg \phi \mid \phi \lor \phi \mid \langle\!\langle \mathbf{A} \rangle\!\rangle \mathbf{X} \phi \mid \langle\!\langle \mathbf{A} \rangle\!\rangle \phi \mathbf{U}_{\sim \eta} \phi \mid \langle\!\langle \mathbf{A} \rangle\!\rangle \phi \mathbf{R}_{\sim \eta} \phi$$

where $p \in AP$, $A \subseteq Agents$, $\sim \in \{\leq, =, \geq\}$, and $\eta \in \mathbb{N}$.

We interpret $\langle\!\langle A \rangle\!\rangle \psi$ as "coalition *A* has a strategy to enforce ψ ", *X* stands for "at the next state", *U* for "until", and *R* for "release".

$$\phi ::= \mathsf{p} \mid \neg \phi \mid \phi \lor \phi \mid \langle\!\langle \mathbf{A} \rangle\!\rangle \mathbf{X} \phi \mid \langle\!\langle \mathbf{A} \rangle\!\rangle \phi \mathbf{U}_{\sim \eta} \phi \mid \langle\!\langle \mathbf{A} \rangle\!\rangle \phi \mathbf{R}_{\sim \eta} \phi$$

where $p \in AP$, $A \subseteq Agents$, $\sim \in \{\leq, =, \geq\}$, and $\eta \in \mathbb{N}$.

We interpret $\langle\!\langle A \rangle\!\rangle \psi$ as "coalition A has a strategy to enforce ψ ", X stands for "at the next state", U for "until", and R for "release".

$$\phi ::= \mathsf{p} \mid \neg \phi \mid \phi \lor \phi \mid \langle\!\langle \mathbf{A} \rangle\!\rangle \mathbf{X} \phi \mid \langle\!\langle \mathbf{A} \rangle\!\rangle \phi \mathbf{U}_{\sim \eta} \phi \mid \langle\!\langle \mathbf{A} \rangle\!\rangle \phi \mathbf{R}_{\sim \eta} \phi$$

where $p \in AP$, $A \subseteq Agents$, $\sim \in \{\leq, =, \geq\}$, and $\eta \in \mathbb{N}$.

We interpret $\langle\!\langle A \rangle\!\rangle \psi$ as "coalition *A* has a strategy to enforce ψ ", *X* stands for "at the next state", *U* for "until", and *R* for "release".

$$\phi ::= \mathsf{p} \mid \neg \phi \mid \phi \lor \phi \mid \langle\!\langle \mathbf{A} \rangle\!\rangle \mathbf{X} \phi \mid \langle\!\langle \mathbf{A} \rangle\!\rangle \phi \mathbf{U}_{\sim \eta} \phi \mid \langle\!\langle \mathbf{A} \rangle\!\rangle \phi \mathbf{R}_{\sim \eta} \phi$$

where $p \in AP$, $A \subseteq Agents$, $\sim \in \{\leq, =, \geq\}$, and $\eta \in \mathbb{N}$.

We interpret $\langle\!\langle A \rangle\!\rangle \psi$ as "coalition *A* has a strategy to enforce ψ ", *X* stands for "at the next state", *U* for "until", and *R* for "release".

$$\phi ::= \mathsf{p} \mid \neg \phi \mid \phi \lor \phi \mid \langle\!\langle \mathbf{A} \rangle\!\rangle \mathbf{X} \phi \mid \langle\!\langle \mathbf{A} \rangle\!\rangle \phi \mathbf{U}_{\sim \eta} \phi \mid \langle\!\langle \mathbf{A} \rangle\!\rangle \phi \mathbf{R}_{\sim \eta} \phi$$

where $p \in AP$, $A \subseteq Agents$, $\sim \in \{\leq, =, \geq\}$, and $\eta \in \mathbb{N}$.

We interpret $\langle\!\langle A \rangle\!\rangle \psi$ as "coalition *A* has a strategy to enforce ψ ", *X* stands for "at the next state", *U* for "until", and *R* for "release".

$$\phi ::= \mathsf{p} \mid \neg \phi \mid \phi \lor \phi \mid \langle\!\langle \mathbf{A} \rangle\!\rangle \mathbf{X} \phi \mid \langle\!\langle \mathbf{A} \rangle\!\rangle \phi \mathbf{U}_{\sim \eta} \phi \mid \langle\!\langle \mathbf{A} \rangle\!\rangle \phi \mathbf{R}_{\sim \eta} \phi$$

where $p \in AP$, $A \subseteq Agents$, $\sim \in \{\leq, =, \geq\}$, and $\eta \in \mathbb{N}$.

We interpret $\langle\!\langle A \rangle\!\rangle \psi$ as "coalition *A* has a strategy to enforce ψ ", *X* stands for "at the next state", *U* for "until", and *R* for "release".

Exemplary properties:

- ► (⟨A⟩⟩ F₌₁₃ finish: "Coalition A has a strategy to enforce that finish is reached at precisely 13 time units".
- ► (⟨A⟩⟩G_{≥42}safe: "Coalition A has a strategy to enforce that safe holds always after reaching 42 time units".

For each type of strategy, we define corresp. satisfaction relation identified by resp. superscript; e.g. \models_R corresponds to Σ_R .

SATISFACTION

 $s \models_Y \langle\!\langle A \rangle\!\rangle \psi$: There is a strategy $\sigma_A \in \Sigma_Y$ for A s.t. ψ holds along each outcome $\pi \in out(s, \sigma_A)$.

Satisfaction over outcomes:

•
$$\pi \models X\phi$$
 iff $\pi(1) \models \phi$,

- $\pi \models \phi U_{\sim \eta} \psi$ iff $\pi(i) \models \psi$ for some *i* s.t. $tm(\pi_i) \sim \eta$ and $\pi(j) \models \phi$ for all j < i,
- $\pi \models \phi R_{\sim \eta} \psi$ iff $tm(\pi_i) \sim \eta$ implies that $\pi(i) \models \psi$ or $\pi(j) \models \phi$ for some j < i,

... the boolean operations are as usual.

Hierarchy of satisfactions

Red implications hold only for $\text{TATL}_{\leq,\geq},$ i.e., formulae without equalities.

(1) TIMED STRATEGIES DO NOT NEED MEMORY For each $q \in Q$ and $\phi \in \text{TATL}$, we have $q \models_T \phi$ iff $q \models_t \phi$. (so we omit subscript and write \models)

EASY RESULT: TIME LIMIT

Let $\langle\!\langle A \rangle\!\rangle \psi \in \mathsf{TATL}$. If $c \in \mathbb{N}$ is the greatest integer present in ψ , then there is no need to track time after it exceeds c.

More formally: if $\sigma_A \in \Sigma_T$ implements $\langle\!\langle A \rangle\!\rangle \psi$, then there is a reduction σ'_A of $\sigma_A \in \Sigma_T$ s.t. $\forall_{q \in Q} \forall_{t \geq c} \sigma'_A(q, t) = \sigma'_A(q, c+1)$.

(2) TRUE IN COUNTING \implies TRUE IN TIMED For each $q \in Q$ and $\phi \in$ TATL, if $q \models_{\#} \phi$, then $q \models \phi$.

Easy: just disregard the clock in memoryful outcomes.

Recall $\text{TATL}_{\leq,\geq}$: subset of TATL with only \leq,\geq allowed, e.g., $\langle\!\langle A \rangle\!\rangle G_{\geq 42}$ safe, but not $\langle\!\langle A \rangle\!\rangle F_{=13}$ finish.

(3) TRUE IN TIMED \implies TRUE IN COUNTING For each $q \in Q$ and $\phi \in \text{TATL}_{\leq,\geq}$, if $q \models \phi$, then $q \models_{\#} \phi$.

Cannot be extended to TATL, see next slide.

Recall $\text{TATL}_{\leq,\geq}$: subset of TATL with only \leq,\geq allowed, e.g., $\langle\!\langle A \rangle\!\rangle G_{\geq 42}$ safe, but not $\langle\!\langle A \rangle\!\rangle F_{=13}$ finish.

(3) TRUE IN TIMED \implies TRUE IN COUNTING For each $q \in Q$ and $\phi \in \text{TATL}_{\leq,\geq}$, if $q \models \phi$, then $q \models_{\#} \phi$.

Cannot be extended to TATL, see next slide.

Key implications: time vs order, ct'd

Observe: $q_0 \models \langle \langle 1 \rangle \rangle F_{=5}p$, but $q_0 \not\models_{\#} \langle \langle 1 \rangle \rangle F_{=5}p$, as there is no counting strategy that allows for deciding when to leave q_0 for a location labeled with p, and which branch to take in order to reach the target in 5 time units.

Key implications: time vs order, ct'd

Observe: $q_0 \models \langle \langle 1 \rangle \rangle F_{=5}p$, but $q_0 \not\models_{\#} \langle \langle 1 \rangle \rangle F_{=5}p$, as there is no counting strategy that allows for deciding when to leave q_0 for a location labeled with p, and which branch to take in order to reach the target in 5 time units.

Key implications: time vs order, ct'd

Observe: $q_0 \models \langle \langle 1 \rangle \rangle F_{=5}p$, but $q_0 \not\models_{\#} \langle \langle 1 \rangle \rangle F_{=5}p$, as there is no counting strategy that allows for deciding when to leave q_0 for a location labeled with p, and which branch to take in order to reach the target in 5 time units.

(4) THE THRESHOLD FOR TATL_{\leq,\geq} IS 1 For each $q \in Q$ and $\phi \in \text{TATL}_{<,>}$, if $q \models_{\#} \phi$, then $q \models_{\#_1} \phi$.

All modalities apart from $U_{\geq \eta}$ need only one action, while $U_{\geq \eta}$ needs two.

... AND CANNOT BE LOWERED

• $q_0 \models_{\#_1} \langle\!\langle 1 \rangle\!\rangle F_{\geq 5}$: loop four times and jump ahead

• $q_0 \not\models_{\#_0} \langle \langle 1 \rangle \rangle F_{\geq 5}$: loop forever, or jump too early

Key implications: counting up to..., ct'd

(5) THERE IS NO THRESHOLD FOR TATL

 $\langle \langle 1 \rangle \rangle F_{=17}$ p: three distinct actions needed to sum up to exactly 17 time units.

This can be extended to an arbitrary number of actions using Ł. Mikulski's sequence: $(10)^n + (1 \dots 2^n)_{(binary)}$.

Summary

Our results, once again:

- Time history is irrelevant.
- Time is irrelevant, unless we want strict punctuality: strategies based on the number of visits at a location.
- Two actions per location are sufficient to implement any counting strategy, unless strict punctuality is needed.

Future work:

- What changes for incomplete knowledge?
- Are there any practical implications?
- Extension to TATL*.

Thank you!