
TIMED ALTERNATING-TIME TEMPORAL LOGIC

Étienne André, Wojtek Jamroga, Michał Knapik, Wojciech
Penczek, and Laure Petrucci

Institute of Computer Sciences, PAS, Warsaw, Poland

Seminarium IPI PAN, Kwiecień 2017

1 / 20

Outline

I Base framework: Alternating-Time Temporal Logic
extended with discrete, non-Zeno time [Markey et. al]

I Our results:
I Time history is irrelevant.
I Time is irrelevant, unless we want strict punctuality:

strategies based on the number of visits at a location.
I Two actions per location are sufficient to implement any

counting strategy, unless strict punctuality is needed.

2 / 20

Models

A Tight Durational Concurrent Game Structure is a 7–tuple
A = (Agents,Σ,Q,AP,L,pr , t), where:

I Agents is a finite set of all the agents,
I Σ is a finite set of actions,
I Q is a finite set of locations,
I AP is a set of atomic propositions,
I L : Q → P(AP) is a location labeling function,
I pr : Agents ×Q → P(Σ) \ {∅} is a protocol function,
I t : Q× Σ|Agents| → Q× N+ is a transition function.

3 / 20

Models, ct’d

q0start

q1

p

q2

p

(a, y)

2

(a, x)

1

(b, x), (b, y)

1

(c, x), (c, y)
2

We model runs in a state/time space: S := Q× N, e.g.:

(q0,0)
(a,y)−→ (q0,2)

(a,x)−→ (q0,3)
(c,y)−→ (q2,5)

4 / 20

Models, ct’d

q0start

q1

p

q2

p

(a, y)

2

(a, x)

1

(b, x), (b, y)

1

(c, x), (c, y)
2

We model runs in a state/time space: S := Q× N, e.g.:

(q0,0)
(a,y)−→ (q0,2)

(a,x)−→ (q0,3)
(c,y)−→ (q2,5)

4 / 20

Strategies

Notations: let q ∈ Q, s ∈ S and π ∈ S+ ∪ Sω.

I lc(s) and tm(s): location and time, resp., of s,
I π(i): i–th state of π,
I πi : prefix of π of length i ,
I πi : postfix of π starting from π(i),
I for finite π:

I πF : final state of π,
I #F (π): number of states of π whose location is lc(πF).

. . . count how many times the final location appears along π, e.g.:

π =
(
(q0,0), (q0,2)

)
,

π′ =
(
(q0,0), (q0,2), (q0,3)

)
,

π′′ =
(
(q0,0), (q0,2), (q0,3), (q2,5)

)
,

#F (π) = 2, #F (π′) = 3, #F (π′′) = 1.
5 / 20

Strategies

Notations: let q ∈ Q, s ∈ S and π ∈ S+ ∪ Sω.

I lc(s) and tm(s): location and time, resp., of s,
I π(i): i–th state of π,
I πi : prefix of π of length i ,
I πi : postfix of π starting from π(i),
I for finite π:

I πF : final state of π,
I #F (π): number of states of π whose location is lc(πF).

. . . count how many times the final location appears along π, e.g.:

π =
(
(q0,0), (q0,2)

)
,

π′ =
(
(q0,0), (q0,2), (q0,3)

)
,

π′′ =
(
(q0,0), (q0,2), (q0,3), (q2,5)

)
,

#F (π) = 2, #F (π′) = 3, #F (π′′) = 1.
5 / 20

Strategies

Notations: let q ∈ Q, s ∈ S and π ∈ S+ ∪ Sω.

I lc(s) and tm(s): location and time, resp., of s,
I π(i): i–th state of π,
I πi : prefix of π of length i ,
I πi : postfix of π starting from π(i),
I for finite π:

I πF : final state of π,
I #F (π): number of states of π whose location is lc(πF).

. . . count how many times the final location appears along π, e.g.:

π =
(
(q0,0), (q0,2)

)
,

π′ =
(
(q0,0), (q0,2), (q0,3)

)
,

π′′ =
(
(q0,0), (q0,2), (q0,3), (q2,5)

)
,

#F (π) = 2, #F (π′) = 3, #F (π′′) = 1.
5 / 20

Strategies, ct’d

Define the following types of strategies for a ∈ Agents:

TIMED PERFECT RECALL STRATEGIES (ΣT)
Functions σa : S+ → Σ s.t. ∀π∈S+σa(π) ∈ pra(lc(πF)).

(Intuition: no constraints, apart from the protocol)

TIMED MEMORYLESS STRATEGIES (Σt)
Strategies σa ∈ ΣT s.t., for each π, π′ ∈ S+, if πF = π′F , then
σa(π) = σa(π′).

(Intuition: agent a selects action based on the final state)

UNTIMED MEMORYLESS STRATEGIES (ΣR)
Strategies σa ∈ ΣT s.t., for each n ∈ N and π, π′ ∈ Sn, if
lc(π(i)) = lc(π′(i)) for all 0 ≤ i ≤ n, then σa(π) = σa(π′).

(Intuition: agent a selects action based on the final location)

6 / 20

Strategies, ct’d

Define the following types of strategies for a ∈ Agents:

TIMED PERFECT RECALL STRATEGIES (ΣT)
Functions σa : S+ → Σ s.t. ∀π∈S+σa(π) ∈ pra(lc(πF)).

(Intuition: no constraints, apart from the protocol)

TIMED MEMORYLESS STRATEGIES (Σt)
Strategies σa ∈ ΣT s.t., for each π, π′ ∈ S+, if πF = π′F , then
σa(π) = σa(π′).

(Intuition: agent a selects action based on the final state)

UNTIMED MEMORYLESS STRATEGIES (ΣR)
Strategies σa ∈ ΣT s.t., for each n ∈ N and π, π′ ∈ Sn, if
lc(π(i)) = lc(π′(i)) for all 0 ≤ i ≤ n, then σa(π) = σa(π′).

(Intuition: agent a selects action based on the final location)

6 / 20

Strategies, ct’d

Define the following types of strategies for a ∈ Agents:

TIMED PERFECT RECALL STRATEGIES (ΣT)
Functions σa : S+ → Σ s.t. ∀π∈S+σa(π) ∈ pra(lc(πF)).

(Intuition: no constraints, apart from the protocol)

TIMED MEMORYLESS STRATEGIES (Σt)
Strategies σa ∈ ΣT s.t., for each π, π′ ∈ S+, if πF = π′F , then
σa(π) = σa(π′).

(Intuition: agent a selects action based on the final state)

UNTIMED MEMORYLESS STRATEGIES (ΣR)
Strategies σa ∈ ΣT s.t., for each n ∈ N and π, π′ ∈ Sn, if
lc(π(i)) = lc(π′(i)) for all 0 ≤ i ≤ n, then σa(π) = σa(π′).

(Intuition: agent a selects action based on the final location)

6 / 20

Strategies, ct’d

COUNTING STRATEGIES (Σ#)
Strategies σa ∈ ΣT s.t., for each π, π′ ∈ S+, if lc(πF) = lc(π′F)
and #F (π) = #F (π′), then σa(π) = σa(π′).

(Intuition: agent a selects action based on the number of visits in
the final location along the current outcome)

THRESHOLD STRATEGIES (Σ#n)
A counting strategy σa ∈ Σ# is called n–threshold for some
n ∈ N+ iff for each location q ∈ Q there are:

I actions act1, . . . ,actn+1 ∈ Σ, and
I integer intervals I1 = [1, i1), I2 = [i1, i2), . . . , In+1 = [in,∞)

s.t. for all 1 ≤ j ≤ n + 1: σ#a (q, k) = act j if k ∈ Ij .

(Much-needed intuition: e.g., a counting strategy is 2–threshold if
for any location q ∈ Q there are three actions act1,act2,act3 s.t.
first only act1 is used when q is visited, then only act2, and
finally only act3, ad infinitum.

7 / 20

Strategies, ct’d

COUNTING STRATEGIES (Σ#)
Strategies σa ∈ ΣT s.t., for each π, π′ ∈ S+, if lc(πF) = lc(π′F)
and #F (π) = #F (π′), then σa(π) = σa(π′).

(Intuition: agent a selects action based on the number of visits in
the final location along the current outcome)

THRESHOLD STRATEGIES (Σ#n)
A counting strategy σa ∈ Σ# is called n–threshold for some
n ∈ N+ iff for each location q ∈ Q there are:

I actions act1, . . . ,actn+1 ∈ Σ, and
I integer intervals I1 = [1, i1), I2 = [i1, i2), . . . , In+1 = [in,∞)

s.t. for all 1 ≤ j ≤ n + 1: σ#a (q, k) = act j if k ∈ Ij .

(Much-needed intuition: e.g., a counting strategy is 2–threshold if
for any location q ∈ Q there are three actions act1,act2,act3 s.t.
first only act1 is used when q is visited, then only act2, and
finally only act3, ad infinitum.

7 / 20

Strategies, ct’d

COUNTING STRATEGIES (Σ#)
Strategies σa ∈ ΣT s.t., for each π, π′ ∈ S+, if lc(πF) = lc(π′F)
and #F (π) = #F (π′), then σa(π) = σa(π′).

(Intuition: agent a selects action based on the number of visits in
the final location along the current outcome)

THRESHOLD STRATEGIES (Σ#n)
A counting strategy σa ∈ Σ# is called n–threshold for some
n ∈ N+ iff for each location q ∈ Q there are:

I actions act1, . . . ,actn+1 ∈ Σ, and
I integer intervals I1 = [1, i1), I2 = [i1, i2), . . . , In+1 = [in,∞)

s.t. for all 1 ≤ j ≤ n + 1: σ#a (q, k) = act j if k ∈ Ij .

(Much-needed intuition: e.g., a counting strategy is 2–threshold if
for any location q ∈ Q there are three actions act1,act2,act3 s.t.
first only act1 is used when q is visited, then only act2, and
finally only act3, ad infinitum.

7 / 20

Strategies, ct’d

COUNTING STRATEGIES (Σ#)
Strategies σa ∈ ΣT s.t., for each π, π′ ∈ S+, if lc(πF) = lc(π′F)
and #F (π) = #F (π′), then σa(π) = σa(π′).

(Intuition: agent a selects action based on the number of visits in
the final location along the current outcome)

THRESHOLD STRATEGIES (Σ#n)
A counting strategy σa ∈ Σ# is called n–threshold for some
n ∈ N+ iff for each location q ∈ Q there are:

I actions act1, . . . ,actn+1 ∈ Σ, and
I integer intervals I1 = [1, i1), I2 = [i1, i2), . . . , In+1 = [in,∞)

s.t. for all 1 ≤ j ≤ n + 1: σ#a (q, k) = act j if k ∈ Ij .

(Much-needed intuition: e.g., a counting strategy is 2–threshold if
for any location q ∈ Q there are three actions act1,act2,act3 s.t.
first only act1 is used when q is visited, then only act2, and
finally only act3, ad infinitum.

7 / 20

Strategies, ct’d

COUNTING STRATEGIES (Σ#)
Strategies σa ∈ ΣT s.t., for each π, π′ ∈ S+, if lc(πF) = lc(π′F)
and #F (π) = #F (π′), then σa(π) = σa(π′).

(Intuition: agent a selects action based on the number of visits in
the final location along the current outcome)

THRESHOLD STRATEGIES (Σ#n)
A counting strategy σa ∈ Σ# is called n–threshold for some
n ∈ N+ iff for each location q ∈ Q there are:

I actions act1, . . . ,actn+1 ∈ Σ, and
I integer intervals I1 = [1, i1), I2 = [i1, i2), . . . , In+1 = [in,∞)

s.t. for all 1 ≤ j ≤ n + 1: σ#a (q, k) = act j if k ∈ Ij .

(Much-needed intuition: e.g., a counting strategy is 2–threshold if
for any location q ∈ Q there are three actions act1,act2,act3 s.t.
first only act1 is used when q is visited, then only act2, and
finally only act3, ad infinitum.

7 / 20

Strategies, ct’d

Let A ⊆ Agents.
I A joint strategy σA for A is a tuple of strategies, one per

agent a ∈ A.

Notation: if A = {a1, . . . ,ak} for some k ∈ N and
σA = (σa1 , . . . , σak) is a joint strategy for A, then, for each
i ∈ N and π ∈ Sω, denote σA(πi) := (σa1(πi), . . . , σak (πi)).

I The outcome of σA in state s ∈ S is the set out(s, σA) ⊆ Sω
s.t. π ∈ out(s, σA) iff π(0) = s and, for each i ∈ N, there is
act ′ ∈ prA(lc(π(i))) s.t. E(π(i), (σA(πi),act ′)) = π(i + 1).

Intuition: when coalition A follows σA, then at every state it
selects actions according to the joint strategy while the
remaining agents can choose anything they wish.

8 / 20

Logics: syntax

TIMED ALTERNATING-TIME TEMPORAL LOGIC
The language of TATL is defined by the following grammar:

φ ::= p | ¬φ | φ ∨ φ | 〈〈A〉〉Xφ | 〈〈A〉〉φU∼ηφ | 〈〈A〉〉φR∼ηφ

where p ∈ AP, A ⊆ Agents, ∼ ∈ {≤,=,≥}, and η ∈ N.

We interpret 〈〈A〉〉ψ as “coalition A has a strategy to enforce ψ”,
X stands for “at the next state”, U for “until”, and R for “release”.

Derived modalities: F (“in the future”) and G (“globally”):
〈〈A〉〉F∼ηφ := 〈〈A〉〉>U∼ηφ, 〈〈A〉〉G∼ηφ := 〈〈A〉〉⊥R∼ηφ.

9 / 20

Logics: syntax

TIMED ALTERNATING-TIME TEMPORAL LOGIC
The language of TATL is defined by the following grammar:

φ ::= p | ¬φ | φ ∨ φ | 〈〈A〉〉Xφ | 〈〈A〉〉φU∼ηφ | 〈〈A〉〉φR∼ηφ

where p ∈ AP, A ⊆ Agents, ∼ ∈ {≤,=,≥}, and η ∈ N.

We interpret 〈〈A〉〉ψ as “coalition A has a strategy to enforce ψ”,
X stands for “at the next state”, U for “until”, and R for “release”.

Derived modalities: F (“in the future”) and G (“globally”):
〈〈A〉〉F∼ηφ := 〈〈A〉〉>U∼ηφ, 〈〈A〉〉G∼ηφ := 〈〈A〉〉⊥R∼ηφ.

9 / 20

Logics: syntax

TIMED ALTERNATING-TIME TEMPORAL LOGIC
The language of TATL is defined by the following grammar:

φ ::= p | ¬φ | φ ∨ φ | 〈〈A〉〉Xφ | 〈〈A〉〉φU∼ηφ | 〈〈A〉〉φR∼ηφ

where p ∈ AP, A ⊆ Agents, ∼ ∈ {≤,=,≥}, and η ∈ N.

We interpret 〈〈A〉〉ψ as “coalition A has a strategy to enforce ψ”,
X stands for “at the next state”, U for “until”, and R for “release”.

Derived modalities: F (“in the future”) and G (“globally”):
〈〈A〉〉F∼ηφ := 〈〈A〉〉>U∼ηφ, 〈〈A〉〉G∼ηφ := 〈〈A〉〉⊥R∼ηφ.

9 / 20

Logics: syntax

TIMED ALTERNATING-TIME TEMPORAL LOGIC
The language of TATL is defined by the following grammar:

φ ::= p | ¬φ | φ ∨ φ | 〈〈A〉〉Xφ | 〈〈A〉〉φU∼ηφ | 〈〈A〉〉φR∼ηφ

where p ∈ AP, A ⊆ Agents, ∼ ∈ {≤,=,≥}, and η ∈ N.

We interpret 〈〈A〉〉ψ as “coalition A has a strategy to enforce ψ”,
X stands for “at the next state”, U for “until”, and R for “release”.

Derived modalities: F (“in the future”) and G (“globally”):
〈〈A〉〉F∼ηφ := 〈〈A〉〉>U∼ηφ, 〈〈A〉〉G∼ηφ := 〈〈A〉〉⊥R∼ηφ.

9 / 20

Logics: syntax

TIMED ALTERNATING-TIME TEMPORAL LOGIC
The language of TATL is defined by the following grammar:

φ ::= p | ¬φ | φ ∨ φ | 〈〈A〉〉Xφ | 〈〈A〉〉φU∼ηφ | 〈〈A〉〉φR∼ηφ

where p ∈ AP, A ⊆ Agents, ∼ ∈ {≤,=,≥}, and η ∈ N.

We interpret 〈〈A〉〉ψ as “coalition A has a strategy to enforce ψ”,
X stands for “at the next state”, U for “until”, and R for “release”.

Derived modalities: F (“in the future”) and G (“globally”):
〈〈A〉〉F∼ηφ := 〈〈A〉〉>U∼ηφ, 〈〈A〉〉G∼ηφ := 〈〈A〉〉⊥R∼ηφ.

9 / 20

Logics: syntax

TIMED ALTERNATING-TIME TEMPORAL LOGIC
The language of TATL is defined by the following grammar:

φ ::= p | ¬φ | φ ∨ φ | 〈〈A〉〉Xφ | 〈〈A〉〉φU∼ηφ | 〈〈A〉〉φR∼ηφ

where p ∈ AP, A ⊆ Agents, ∼ ∈ {≤,=,≥}, and η ∈ N.

We interpret 〈〈A〉〉ψ as “coalition A has a strategy to enforce ψ”,
X stands for “at the next state”, U for “until”, and R for “release”.

Derived modalities: F (“in the future”) and G (“globally”):
〈〈A〉〉F∼ηφ := 〈〈A〉〉>U∼ηφ, 〈〈A〉〉G∼ηφ := 〈〈A〉〉⊥R∼ηφ.

9 / 20

Logics: syntax

TIMED ALTERNATING-TIME TEMPORAL LOGIC
The language of TATL is defined by the following grammar:

φ ::= p | ¬φ | φ ∨ φ | 〈〈A〉〉Xφ | 〈〈A〉〉φU∼ηφ | 〈〈A〉〉φR∼ηφ

where p ∈ AP, A ⊆ Agents, ∼ ∈ {≤,=,≥}, and η ∈ N.

We interpret 〈〈A〉〉ψ as “coalition A has a strategy to enforce ψ”,
X stands for “at the next state”, U for “until”, and R for “release”.

Derived modalities: F (“in the future”) and G (“globally”):
〈〈A〉〉F∼ηφ := 〈〈A〉〉>U∼ηφ, 〈〈A〉〉G∼ηφ := 〈〈A〉〉⊥R∼ηφ.

9 / 20

Logics: syntax, ct’d

Exemplary properties:

I 〈〈A〉〉F=13finish: “Coalition A has a strategy to enforce
that finish is reached at precisely 13 time units”.

I 〈〈A〉〉G≥42safe: “Coalition A has a strategy to enforce that
safe holds always after reaching 42 time units”.

10 / 20

Logics: semantics

For each type of strategy, we define corresp. satisfaction relation
identified by resp. superscript; e.g. |=R corresponds to ΣR.

SATISFACTION
s |=Y 〈〈A〉〉ψ: There is a strategy σA ∈ ΣY for A s.t. ψ holds
along each outcome π ∈ out(s, σA).

Satisfaction over outcomes:
I π |= Xφ iff π(1) |= φ,
I π |= φU∼ηψ iff π(i) |= ψ for some i s.t. tm(πi) ∼ η and
π(j) |= φ for all j < i ,

I π |= φR∼ηψ iff tm(πi) ∼ η implies that π(i) |= ψ or π(j) |= φ
for some j < i ,

. . . the boolean operations are as usual.

11 / 20

Hierarchy of satisfactions

|=T

|=t |=R

|=#

|=#1

|=#0 = |=r

Red implications hold only for TATL≤,≥, i.e., formulae without
equalities.

12 / 20

Key implications: timed strategies and memory

(1) TIMED STRATEGIES DO NOT NEED MEMORY

For each q ∈ Q and φ ∈ TATL, we have q |=T φ iff q |=t φ.
(so we omit subscript and write |=)

EASY RESULT: TIME LIMIT
Let 〈〈A〉〉ψ ∈ TATL. If c ∈ N is the greatest integer present in ψ,
then there is no need to track time after it exceeds c.

More formally: if σA ∈ ΣT implements 〈〈A〉〉ψ, then there is a
reduction σ′A of σA ∈ ΣT s.t. ∀q∈Q∀t≥c σ

′
A(q, t) = σ′A(q, c + 1).

13 / 20

Key implications: time vs order

(2) TRUE IN COUNTING =⇒ TRUE IN TIMED

For each q ∈ Q and φ ∈ TATL, if q |=# φ, then q |= φ.

Easy: just disregard the clock in memoryful outcomes.

14 / 20

Key implications: time vs order, ct’d

Recall TATL≤,≥: subset of TATL with only ≤,≥ allowed,
e.g., 〈〈A〉〉G≥42safe, but not 〈〈A〉〉F=13finish.

(3) TRUE IN TIMED =⇒ TRUE IN COUNTING

For each q ∈ Q and φ ∈ TATL≤,≥, if q |= φ, then q |=# φ.

Cannot be extended to TATL, see next slide.

15 / 20

Key implications: time vs order, ct’d

Recall TATL≤,≥: subset of TATL with only ≤,≥ allowed,
e.g., 〈〈A〉〉G≥42safe, but not 〈〈A〉〉F=13finish.

(3) TRUE IN TIMED =⇒ TRUE IN COUNTING

For each q ∈ Q and φ ∈ TATL≤,≥, if q |= φ, then q |=# φ.

Cannot be extended to TATL, see next slide.

15 / 20

Key implications: time vs order, ct’d

q0start

q1

p

q2

p

(a, y)

2

(a, x)

1

(b, x), (b, y)

1

(c, x), (c, y)
2

Observe: q0 |= 〈〈1〉〉F=5p, but q0 6|=# 〈〈1〉〉F=5p, as there is no
counting strategy that allows for deciding when to leave q0 for a
location labeled with p, and which branch to take in order to
reach the target in 5 time units.

16 / 20

Key implications: time vs order, ct’d

q0start

q1

p

q2

p

(a, y)

2

(a, x)

1

(b, x), (b, y)

1

(c, x), (c, y)
2

Observe: q0 |= 〈〈1〉〉F=5p, but q0 6|=# 〈〈1〉〉F=5p, as there is no
counting strategy that allows for deciding when to leave q0 for a
location labeled with p, and which branch to take in order to
reach the target in 5 time units.

16 / 20

Key implications: time vs order, ct’d

q0start

q1

p

q2

p

(a, y)

2

(a, x)

1

(b, x), (b, y)

1

(c, x), (c, y)
2

Observe: q0 |= 〈〈1〉〉F=5p, but q0 6|=# 〈〈1〉〉F=5p, as there is no
counting strategy that allows for deciding when to leave q0 for a
location labeled with p, and which branch to take in order to
reach the target in 5 time units.

16 / 20

Key implications: counting up to. . .

(4) THE THRESHOLD FOR TATL≤,≥ IS 1
For each q ∈ Q and φ ∈ TATL≤,≥, if q |=# φ, then q |=#1 φ.

All modalities apart from U≥η need only one action, while U≥η
needs two.

. . . AND CANNOT BE LOWERED

q0start q1

p

1

1

I q0 |=#1 〈〈1〉〉F≥5: loop four times and jump ahead
I q0 6|=#0 〈〈1〉〉F≥5: loop forever, or jump too early

17 / 20

Key implications: counting up to. . . , ct’d

q0start
p

4

6

7

(5) THERE IS NO THRESHOLD FOR TATL
〈〈1〉〉F=17p: three distinct actions needed to sum up to exactly
17 time units.

This can be extended to an arbitrary number of actions using Ł.
Mikulski’s sequence: (10)n + (1 . . . 2n)(binary).

18 / 20

Summary

Our results, once again:

I Time history is irrelevant.

I Time is irrelevant, unless we want strict punctuality:
strategies based on the number of visits at a location.

I Two actions per location are sufficient to implement any
counting strategy, unless strict punctuality is needed.

Future work:

I What changes for incomplete knowledge?

I Are there any practical implications?

I Extension to TATL*.

19 / 20

Thank you!

20 / 20

