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Introduction or setting the stage

A major challenge in the analysis of many biological data matrices
is due to their sizes: relatively small number of records (samples),
often of the order of tens, versus thousands of attributes or
features for each record.

An obvious example, albeit rather classical today, are microarray
gene expression experiments (here, the features are genes or, more
precisely, their expression levels). Another, and a very specific one,
is that of analyzing molecular interaction networks underlying
HIV-1 resistance to reverse transcriptase inhibitors (here, the
features are some physicochemical properties of amino acids). In
Next Generation Sequencing / Genome-Wide Association Studies,
while we have thousands observations, each consists of hundreds of
thousands of features.
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Introduction or setting the stage

By far, it is not only in Life Sciences, where problems of this type
appear and have to be dealt with.

Indeed, in our own work, we met fascinating problems of
commercial origin, including transactional data from a major
multinational FMCG (fast-moving consumer goods) company and
geological data from oil wells operated by a major American oil
company.
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Introduction or setting the stage

Such tasks, regardless of whether the data are to explain a
quantitative (as in regression) or categorical (as in classification)
trait, are quite different from typical data mining problems, in
which the number of features is much smaller than the number of
samples.

Indeed, in a sense, these are ill-posed problems. It is immediately
clear in the case of linear regression fitted by least-squares.
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Introduction or setting the stage

For two-class classification, at least from the geometrical point of
view, the task is trivial, since in a d-dimensional space, as many as
d + 1 points can be divided into two arbitrary and disjoint subsets
by some hyperplane, provided that these points do not lie in a
proper subspace of the d-dimensional space.

 

d1

d2
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Introduction or setting the stage

It is another matter that the hyperplane (or any other classification
rule) found should have the generalization ability.

In any case, whether in classification or in regression, since it is
rather a rule than an exception that most features in the data are
not informative, it is of utmost importance to select the few ones
that are informative and that may form the basis for class
prediction or building a proper regression model.

That is, before building a classifier or a regression model, or while
building any of them, we would like to find out which features are
specifically linked to the problem at hand and should be included
in the solution.
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Introduction or setting the stage

Mathematically, properly formulated sparsity constraints should be
included when seeking a solution. As we shall see, this requirement
can be fulfilled by randomization or regularization.

Regarding classification one more important issue should be
emphasized:

More often than not, rather than obtaining the best possible
classifier, the Life Scientist needs to know which features
contribute best to classifying observations (samples) into distinct
classes and what are the interdependencies between the features
which describe the observation.
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Introduction or setting the stage

When dealing with multiple explanatory variables (features), one
needs to address the problem of hypothesis testing, We therefore
begin our exposition with a brief discussion of multiple hypothesis
testing.

We then turn, and confine ourselves, to the area of supervised
learning. Within the context of very high dimensional problems, in
particular the small n large p problems, it is reasonable to divide
the whole into three (more or less) separate families of approaches
to such learning:

Monte Carlo methods

Regularization approaches (with a penalty for model
complexity)

Bayesian approaches.
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Introduction or setting the stage

Important remark: It should be emphasized that these three
families of approaches are not disjunctive but are partly
overlapping. In particular, penalty for model complexity can be
Bayesian (like Bayesian Information Criterion, BIC), what pertains
to Bayesian regularization. Moreover, it is of utmost interest, and
adds to their inherent beauty, that methods from different families
share, or have similar, mathematical foundations.
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Multiple hypothesis testing

Univariate approach based on multiple hypothesis testing: while
disregarding interactions between features, it is statistically sound
and all to well illustrates the intricacy of the problem:

Assume a two-class classification case. For each k-th feature we
are interested in testing the null hypothesis H0k of no relationship
between the decision attribute (class) and the feature against the
alternative that such a relationship does exist.

For each k-th feature, k = 1, . . . , d , a natural test statistic is a
t-statistic

x̄1k − x̄2k

s1k + s2k

although examined without assuming normal distribution of the
feature.

A real catch is that we have to perform not one but d such tests!
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Multiple hypothesis testing

The battery of tests should have a fixed level of the probability of
type one error, e.g.,

FWER ≡ family-wise error rate = P(FP ­ 1) ¬ α

where FP stands for the number of false positives (i.e., type I
errors)

or

FDR ≡ false discovery rate = E (FP/(FP + TP)) ¬ α

as well as a reasonable power of the whole procedure, e.g.,

P(TP ­ 1)

where TP stands for the number of true positives.
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Multiple hypothesis testing

Bonferroni’s (1936) classical procedure, under which any null
hypothesis is rejected at level α/d , controls the FWER,

FWER ≡ family-wise error rate = P(FP ­ 1) ¬ α,

for arbitrary test statistics joint null distributions; that is,

P(FP ­ 1) ¬
∑
i∈H0

PH0i (i-th test rejects) ¬ h

d
α ¬ α,

where H0 runs over the indices corresponding to true null
hypotheses and h = |H0|.

(Under independence of test statistics and complete null
hypothesis,

FWER = 1− (1− α/d)d ;

the FWER is smaller, if they are positively dependent.)
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Multiple hypothesis testing

Note that under the Bonferroni procedure any null hypothesis is
rejected regardless of the values of test statistics for other
hypotheses.

A more sophisticated procedure of Benjamini and Hochberg (1995;
see the next slide) controls the FDR,

FDR ≡ false discovery rate = E (FP/(FP + TP)) ¬ α,

for independent test statistics (or, more generally, for positively
regression dependent test statistics).
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Multiple hypothesis testing

The Banjamini and Hochberg procedure:

1. Let
p(1) ¬ p(2) ¬ · · · ¬ p(d)

denote the observed ordered p-values

2.

L = max{j : p(j) < α · j
d
}

3. Reject all hypotheses H0j , such that p(j) ¬ p(L).

Thus, the p-values must be obtained, but this can be done by a
simple resampling procedure.

For this section see Dudoit and van der Laan (2008).
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MC approaches: Model selection for linear regression -
Random Subspace Method (RSM)

Mielniczuk and Teisseyre (2011) and (2013): Let Ti ,m be a
t-statistic for i-th predictor in a linear regression model m with |m|
predictors. We have:

T 2
i ,m

n − |m|
=
RSSm−{i} − RSSm

RSSm

It follows that the value of T 2
i ,m can serve as a measure of,

simulatneously, the importance of the i-th predictor in model m
and the quality of this very model.
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MC approaches: Model selection for linear regression -
Random Subspace Method (RSM)

In the RSM, a random subset m of features (predictors), of size
|m| smaller than the number of all features d and a number of
observations n, is chosen. The model is fitted in the reduced
feature space by OLS. Each of the selected features is assigned a
weight describing its relevance in the considered submodel.

Random selection of features is repeated many times,
corresponding submodels are fitted and the final weights (scores)
of all d features are computed on the basis of all submodels.

The final model can then be constructed based on predetermined
number of the most significant predictors or using a selection
method applied to the nested list of models given by the ordering
of predictors.
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MC approaches: MCFS-ID Algorithm of Draminski et al.:
the Monte Carlo Feature Selection (or MCFS) part

In what follows we begin with a brief description of an effective
method for ranking features according to their importance for
classification regardless of a classifier to be later used. Our
procedure is conceptually very simple, albeit computer-intensive.

We consider a particular feature to be important, or informative, if
it is likely to take part in the process of classifying samples into
classes ”more often than not”.

This ”readiness” of a feature to take part in the classification
process, termed relative importance of a feature, is measured via
intensive use of classification trees. When assessing relative
importance of a feature, the aforementioned ”readiness” of the
feature to appear in a given tree is suitably moderated by the
(weighted) accuracy this tree.
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MC approaches: MCFS-ID Algorithm: the MCFS part

In the main step of the procedure, we estimate relative importance
of features by constructing thousands of trees for randomly
selected subsets of features.

More precisely, out of all d features, s subsets of m features are
selected, m being fixed and m << d , and for each subset of
features, t trees are constructed and their performance is assessed.
Each of the t trees in the inner loop is trained and evaluated on a
different, randomly selected training and test sets which come from
a split of the full set of training data into two subsets: each time,
out of all n samples, about 66% of samples are drawn at random
for training (in such a way as to preserve proportions of classes
from the full set of training data) and the remaining samples are
used for testing.
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MC approaches: MCFS-ID Algorithm: the MCFS part

Jacek Koronacki Analiza danych o wielkim wymiarze



MC approaches: Interdependency Discovery, i.e., the ID
part of the MCFS-ID Algorithm

In the MCFS part of the algorithm, a cutoff between informative
and non-informative features is provided. From now on, our
interest is confined to the set of informative features.

This approach to interdependency discovery is significantly
different from known approaches which consist in finding
correlations between features or finding groups of features that
behave similarly in some sense across samples (e.g., as in finding
co-regulated features).

The focus is on identifying features that ”cooperate” in
determining that a sample belongs to a particular class. A directed
graph of such ”cooperating” features is constructed.
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MC approaches: Interdependency Discovery, i.e., the ID
part of the MCFS-ID Algorithm

For an exposition of the MCFS-ID algorithm in its full-flegded
versions, see Draminski et al. (2008), (2010), (2016a) and (2016b)

Regarding the ID part of the algorithm, see also next to the last
section of this presentation.
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Regularization approaches: Model selection for linear
regression - `1 regularization

The Lasso (Least Absolute Shrinkage and Selection Operator):

As usual, we are given n observations, each with d explanatory
variables (predictors), (xi1, xi2, . . . , xid), and one response variable,
yi ,

yi = β0 + β1xi1 + β2xi2 + . . .+ βdxi ,d + εi , i = 1, 2, . . . , n,

where εi are i.i.d. random errors with mean 0 and unknown
variance σ2, and β0, . . . , βd are unknown parameters.

Minimize

{
n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2}

subject to
p∑

j=1

|βj | ¬ t.
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Regularization approaches: `1 regularization

The Lasso, in contrast to ridge regression (i.e., `2 regularization),
eliminates for small t some variables from the model. It can thus
be used as a feature selection method, although one should be
aware that the method is likely to include too many (and
incorrectly ordered) variables.

For exhaustive account of the Lasso and related approaches see
Bühlmann and van de Geer (2011) and Hastie, Tibshirani and
Wainwright (2015). For an important extension of the idea see
Pokarowski and Mielniczuk (2015), where a three-stage algorithm
for selecting a regression model is proposed, with LASSO used in
the 1st stage for screening of predictors (features); the proposed
algorithms are given in the next 2 slides. See also Bogdan et al.
(2015), where the regularizer is a sorted `1 norm.
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Screening-Selection (SS) procedure of Pokarowski and
Mielniczuk

A version of SOS (JMLR (2015)) with ’O’ (for ’ordering’) removed

Algorithm 1 SS

Input: y , X and λ
Screening (Lasso)
β̂ ≡ β̂(λ) = argminγ

{
‖y − Xγ‖2 + 2λ|γ|1

}
;

order nonzero coefficients:
|β̂j1 | ­ |β̂j2 | ­ . . . ­ |β̂js |, where s = |suppβ̂|;
set J = {{j1}, {j1, j2}, . . . , {j1, . . . , js}};
Selection (GIC)
T̂ = argminJ∈J

{
SSEJ + λ2|J|

}
Output: β̂SS = (XT

T̂
X
T̂

)−1XT
T̂
y
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SOSnet algorithm of Pokarowski and Mielniczuk

Use Lasso with λi=0,1,...,m to choose set of predictors Ii ;

Fit linear model y ∼ xIi ,i = 0, 1, . . . ,m;

Order predictors according to (t-statistics)2;

Construct M = ∪ nested models ;

Use GIC on M to choose a final model.
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Regularization approaches: Support Vector Machines - `2
regularization. And more

We skip an exposition of SVMs. Regarding their use for Big Data
Analytics, we refer to Tan et al. (2014) and to Priyadarshini and
Agarwal (2015).

There are more statistical approaches to dealing with
high-dimensional data than those already hinted to and the
Bayesian ones. See Bühlmann and van de Geer (2011) for an
approach which stems from undirected graphical modeling and is
based on inferring zero partial correlations for variable selection
(the so-called PC-simple algorithm).

A still another and promising approach, which builds on ranking
the marginal correlations and is referred to as sure independence
screening, has been introduced by Fan and Lv (2008); see also Fan
and Song (2010).
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Model selection for linear regression - Bayesian approaches

Broman and Speed (2002): Let

yi = µ+
d∑

j=1

βjxij + εi ,

where xij = 1 or xij = 0 and the εi are i.i.d. and normally
distributed, N(0, σ2) (in fact, xij represents genotype at marker j
for individual i). The task is to select a model for which Schwarz’s
Bayesian Information Criterion (BIC) assumes the minimal value;

BIC = n · logRSS(β) +
1
2
k logn,

where k is the number of parameters βj in the model. It was
observed by Broman i Speed that the BIC tends to overestimate
the number of parameters in the model. Accordingly, they
proposed the 1st modification of the BIC.
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Model selection for linear regression - Bayesian approaches

The Bayesian model selection advocates choosing the model M
that maximizes posterior probability of the model given the data,
this probability being proportional to

L(y |M)π(M),

where π(M) is a prior probability for model M (Schwartz assumed
noninformative uniform prior π), and

L(y |M) =

∫
L(y |M, β)f (β|M)dβ,

f (β|M) being some prior distribution on the vector of model
parameters; for a wide class of these distributions one gets

logL(y |M) = logL(y |β)− 1
2

(k + 2)logn.

For the family of normal linear regression models, maximization of
this last expression is equivalent to minimization of the BIC.
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Model selection for linear regression - Bayesian approaches

Bogdan et al. (2004) introduced another modification of BIC
(mBIC), assuming binomial prior distribution, Bin(d , c/d), with
some fixed c , for the model size. See Bogdan et al. (2011) for later
developments and Frommlet et al. (2012) for application of their
approach to Genome-Wide Association Studies.

It is easy to extend the outlined approach to include regression
models with interactions. It is also possible to extend it to include
generalized linear models (possibly with constraints on the model’s
parameters).

The outlined approach is by far not the only one possible among
this strand of Bayesian approaches; e.g., a similar approach is that
based on the extended BIC, and a completely different approach,
which bears some relationship with support vector machines, is
that of relevance vector machines. (See, e.g., Chen and Chen
(2008) and (2011), and Tipping (2001), Fletcher (2010) and
Saarela et al. (2010).)
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Nonparametric Bayesian approaches

Let Y be a response and X = (X (1), . . . ,X (p) ∈ Rp be explanatory
variables. Assume

Y = f (X ) + ε,

with ε normally distributed, N(0, σ2).

Usually, a Gaussian Process (GP) prior for f is assumed to have
zero mean and square exponential covariance function (kernel
function) exp(−‖x − x ′‖2/c). Such processes are smooth in a
well-known sense. Other kernels can be used, and another
smoothness conditions on f can be imposed.

It should be emphasized that the above mentioned use of a kernel
function casts the whole approach into the area of ML with kernels
(kernel machines). Indeed, some far reaching similarities (and
differences) with ridge regression, SVMs, as well as with spline
models are obvious and deserve separate analysis.
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Nonparametric Bayesian approaches, contd.

An excellent exposition of Gaussian processes for ML is given in
Rasmussen and Williams (2006); another excellent, albeit short,
introduction to GPs in ML can be found in Bishop (2006). In
neither of these expositions problems pertaining to dealing with
Big Data are addressed, although Rasmussen and Williams (2006)
has a chapter on Approximation Methods for Large Datasets.
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Nonparametric Bayesian approaches, contd.

However interesting GPs for ML are, within the context of Big
Data Analytics, special emphasis has to be placed on variable
selection and/or variable projections. Loosely speaking, such
mechanisms can be included into the nonparametric Bayesian
approach by adding more randomness into the process, i.e.,
introducing suitable hyperparameters. See Tokdar (2011) for
variable selection and linear projection proposals which have been
shown to give consistent (in probability, and at a known rate)
estimators of an unknown f ; e.g., for f depending on d < p
variables, the rate of convergence is

n−
α

2α+d (log n)k

for any k > p + 1.

Yang (2014) has noticed that Tokdar’s proposal can be considered
effective only if d << p.
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Nonparametric Bayesian approaches, contd.

Yang (2014) has provided a general framework to assess the
minimax risks for regression problems under `2 loss (see there for
an excellent account of earlier, sometimes pioneering, results in the
area). He has introduced a general class of Bayesian sieve
estimators which, under certain (more or less restrictive)
conditions, achieve the optimal minimax risk when f depends on
d << min{n, p} variables or is a sum of finitely many, k ,
functions, each of which depends on ds << min{n, p} variables.

He has shown also that a GP regression approach can lead to the
minimax optimal adaptive rate in estimating f under some
conditions when the function’s domain lies on a Riemannian
manifold.

See also Yang and Dunson (2014) and Yang and Tokdar (2015).
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Back to Monte Carlo - more on the ID part of the
MCFS-ID Algorithm

For a given training set of samples, an ensemble of decision trees
has been constructed within the MCFS part of the algorithm. Each
decision rule provided by each tree has the form of an ”ordered
conjunction” of conditions imposed on particular separate features.
(Note that trees are ”flexible” classifiers, where flexibility amounts
to classifier’s ability to produce rules as complex as is needed.)

Clearly then, each decision rule points to some interdependencies
between the features appearing in the conditions. Indeed, the
information included in such decision rules, when properly
aggregated, reveals interdependencies (however complex they may
prove) between features which are best ”correlated” with or, as has
been said, ”cooperate” in determining, the samples’ classes.
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The ID part of the MCFS-ID Algorithm, contd.

To see how an ID-Graph is built, let us recall again that each node
in each of the multitude of classification trees represents a feature
on which a split is made. Now, for each node in each classification
tree its all antecedent nodes can be taken into account along the
path to which the node belongs.

For each pair [antecedent node → given node] we add one directed
edge to our ID-Graph from antecedent node to given node.

The edges are found along the paths in all the s · t MCFS trees.
Clearly, the same edge can appear more than once even in a single
tree.
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The ID part of the MCFS-ID Algorithm, contd.

The strength of the interdependence between two nodes, actually
two features, connected by a directed edge, termed ID weight of a
given edge (ID weight for short), is defined in the following way:

For node nk(τ) in the τ -th tree, τ = 1, . . . , s · t, and its antecedent
node ni (τ), ID weight of the directed edge from ni (τ) to nk(τ),
denoted w [ni (τ)→ nk(τ)], is equal to

w [ni (τ)→ nk(τ)] = GR(nk(τ))

(
no. in nk(τ)

no. in ni (τ)

)
, (1)

where GR(nk(τ)) stands for gain ratio for node nk(τ),
(no. in nk(τ)) denotes the number of samples in node nk(τ) and
(no. in ni (τ) denotes the number of samples in node ni (τ).
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The ID part of the MCFS-ID Algorithm, contd.

The final ID-Graph is based on the sums of all ID weights for each
pair [antecedent node → given node].

That is, for each directed edge found, its ID weights are summed
over all occurrences of this edge in all paths of all MCFS
classification trees.

For a given edge, it is this sum of ID weights which becomes the
ID weight of this edge in the final ID-Graph.
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The ID part of the MCFS-ID Algorithm, contd.

In sum, an ID-Graph provides a general roadmap that not only
shows all the most variable attributes that allow for efficient
classification of the objects but, moreover, it points to possible
interdependencies between the attributes and, in particular, to a
hierarchy between pairs of attributes. High differentiation of the
values of ID weights in the ID-Graph gives strong evidence that
some interdependencies between some features are much stronger
than others and that they create some patterns/paths calling for
interpretation based on background knowledge.
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The ID part of the MCFS-ID Algorithm - a toy example

Consider objects from 3 classes, A, B and C, that contain 40, 20
and 10 objects, respectively (70 objects altogether). For each
object, create 6 binary features (A1, A2, B1, B2, C1 and C2) that
are ’ideally’ or ’almost ideally’ correlated with class feature. If an
object’s ’class’ equals ’A’, then its features A1 and A2 are set to
class value ’A’; otherwise A1 = A2 = 0. If an object’s ’class’ is ’B’
or ’C’, we proceed analogously, but we introduce some random
corruption to 2 observations from class ’B’ and to 4 observations
from class ’C’: in the former case, for each of the two observations
and both attributes B1/B2, we randomly replace their value ’B’ by
’0’ and in the latter case, again for each of the four observations
and both attributes C1/C2, we randomly replace their value ’C’ by
’0’. The data also contains additional 500 random numerical
features with uniformly [0,1] distributed values. Thus we end up
with 6 nominal important features (3 pairs with different levels of
importance for classification) and 500 randomly distributed.
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The ID part of the MCFS-ID Algorithm - a toy example
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Rysunek: Top features selected by MCFS-ID.
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The ID part of the MCFS-ID Algorithm - a toy example

A1

A2B2

B1

C2

C1

Rysunek: ID-Graph for artificial data.
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The ID part of the MCFS-ID Algorithm - a toy example

In the ID-Graphs, as seen in the Figure, some additional
information is conveyed with the help of suitable graphical means.
The color intensity of a node is proportional to the corresponding
feature’s RI. The size of a node is proportional to the number of
edges related to this node. The width and level of darkness of an
edge is proportional to the ID weight of this edge. Since we would
like to review only the strongest ID weights let us plot ID-Graph
with only 12 top edges.
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The ID part of the MCFS-ID Algorithm - a toy example

A1

A2

B2

B1

C2

C1

Rysunek: ID-Graph for artificial data, limited to top 6 features and top 12
ID weights.
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The ID part of the MCFS-ID Algorithm, and more -
Discovering interactions on a finer level

The ID-Graph does not tell the differences between the classes,
i.e., it does tell what interdependencies make the samples belong
to different classes but does not give rules which determine any
given class. Accordingly and separately, a way to construct rule
networks is also provided, where the networks are constructed from
IF-THEN rules with one network per each decision class.

Please see Bornelöv, Marillet and Komorowski (2014) and
Draminski et al. (2016a) for our proposal.

Concluding, let us add that while the current version of the
MCFS-ID is a new one, it is already included in CRAN (The
Comprehensive R Archive Network). Moreover, along with a
module to discover rule networks their explanatory power has been
verified on a number of molecular and medical examples.
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In lieu of a conclusion - a word on Big Data Analytics from
a statistical perspective

It seems now widely accepted that the term Big Data refers one to
situations when data are characterized by at least three or four
”Vs” (cf., e.g., chapter 1 in Japkowicz and Stefanowski (2016)):

Volume - huge and, usually continuously increasing, size of
the collected and analyzed data

Velocity - high speed at which the data is generated and input
into an analyzing system

Variety - heterogenous and complex representations of the
analyzed data

Variability - changes in the structure of the data, as well as
changes in how users want to interpret that data.

Clearly then, strictly speaking, Massive Data should not be
confused with Big Data.

Jacek Koronacki Analiza danych o wielkim wymiarze



A word on Big Data Analytics from a statistical
perspective, contd.

Statistical approaches form an indispensable and crucial part
of Machine Learning

As of now, while statistical meta-analyses as well as, e.g.,
probabilistic methods of linking data from different sources are
studied and developed, statistical approaches are best suited
to deal only with Massive Data from a homogenous source

As such, statistical approaches form an indispensable and
crucial part of Big Data Analytics, however if used within
homogenous settings

The importance of statistical approaches follows from their
explanatory power and methodological rigorousness
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A word on Big Data Analytics from a statistical
perspective, contd.

A statistician is well aware that he/she can apply statistical
techniques only when the data come from repetitions of some
events. He/she is also well aware that the data at hand, when
properly analyzed, can help answer only some specific
questions, by far not any questions of interest. He/she is well
equipped to examine data for possible biases or other faults.

Methods of statisical learnig provide causal models when
possible (feasible), and predictive algorithms (behavioral
models) when deeper cognizance of the phenomenon under
scrutiny is unavailable.
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A word on Big Data Analytics from a statistical
perspective, contd.

Paradoxically, it was an extraordinary development of
computer technologies what freed statisticians dealing with
massive data from John Tukey’s prison of Exploratory Data
Analysis with its slogan ”Let the data speak for themselves”

In 1979, William Eddy, a not so famous as John Tukey but a
more radical statistician proclaimed:

”The data analytic method denies the existence of ’truth’, the
only knowledge is empirical.

[...] If we can make without models, I think we should.”

Today, a nonmilitant statistician prefers to say:

If we cannot make with models, we should make without
them.
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A word on Big Data Analytics from a statistical
perspective, contd.

Flooded by Big Data, some researchers claim essentially the
same what radical proponents of EDA claimed decades ago.
They say that, e.g., given Big Data, we can abandon causal
explanations, since it suffices to know correlations which
enable one to predict; cf. discussions of this issue in chapters
1 and 2 in Japkowicz and Stefanowski (2016).

Even if any pretext can serve the purpose of regressing to
foolishness, it is better to stay wise and try to understand, not
only to predict.

Happily, the earlier discussed methods of statistical learning
are used and developed to advantage, and widely, within the
Big Data settings.
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Bühlmann P., van de Geer S., Statistics for High-Dimensional Data, Springer, 2011.
Chen J., Chen Z., Extended Bayesian information criterion for model selection with large model space.
2008; Biometrika, 94, 759-771.
Chen J., Chen Z., Extended BIC for linear regression models with diverging number of relevant features
and high or ultra-high feature spaces. 2011; arXiv:1107.2502
Draminski M, Rada Iglesias A, Enroth S, Wadelius C, Koronacki J, Komorowski J.: Monte Carlo feature
selection for supervised classification. Bioinformatics. 2008; 24, 110-117.
Draminski M., Kierczak M., Koronacki J., Komorowski J.: Monte Carlo Feature Selection and
Interdependency Discovery in Supervised Classification. In: Koronacki J., et al. (eds): Advances in Machine
Learning II. 2010; Springer series: Studies in Computational Intelligence, Vol. 263, 371-385.
Draminski M., Da̧browski M.J., Diamanti K., Koronacki J., Komorowski J.: Discovering networks of
interdependent features in high-dimensional problems. In: : N.Japkowicz and J.Stefanowski (eds.), Big
Data Analysis: New Algorithms for a New Society. 2016a; Springer, 285-304.
Draminski M., Koronacki J.: rmcfs: An R Package for Monte Carlo Feature Selection and Interdependency
Discovery. 2016b; submitted.
Dudoit S., van der Laan M. J., Multiple Testing Procedures with Applications to Genomics, Springer, 2008.
Fan J., Lv J., Sure independence screening for ultra-high dimensional feature space. J. Royal Statist. Soc.
2008; B 70 (5), 849-911.
Fan. J., Song R., Sure independence screening for generalized linear models with np-dimensionality. Ann.
Statist. 2010; 38(6), 3567–3604.

Jacek Koronacki Analiza danych o wielkim wymiarze



Selective bibliography, contd.:

Fletcher T., Relevance vector machines explained. 2010; Tech. report, www.cs.ucl.ac.uk/staff/T.Fletcher

Frommlet F., Ruhaltinger F., Twaróg P., Bogdan M.: Modified versions of the Bayesian Information
Criterion for genome-wide association studies Computational Statist. and Data Anal. 2012; 56(5),
1038-1051.

Hastie T., Tibshirani R., Wainwright M.: Statistical Learning with Sparsity: The Lasso and Generalizations,
CRC 2015.

N.Japkowicz N., Stefanowski J. (eds.): Big Data Analysis: New Algorithms for a New Society. 2016b;
Springer.

Mielniczuk J., Teisseyre P.: Using Random Subset Method for prediction and variable importance
assessment in linear regression. Computational Statist. and Data Anal. 2012; in press.

Mielniczuk J., Teisseyre P.: Selection and Prediction for Linear Models using Random Subspace Methods.
Proceedings of the Conference Information Technologies: Research and their Interdisciplinary Applications,
Institute of Computer Science. 2013; 103-121.

Pokarowski P., Mielniczuk J.: Combined `1 and Greedy `0 Penalized Least Squares for Linear Model
Selection. J. Machine Learning Reserach. 2015; 16, 961-992.

Priyadarshini A., Agarwal S.: A Map Reduce based Support Vector Machine for Big Data Classification.
International Journal of Database Theory and Application. 2015; 8(5), 77-98.

Rasmussen C.E., Williams C.K.I.: Gaussian Processes for Machine Learning. 2006; MIT Press.

Saarela M., Elomaa T., Ruohonen K., An Analysis of Relevance Vector Machine Regression. In: Advances
in Machine Learning, vol. 2; Springer, 2010.

Tan M., Tsnag I.W., Wang L.: Towards Ultrahigh Dimensional Feature Selection for Big Data. J. Machine
Learning Reserach. 2014; 15, 1371-1429.

Tipping M.E.: Sparse Bayesian learning and the relevance vector machine. 2001; Journal of Machine
Learning Research 1, 211-244.

Tokdar S.T: Dimension adaptability of Gaussian process models with variable selection and projection.
2011; Tech. Rep., Duke Iniversity, arXiv:1112.0716v1.

Yang Y.: Nonparametric Bayes for Big Data. PhD Thesis. 2014; Duke Unoversity.

Jacek Koronacki Analiza danych o wielkim wymiarze



Selective bibliography, contd.:

Yang Y., Dunson D.B.: Bayesian Manifold Regression. 2014; Annals of Statistics, to appear.

Yang Y, Tokdar S.T.: MINIMAX-OPTIMAL NONPARAMETRIC REGRESSION IN HIGH DIMENSIONS.
2015; Annals of Statistics 43(2), 652–674.

Jacek Koronacki Analiza danych o wielkim wymiarze


